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On Symplectic Capacities of Toric Domains

Michael Landry∗, Matthew McMillan†, Emmanuel Tsukerman‡

Abstract

A toric domain is a subset of (Cn, ωstd) which is invariant under the standard
rotation action of Tn on Cn. For a toric domain U from a certain large class for
which this action is not free, we find a corresponding toric domain V where the
standard action is free, and for which c(U) = c(V ) for any symplectic capacity
c. Michael Hutchings gives a combinatorial formula for calculating his embedded
contact homology symplectic capacities for certain toric four-manifolds on which
the T

2-action is free. Our theorem allows one to extend this formula to a class
of toric domains where the action is not free. We apply our theorem to compute
ECH capacities for certain intersections of ellipsoids, and find that these capacities
give sharp obstructions to symplectically embedding these ellipsoid intersections
into balls.

1 Introduction

Symplectic capacities, introduced by Gromov and Hofer, are symplectic invariants that
assign a nonnegative real number to a subset U ⊂ (Cn, ωstd) and have the following
properties:

C1 Monotonicity: c(U) ≤ c(V ) if U →֒ V.

C2 Conformality: c(λU) = λ2c(U) for λ ∈ R.

C3 Nontriviality: 0 < c(B2n(1)) < ∞.

Note that combining all three requires a finite capacity for any bounded U . Sometimes
additional nontriviality and normalization axioms are also assumed, but we do not use
them here. Many useful symplectic capacities have been defined; some are listed in [2].

Define the moment map µ : Cn → R
n of the symplectic manifold (Cn, ωstd) by

µ(z1, . . . , zn) = (π|z1|
2, . . . , π|zn|

2),
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(a) (b) (c)

Figure 1: Appropriate moment regions. (a), (b) satisfy the conditions of Criterion 1.1,
(c) does not.

where ωstd is the standard symplectic form ωstd =
∑n

i=1
dxi∧dyi on C

n, and call µ(Cn)
the moment space. We call U ⊂ (Cn, ωstd) a toric domain when it can be written
U = µ−1(A) for some moment region A ⊂ R

n
≥0 in the moment space, or equivalently

when it is invariant under the rotation action of Tn on C
n. Note that this is a special

case of the more general moment map associated with a Hamiltonian action of a Lie
group.

Since these toric domains are uniquely represented by their moment regions, we will
refer to a symplectic capacity c(A) of a moment region A, and by this mean c(µ−1(A)).
A simple calculation shows that C2 is equivalent to c(λA) = λc(A).

Our main theorem is that for a duly qualified toric domain U whose moment re-
gion satisfies Criterion 1.1 given below, any symplectic capacity of U is the same as
the capacity of a toric domain with a free action, one whose moment region is µ(U)
translated off the coordinate planes in the moment space.

Criterion 1.1. Let A ⊂ Rn
≥0. If A intersects a coordinate plane Pi = {(ρ1, . . . , ρn) ∈

R
n | ρi = 0}, then any line normal to Pi has connected intersection with A ∪ Pi.

The necessary further qualifications are given in the theorem statement below.
Figure 1 illustrates this condition for n = 2. In this case Criterion 1.1 ensures that the
toric domain is a disk bundle over its projection to the first complex plane of C2; more
generally, for A satisfying the other conditions below, Criterion 1.1 requires µ−1(A) to
be a (generalized) disk bundle over its projection to any coordinate plane Pi which it
touches. Disks in the fiber space degenerate to points where A touches a coordinate
plane.

Theorem 1.2. Let A ⊂ R
n
≥0 be a moment region which is compact with star-shaped

interior, and whose boundary intersects transversely the rays from the star-center. As-

sume that A satisfies Criterion 1.1. Then c(A) = c(A+(1, 1, . . . , 1)) for any symplectic

capacity c.

The theorem is proved by establishing equal lower and upper bounds on c(A) in
terms of c(A + (1, 1, . . . , 1)). The lower bound follows readily from properties of toric
domains and the axioms C1-C3, but for the upper bound we must combine the axioms
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with a nontrivial symplectic embedding. Since the proof assumes only the general
axioms for capacities, this result holds for all symplectic capacities. Note that the
action on a given toric domain U = µ−1(A) is free if and only if U does not intersect
the origin in any C factor; that is, its moment region does not touch any coordinate
plane Pi = {(ρ1, . . . , ρn) ∈ R

n | ρi = 0} in the moment space.
The embedded contact homology (ECH) developed by Michael Hutchings provides

a natural way to define certain symplectic capacities called ECH capacities. They are
defined for any subset of a symplectic 4-manifold. In [7], Hutchings gives a combi-
natorial method to compute these capacities for toric domains over convex moment
regions that do not touch the axes of the moment space R

2
≥0 (that is, the torus action

is free). This method is presented in Section 3. In [8, Rmk. 4.15] and [1, §1.2], it was
conjectured that Hutchings’s formula should remain true in most, and probably all,
cases where µ(U) does touch one or both axes. Theorem 1.2 shows that this is true for
the ECH capacities of a large class of toric domains by showing that it is true for all
symplectic capacities.

Given a, b ∈ R
+, define the ellipsoid

E(a, b) :=

{

(z1, z2) ∈ C
2

∣

∣

∣

∣

π|z1|
2

a
+

π|z2|
2

b
≤ 1

}

, (1)

the ball
B(a) := E(a, a),

and the polydisk

P (a, b) :=
{

(z1, z2) ∈ C
2
∣

∣ π|z1|
2 ≤ a, π|z2|

2 ≤ b
}

, (2)

where each inherits the standard symplectic form from C
2.

In Section 3 we use Theorem 1.2 to compute ECH capacities of a class of intersec-
tions of ellipsoids. We also study symplectic embeddings of domains from this class,
proving the following proposition:

Proposition 1.3. Let R be the radius of the smallest ball containing E(a, b)∩E(c, d),
a < b, c > d, and let ρ = inf{r | E(a, b) ∩E(c, d) →֒ B(r)}. If 2a, 2d ≥ R, then ρ = R.

It is known that ECH capacities provide sharp obstructions to symplectically em-
bedding ellipsoids into ellipsoids (proved by McDuff [10]), and ellipsoids into polydisks
(Frenkel-Müller [4]). Recall that by Gromov’s non-squeezing theorem [5], a ball sym-
plectically embeds into a cylinder in R

2n if and only if the radius of the cylinder exceeds
that of the ball. This is an illustration of symplectic rigidity, and is easily recovered
from the ECH capacities on these domains. The computation of ECH capacities of the
ellipsoid intersections above shows that they give sharp obstructions to symplectically
embedding those ellipsoid intersections into balls. Since the balls have much larger vol-
ume than the ellipsoid intersections, Proposition 1.3 is another example of symplectic
rigidity.
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In Proposition 1.3, the ECH capacities give a sharp obstruction. Recent work of
Hind and Lisi [6] shows that neither ECH capacities nor Ekeland-Hofer capacities give
sharp obstructions to symplectic embeddings of arbitrary toric domains; in particular
the ECH and Ekeland-Hofer obstructions to symplectically embedding a product of
polydisks into a ball are not always sharp. The torus action on polydisks and balls
is not free, so we might ask whether the situation is any different if we consider only
toric domains for which the action is free. However, the case of free torus action is not
different in this way, as the following corollary of Theorem 1.2 shows:

Corollary 1.4. Let P ∗(1, 2) = µ−1(µ(P (1, 2))+(1, 1)) be a toric domain, let a < 3, and
let B∗(a) = µ−1(µ(B4(a))+(1, 1)). There is no symplectic embedding P ∗(1, 2) →֒ B∗(a).

This shows that neither ECH nor Ekeland-Hofer capacities are sharp even when we
consider only toric domains with a free action because the obstruction given by both of
these sequences of capacities is a ≥ 2 (see [6]). This corollary is proved in Section 3.2.

2 Proof of main theorem

In this section we prove Theorem 1.2 by constructing symplectomorphisms as the prod-
ucts of area preserving maps. It will be convenient to have the following standard
lemma, which shows that translations in the moment space induce symplectomorphisms
on toric domains whose moment regions do not touch any coordinate plane.

Lemma 2.1. Suppose U ⊂ (R2n, ωstd) is a toric domain with free torus action such

that µ(U) = A, and B is any translate of A such that the torus action on µ−1 is also

free. Then U and V = µ−1(B) are symplectomorphic. In particular, they have the

same symplectic capacity for any capacity.

Proof. We can parametrize U by g : A× T
n → U defined by

g(ρ1, . . . , ρn, e
iθ1 , . . . , eiθn) = (

√

ρ1

π
eiθ1 , . . . ,

√

ρn

π
eiθn).

Then we can pull back the standard symplectic form to A× T
n. A simple calculation

shows that for the first term,

g∗(dx1 ∧ dy1) =
1

2π
dρ1 ∧ dθ1,

thus

g∗ωstd =
1

2π

n
∑

i=1

dρi ∧ dθi.

It is clear that translation in moment space does not affect this last form, so conju-
gating a translation by this parametrization yields the desired symplectomorphism.
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Figure 2: Family of loops defining a symplectomorphism B2(1) → SD(1 + ε).

Another important fact that can be seen from the proof of Lemma 2.1 is that for a
toric domain U with free torus action and moment region A, the symplectic volume of
U is equal to the volume of A:

vol(U,ωstd) =
1

n!

∫

U
ωn
std =

1

n!

∫

A×Tn

(g∗ωstd)
n

=
1

(2π)n

∫

A×Tn

dρ1 ∧ · · · ∧ dρn ∧ dθ1 ∧ · · · ∧ dθn

=

∫

A
dρ1 ∧ · · · ∧ dρn = vol(A).

So a symplectic embedding of toric domains U →֒ V may be possible only if vol(µ(U)) ≤
vol(µ(V )).

We will also use the following version of the “Traynor trick”:

Lemma 2.2 (cf. Proposition 5.2 of Traynor [13]). Given ε > 0, there exists an area

preserving diffeomorphism Ψ : B2(1) → SD2(1+ε) = B2(1+ǫ)−{x+iy | y = 0, x ≥ 0}
from the disk to the slit-disk such that

δ < |Ψ(z)|2 < |z|2 + ε

for some δ > 0.

Proof. The left inequality follows from continuity (given such a map). For existence
and the right inequality, define a family of loops which avoid the slit as in Figure 2,
and apply Schlenk [12, Lemma 3.1].

With these tools we can prove the main Theorem 1.2.
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Proof of Theorem 1.2. Our technique is to find upper and lower bounds on c(A) by
producing symplectic embeddings and applying C1 and C2. We show that these bounds
agree with each other and with c(A+ (1, 1, . . . , 1)).

For what follows, we define the scaling of Rn by λ > 0 from p ∈ R
n to be the

map q 7→ λ(q − p) + p. Since λ(q − p) + p = λq + (1 − λ)p, any scaling by λ from
p is equivalent to a scaling from the origin by λ followed by translation by (1 − λ)p.
So with Lemma 2.1 we may apply conformality of capacities, axiom C2, on moment
regions scaled from points other than the origin. The reason for the requirement that
rays from the star-center be transverse to the boundary will become clear in Step 2
with the scaling argument.

Step 1. The lower bound may be computed as follows. Let p be a star-center of intA,
which means that any other point in intA may be connected to p by a line contained
in intA. Given any λ < 1, let Aλ be the image of A under the scaling of the moment
space towards p by λ. Since p is away from the coordinate planes, Aλ is bounded
away from the coordinate planes and contained in A. By Lemma 2.1 and conformality,
c(Aλ) = λc(A+ (1, 1, . . . , 1)). Then by monotonicity, λc(A+ (1, 1, . . . , 1)) ≤ c(A), and
since λ < 1 was arbitrary,

c(A+ (1, 1, . . . , 1)) ≤ c(A).

Step 2. For the upper bound, we embed A into an expanded version of A, and apply
an area-preserving map in each dimension in which A touches a coordinate plane Pi.
We will assume that A is compact, star-shaped, and that the rays from a star-center p
intersect each ∂Aj transversely.

Assume without loss of generality that A touches the first k coordinate planes,
and does not touch the others. Let p = (ρ1, . . . , ρn) be the star-center in A noted
above. The projection p̃1 = (0, ρ2, . . . , ρn) is also a star-center: Choose any other
point q = (x1, . . . , xn) ∈ A. The line from p̃1 to q is entirely below that from p to q in
the ρ1 coordinate. By Criterion 1.1, any perpendicular dropped from a point in A to P1

remains in A. Hence the line from p̃1 to q is also in A, so p̃1 is a star-center. Repeating
in the first k coordinates, we find that p̃k = (0, . . . , ρk+1, . . . , ρn) is a star-center; call
this point p̃. A simple geometric argument making use of Criterion 1.1 shows that the
rays from p̃ must also be transverse to each ∂Aj ; we omit that here.

The next step will be to expand A to Aλ by a finite factor of λ. In order to prevent
Aλ from colliding with coordinate planes, first translate A away from the coordinate
planes Pk+1 through Pn by some large amount. Note that this is possible because by
assumption pi > 0 for i > k, and furthermore translation in the moment spaces induces
a symplectomorphism. So we shall instead compute the capacity of this translate, and
relabel it A. Now let Aλ be the scaling of A from p̃ by a small λ > 1.

We show that A ⊂ intAλ. Consider any point q = (x1, . . . , xn) ∈ A. If q ∈ intA
then q ∈ intAλ, so suppose q ∈ ∂A. Write q1/λ for the point mapped to q under the
scaling; q1/λ will be between p̃ and q. Now since the ray from p̃ to q is transverse to
∂A, it follows that q1/λ must be in intA, so we can find an open ball U around q1/λ.
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That ball maps under the scaling to Uλ, which is an open ball around q in Aλ. Thus
q ∈ intAλ, and A ⊂ intAλ.

Let extAλ denote the exterior of Aλ in R
n
≥0. Both A and Aλ are compact, so there

is some d so that 0 < d < dλ = 1

2
dist(A, extAλ). Now A is bounded, so let a be

the maximum of the ρ1 coordinate of A, and choose ε > 0 so that ε < d. Then by
Lemma 2.2, there exists Ψa : B2(a) → SD2(a+ ε) such that

δ < |Ψa(z)|
2 < |z|2 + ε (3)

for δ > 0. Let Fε = Ψa × id× · · · × id.
Set B = µ◦Fε(µ

−1(A)). Then we claim B ⊂ intAλ. Consider a point (z1, . . . , zn) ∈
µ−1(A), and let

(ρ1, . . . , ρn) ≡ µ(z1, . . . , zn) ∈ A.

By the inequality above, µ ◦ Fε((z1, . . . , zn)) = (ρ̃1, . . . , ρ̃n) where ρ̃1 < ρ1 + ε and
ρ̃i = ρi for i > 1. Thus every point in µ−1(A) is carried by Fε to a point less than d

away from A, so B ⊂ intAλ; moreover dist(B, extAλ) > dλ. Then let δ = 1

2
min{δ, dλ}

and γ = λδ (using λ < 2). Set A′
λ = Aλ + (γ, 0, . . . , 0). The lower bound on the left

of Equation 3, together with the distance from B to outside Aλ, show that in fact
B ⊂ A′

λ. So by Lemma 2.1, c(B) ≤ c(A′
λ) = λc(A + (δ, 0, . . . , 0)). Now λ > 1 was

arbitrary, so c(B) ≤ c(A+ (δ, 0, . . . , 0)). Since A and B are symplectomorphic,

c(A) ≤ c(A+ (δ, 0, . . . , 0)).

Repeating the same process in the dimensions up to k and translating up by δ in
the other coordinates shows that for some δ > 0, c(A) ≤ c(A+(δ, δ, . . . , δ)). Combining
with the lower bound, and using Lemma 2.1,

c(A) = c(A+ (1, 1, . . . , 1)).

Remark 2.3. It is worth noting that we may like to consider regions A for which ∂A is
not completely smooth. The ellipsoid intersections below are one example. The notion
of transversality must then be generalized slightly with the goal that A ⊂ intAλ. If ∂A
is the gluing of multiple hypersurfaces, it is sufficient that the rays from the star-center
be transverse to each of the hypersurfaces at the points where they are glued together.

3 Applications

3.1 ECH capacities

The remainder of this paper focuses on 4-dimensional toric domains, with accompa-
nying planar moment regions. Using Michael Hutchings’s theory of embedded contact
homology (ECH), one can associate real numbers

0 = c0(M) ≤ c1(M) ≤ c2(M) ≤ · · ·

7



Aλ

A

Aλ + (δ, 0, . . . , 0)

A

Figure 3: Illustration of the conformality argument for the lower bound (left) and the
upper bound (right).

called ECH capacities to any 4-dimensional “Liouville domain” M, such that each ci
is a symplectic capacity for 4-manifolds. For precise definitions of ECH capacities and
Liouville domains, see [7].

We briefly describe the computation of ECH capacities, as given by Theorem 4.14 of
[8]. Given a convex body A in the moment space which does not touch any coordinate
plane, we can define a norm ℓA, not necessarily symmetric, as follows. Choose an origin
in A from which to draw position vectors to ∂A. Let vi be some vector, and qi one of
the position vectors on ∂A such that the outward normal to ∂A at qi is parallel to vi.

If vi has angle between the normals to ∂A at two incident edges of ∂A, let qi be the
corner where the edges meet. Then set ℓA(vi) = vi · qi. It is not hard to check that this
yields a well-defined norm; see [8] for details.

We compute the ECH capacities according to [7] as follows: for each k, ck(A) is the
shortest perimeter length of an oriented lattice-polygon enclosing k + 1 lattice points,
where perimeter length is measured in the norm ℓA on the edge vectors of the oriented
polygon.

3.1.1 Embedding ellipsoid intersections into balls

We now use Theorem 1.2 to compute the second ECH capacity of a family of ellipsoid
intersections. This capacity is in turn used to prove Proposition 1.3. Throughout this
section, let a, b, c, d > 0, a < b, c > d, and put R = abc+bcd−acd−abd

bc−ad (see Figure 4).
We show that for 2a, 2d ≥ R, c2(E(a, b) ∩ E(c, d)) = R. A simple consequence is that
E(a, b)∩E(c, d) symplectically embeds into a ball if and only if it embeds by inclusion
(that is, Proposition 1.3). While in principle that result only requires the easier lower
bound of Theorem 1.2, we illustrate the use of Theorem 1.2 to produce the actual ECH
capacity, which is sufficient to prove the proposition.

A short computation, or consideration of Figure 4, shows that B(R) is indeed the
smallest ball into which E(a, b) ∩ E(c, d) embeds by inclusion. We first prove the
following lemma:

Lemma 3.1. If 2a, 2d ≥ R, then c2(E(a, b) ∩ E(c, d)) = R.

Assuming Lemma 3.1, observe that Proposition 1.3 is immediate:

8



(0, d)

(a, 0)

(0, R)

(R, 0)

(

abc−acd
bc−ad , bcd−abd

bc−ad

)

Figure 4: The image of E(a, b)∩E(c, d) under µ with suitable a, b, c, d, and the smallest
ball into which it symplectically embeds.

Proof of Proposition 1.3. By Corollary 1.3 of [7], c2(B(r)) = r, so we have ρ ≥ R by
Lemma 3.1. Since E(a, b) ∩ E(c, d) ⊂ B(R), ρ ≤ R and the result follows.

Proof of Lemma 3.1. Let A be the moment region of E(a, b)∩E(c, d). Since A satisfies
Criterion 1.1, we know that c2(A) = c2(A

′) for A′ = A+ (1, 1).
First we observe that the oriented lattice-polygonal path in Figure 6 has ℓA′-length

R when oriented clockwise, so c2(A) ≤ R.
Let Γ be an oriented lattice path containing 3 lattice points with edge vectors

(α, β), (γ, δ), (ǫ, ζ) (if Γ has only two edge vectors, i.e., is just a line segment, the
forthcoming argument applies mutatis mutandis). Suppose for a contradiction that
ℓA′(Γ) < R.

We first claim that β, δ, ζ ≤ 1 and that at most one is positive. Suppose without
loss of generality that β ≥ 2. Depending on the region in which (α, β) lies (or its slope
β
α , Figure 5), the ℓA′-length is determined by cases:

ℓA′((α, β)) =















(α, β) · (0, d) Region 1, 2: α ≤ 0 or β
α ≥ c

d

(α, β) ·
(

abc−acd
bc−ad , bcd−abd

bc−ad

)

Region 3: c
d ≤ β

α ≤ a
b

(α, β) · (a, 0) Region 4: 0 < β
α ≤ a

b .

We treat each case separately. In Region 1, we have (α, β) · (0, d) = βd ≥ 2d ≥
R, a contradiction. In Region 2, ℓA′((α, β)) = (α, β) ·

(

abc−acd
bc−ad , bcd−abc

bc−ad

)

and α ≥ 1.

Hence (α, β) ·
(

abc−acd
bc−ad , bcd−abc

bc−ad

)

> (1, 1) ·
(

abc−acd
bc−ad , bcd−abc

bc−ad

)

= R. Lastly, in Region 3,
ℓA′((α, β)) = (α, β) · (a, 0) and α > β, so ℓA′((α, β)) = αa > 2a ≥ R. Thus β, δ, ζ ≤ 1.

To show that at most one of β, δ, γ is positive, assume without loss of generality
that β, δ ≥ 1. Another calculation as above shows that both ℓA′((α, β)) and ℓA′((γ, δ))

9



1 2
3

4

5

c
dx

a
bx

Figure 5: Calculation of ℓA′-length by region.

are ≥ min{a, d}, so ℓA′(Γ) ≥ 2min{a, d} ≥ R, a contradiction.
A symmetric argument but with Regions 2, 3, 4, and 5 shows that α, γ, ǫ ≤ 1 and

that at most one is positive. These facts imply that the maximum displacement in
either coordinate is 1, that is, Γ lies in [0, 1]2 up to translation. We check that the
shortest lattice path containing 3 lattice points in [0, 1]2 has ℓA′-length R, so Γ cannot
exist.

Figure 6: The minimal path for c2(A) in Lemma 3.1.

3.2 Toric Domains with Free Action

The proof of Corollary 1.4 simply combines the embeddings involved in the proof of
Theorem 1.2 with the result of Hind and Lisi ([6, Thm. 1.1]) that a symplectic embed-
ding P (1, 2) →֒ B4(a) is possible if and only if a ≥ 3.

Proof of Corollary 1.4. Suppose to the contrary that a < 3 is given for which we can
find an embedding f : P ∗(1, 2) →֒ B∗(a). Let λ > 1 be close to 1 such that λ2a < 3.
Let P ∗

λ (1, 2) = µ−1(µ(P (λ, 2λ)) + (1, 1)) and B∗
λ(a) = µ−1(µ(B4(λa)) + (1, 1)). After

scaling by λ, we can find an embedding fλ : P ∗
λ (1, 2) →֒ B∗

λ(a). This is combined with
the embeddings from the proof of Theorem 1.2 as follows:

First, we can find a symplectic embedding F : P (1, 2) →֒ P ∗
λ (1, 2) by the same

technique illustrated in that theorem since P ∗
λ (1, 2) is just the translated expansion
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of P (1, 2). We also have the inclusion embedding ι : B∗
λ(a) →֒ B(λ2a) because of the

translation law (Lemma 2.1) above. Combining these we get

ι ◦ fλ ◦ F : P (1, 2) →֒ B(λ2a).

Since λ2a < 3, this violates Theorem 1.1 of [6]. Thus no such embedding f : P ∗(1, 2) →֒
B∗(a) exists.

By Theorem 1.2, the ECH and Ekeland-Hofer capacities of P ∗(1, 2) and B∗(a)
are the same as those of P (1, 2) and B(a), so neither of these capacities give sharp
obstructions to embedding P ∗(1, 2) into B∗(a).
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