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TENSOR 2-PRODUCT FOR sl2: EXTENSIONS TO THE

NEGATIVE HALF

MATTHEW MCMILLAN

Abstract. In a recent paper, the author defined an operation of tensor
product for a large class of 2-representations of U`, the positive half of the
2-category associated to sl2. In this paper, we prove that the operation
extends to give an operation of tensor product for 2-representations of the
full 2-category U : when the inputs are 2-representations of the full U , the
2-product is also a 2-representation of the full U . As in the previous paper,
the 2-product is given for a simple 2-representation Lp1q and an abelian
2-representation V taken from the 2-category of algebras.

This is the first construction of an operation of tensor product for higher
representations of a full Lie algebra in the abelian setting.
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1. Introduction

1.1. Background and motivation. This paper is the second part in a series
by the author, starting with [McM22], about an abelian tensor 2-product op-
eration for 2-representations of Lie algebras. This 2-product is designed with
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a view to the program by Crane and Frenkel [CF94] seeking a higher repre-
sentation theory in order to upgrade known 3d topological invariants, such as
the TQFT of Witten-Reshetikhin-Turaev [Wit89, RT91], to 4d invariants.

Prior work in this program involved building categories with Grothendieck
groups equal to various representations, including specific tensor products,
and these categories have been used to define homological link invariants.
This includes early work by Bernstein-Frenkel-Khovanov [BFK99] and later
Stroppel and others [Str05, FKS07, MS09, SS15, Sus07] using categoryO of gln
for tensor products of simples in type A, and work by Webster [Web17, Web16]
using diagrammatic methods for tensor products of simples in other types. We
expect these categories to be equivalent (in an appropriate sense) to the tensor
2-products of 2-representations produced by the operation studied in this paper
when the factors are simple 2-representations.

The received notion of 2-representation was introduced and developed in
[CR08, Lau10, Rou08, KL09, KL11]. A very general definition of tensor 2-
product operation for 2-representations of Kac-Moody algebras in the setting
of A8-algebras is expected from Rouquier in [Rou]. This general definition
does not come with explicit constructions.

In [McM22], the present author gave an explicit abelian model for the tensor
2-product Lp1q b V in the case of sl`2 . This is the construction of an algebra,
bimodule, and bimodule maps producing a 2-action of U`, the positive half of
the 2-category corresponding to the enveloping algebra of sl2. Here Lp1q is a
certain simple 2-representation and V is a given abelian 2-representation taken
from the 2-category of algebras and satisfying two additional hypotheses.

A related tensor 2-product for the case of glp1|1q`, which does not involve
homotopical complications that are present for sl`2 (due to the absence of
endomorphisms x P EndpEq in the relevant Hecke algebra), was applied by
Manion-Rouquier in [MR20] to describe Heegaard-Floer theory for surfaces.
Their construction has not been extended to the full glp1|1q.

It is not clear whether a 2-representation theory for sl`2 could suffice to build
a TQFT, and it is natural to ask whether the construction in [McM22] can be
extended to sl2. The main result of this paper is a proof that it can indeed
be extended. It gives, then, the first case of a 2-product operation in the
abelian setting for a full Lie algebra or super-Lie algebra, while [McM22] gave
an operation for a half Lie algebra (in an abelian setting), whereas [MR20]
used an operation for a half super -Lie algebra (in a dg-setting).

1.2. Result. Let U be the 2-category associated with the enveloping algebra
of sl2, as given in Rouquier [Rou08, §4.1.3] or Vera [Ver20, §3.2]. Let U` be
the monoidal category associated to the positive half of the enveloping algebra
of sl2. As in [McM22, §1.2], we work with 2-representations in the abelian
2-category of algebras, bimodules, and bimodule maps.

Let A be a k-algebra for a field k, let E be an pA,Aq-bimodule, and let
x P EndpEq, τ P EndpE2q be bimodule endomorphisms satisfying the nil affine
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Hecke relations:

τ 2 “ 0,

τE ˝ Eτ ˝ τE “ Eτ ˝ τE ˝ Eτ,(1.1)

τ ˝ Ex “ xE ˝ τ ` 1, Ex ˝ τ “ τ ˝ xE ` 1.

(The notation xE indicates the endomorphism xb IdE in EndpE2q, etc.) The
data pA,E, x, τq determines a 2-representation of U`.

Now assume that pA,E, x, τq has a weight decomposition A “
ś

λPZ Aλ

(cf. [McM22, §4.3.1]). The data pA,E, x, τq extends to determine a 2-represen-
tation of the full 2-category U when the functor E bA ´ admits a right adjoint
functor F (with unit η and counit ε) such that the “commutator” maps ρλ
(determined by x, τ , η, ε; see §2.2 below) are isomorphisms in each weight
λ P Z.

A simple 2-representation Lp1q of U that categorifies the fundamental repre-
sentation Lp1q of sl2 may be given by the following data. Let the k-algebra be
krys`1ˆkrys´1 (decomposed into weight algebras), and the triple be pkrys, y, 0q.
Let x act by multiplication by y. Let y P krys´1 act on krys on the right by
multiplication, and y P krys`1 act by zero; swap them for the left action.

Let Pn “ krx1, . . . , xns be the polynomial algebra. Then Pn acts on En with
xi P Pn acting by the endomorphism En´ixEi´1.

Theorem (Main result). Suppose pA,E, x, τq gives the data of a 2-representation
V of U` such that V has a weight decomposition. Define the left-dual pA,Aq-
bimodule F “ HomApAE,Aq. Suppose E has the following properties:

‚ AE is finitely generated and projective, so pEbA´, F bA´q is an adjunction
where the unit η and counit ε arise from the duality pairing,

‚ En is free as a Pn-module,
‚ E and F are locally nilpotent,
‚ The maps ρλ determined by the given data are isomorphisms for each λ P Z.

These properties imply that pA,E, F, x, τ, η, εq determines an integrable
2-representation of U .

Now let C be the k-algebra, Ẽ the pC,Cq-bimodule, and x̃ and τ̃ the bimodule

endomorphisms constructed in [McM22]. Let F̃ “ HomCpCẼ, Cq. Then:

‚ AẼ is finitely generated and projective, so pẼ bC ´, F̃ bC ´q is an
adjunction with unit η̃ and counit ε̃ arising from the duality pairing,

‚ Ẽ and F̃ are locally nilpotent,
‚ The maps ρ̃λ determined by the given data are isomorphisms, so:
‚ pC, Ẽ, F̃ , x̃, τ̃ , η̃, ε̃q determines an integrable 2-representation of U .

The data pC, Ẽ, x̃, τ̃q determines a 2-representation of U` that we inter-
preted in [McM22] as the result Lp1q b V of a 2-product operation (with the
factors considered as 2-representations of U`). One reason to interpret the
structure in this way was that it results from a categorification of the Hopf co-
product formula. Another reason was that it recovers the expected structures
in some known cases. For details, see [McM22] in §1.3, §1.4, as well as in Re-

mark 3.4 about the effect of E 1 and thus Ẽ on the Grothendieck group. Since
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the additional components F̃ , η̃, and ε̃ are fully determined by pC, Ẽ, x̃, τ̃q,
in this article we interpret the 2-representation determined by the combined
data pC, Ẽ, F̃ , x̃, τ̃ , η̃, ε̃q as the result Lp1q b V of a 2-product operation with
the factors considered as 2-representations of U .

We emphasize that for an integrable 2-representation of U` given by the
data pA,E, x, τq, the fact that the data determines a 2-representation of the
full 2-category U is equivalent to the data having a property: namely that AE

is f.g. projective, and the commutator maps ρλ determined by the data are
isomorphisms. When this holds, then (according to the theorem) the maps ρ̃λ
of the product are also isomorphisms. So the new data pC, Ẽ, x̃, τ̃q inherits
the property of determining an action of the full U .

1.3. Outline summary. The paper is organized as follows:

‚ In §2 we introduce the relevant background theory for extensions of 2-
representations of U` to the full 2-category U . This section builds on the
background theory and definitions of [McM22]. We include a discussion of
the adjunction, the commutator maps ρλ, and the condition of integrability
as it relates to our product construction.

‚ In §3 we define and study important bimodules, giving concrete algebraic
models for them in the manner of §3.2 of [McM22].

‚ In §4 we consider the left dual to Ẽ, namely F̃ “ HomCpCẼ, Cq, and we
show how to describe it concretely by using the B side of the equivalence
described in §3.3.2 of [McM22].

‚ In §5.1 we study the tensor products Ẽ bC Ẽ and Ẽ bC F̃ and F̃ bC Ẽ,
and describe their structure as pArys, Arysq-bimodules. In §5.2 we compute
explicit formulas for ρ̃λ in terms of the structures found in §5.1. In §5.3 we
use the formulas from §5.2 to show that each ρ̃λ is an isomorphism.

1.4. Acknowledgments. I thank Raphaël Rouquier for advice and encour-
agement during this project. This work was supported by the NSF through
grant DMS-1702305.

2. Background: extending U` actions to U actions

2.1. 2-Representations of U . We begin with a description of a 2-represen-
tation of the full 2-category U associated to the Lie algebra sl2. The 2-category
U that we mean is defined in §4.1.3 of [Rou08], but with τ replaced by ´τ in
the Hecke relations. We do not repeat that definition here since we work with
the concrete data of 2-representations and not with the 2-category U itself.

In [McM22], a 2-representation was defined as a strict monoidal functor from
U` to a monoidal category of the form BimkpAq, which is defined for a k-algebra
A as follows: the objects of BimkpAq are pA,A)-bimodules, and the morphisms
of BimkpAq are bimodule maps. The monoidal structure on BimkpAq is given by
tensor product of bimodules over A. This monoidal category BimkpAq may also
be interpreted as a 2-category with a single object A, where the 1-morphisms
are given by tensor product with pA,Aq-bimodules, and the 2-morphisms are
bimodule maps.
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A 2-representation of the full U is defined in terms of weights (see Def. 4.25
of [McM22]). When A is provided with a weight decomposition A “

ś

λPZ Aλ,
then the 2-category BimkpAq with single object A may be expanded to a 2-
category with objects given by the weight algebras Aλ, morphisms given by
pAµ, Aλq-bimodules, and 2-morphisms given by bimodule maps. With this
interpretation, a 2-representation of U may be described as a strict 2-functor
U Ñ BimkpAq given on objects by 1λ ÞÑ Aλ.

According to Prop. 2.4 of [McM22], a 2-representation of U` in BimkpAq
is equivalent to the data of a k-algebra A together with a bimodule AEA and
bimodule maps x P EndpEq, τ P EndpE2q satisfying relations (1.1). This paper
will rely on the following analogue of that proposition:

Proposition 2.1. The data of a 2-representation U Ñ BimkpAq for a k-algebra
A “

ś

λPZ Aλ consists of bimodules AEA, AFA (having weights `2 and ´2), the
unit η and counit ε of an adjunction pE, F q, and bimodule maps x P EndpEq,
τ P EndpE2q that satisfy relations (1.1), all such that ρλ (defined below in
terms of x, τ , η, ε) is an isomorphism for each λ.

(Bimodules E, F are said to have weight `2 and ´2, respectively, when
ejEei “ δi`2,j ¨ ei`2Eei and ejFei “ δi´2,j ¨ ei´2Fei.)

In this paper, a symbol V is used sometimes to denote a 2-representation of
U`, and sometimes to denote the extension of the former to a 2-representation
of U . This is an abuse of notation because the first V is a monoidal category,
and the second V is a 2-category. This abuse is justifiable when both types of
category are determined by the same data.

2.2. Commutator morphisms. Here we define the commutator morphisms.
Assume we are given the data of a k-algebra A, bimodules AEA, AFA which
determine endofunctors of A-mod by tensor product on the left, the unit η and
counit ε of an adjunction pE, F q, and endofunctors x and τ satisfying (1.1).
Assume that A has a weight decomposition A “

ś

λPZ Aλ, and E and F have
weights `2 and ´2. Let us use the notation Eλ “ E ¨Aλ and µEλ “ Aµ ¨E ¨Aλ,
so E “

À

µ,λ µEλ. In this paper we also use a convention that ‘‘’ and ‘
ř

’
denote the components of a map to and from a direct sum, respectively.

We define σ : EF Ñ FE by:

σ “ pFEεq ˝ pFτF q ˝ pηEF q : EF Ñ FE.

For λ P Zě0 we define:

(2.1) ρλ “ σ ‘
λ´1
à

i“0

ε ˝ xiF : EFλ Ñ FEλ ‘ A‘λ
λ ,

and for λ P Zď0:

(2.2) ρλ “

˜

σ,

´λ´1
ÿ

i“0

Fxi ˝ η

¸

: EFλ ‘ A‘´λ
λ Ñ FEλ.

(The summation terms are neglected when λ “ 0.)
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2.3. Conventions. We adopt the conventions of [McM22], so the reader may
consult §2.3 of that text for additional details. Assume we are given data
pA,E, x, τq determining a 2-representation V of U`. Assume that AE is
f.g. projective and that En is free as a Pn-module.

The construction of the product Lp1q b V in [McM22] makes use of the
pArys, Arysq-bimodule Erys, and the endomorphism x´ y P EndpErysq. Write
Ey for the quotient Erys

L

px ´ yqErys, and π : Erys Ñ Ey for its projection.
Concatenation of the symbols for bimodules indicates tensor product over

some algebra that is determined by context. Sometimes this algebra could be
either A or Arys, so we stipulate that if the expression for a bimodule contains
‘y’, it will be understood as an pArys, Arysq-bimodule, and if the expression
lacks ‘y’, it will be understood as an A-module. We suppress isomorphisms
such as:

ErysEy “ Erys bArys Ey
„
ÝÑ E bA Ey “ EEy.

Extend x to an element of EndpErysq by x : eyn ÞÑ xpeqyn and τ to
EndpE2rysq by τ : eeyn ÞÑ τpeeqyn. When writing formulas for morphisms
we often write an arbitrary element of Erys with the single letter ‘e’ and an
arbitrary element of E2rys with the doubled symbol ‘ee’ (which is not assumed
to be a simple tensor).

We make use of the notation yi “ xi ´ y. Here yi indicates
`

EjxEi´1 ´ y
˘

for some j, and context will determine the value of j.
As in §2.3 of [McM22], let s P EndpE2q be the bimodule map given by

s “ τ ˝ px1 ´ x2q ´ Id, and extended to E2rys as x and τ are extended. Note
that s descends to define maps of pArys, Arysq-bimodules s : EyE Ñ EEy and
s : EEy Ñ EyE such that s2 descends to Id.

2.4. Adding a dual. Every bimodule AEA has left- and right-dual bimodules,

_E “ HomApAE,Aq,

E_ “ HomApEA, Aq,

respectively.
Now, when AE is f.g. projective, the canonical morphism _E bA E Ñ

HomApAE,Eq is an isomorphism of bimodules. More generally, the canoni-
cal morphism of functors _E bA ´ Ñ HomApAE,´q is an isomorphism. In
this situation, the endofunctor _E bA ´ of the category A-mod is right ad-
joint to the endofunctor E bA ´ of the same category. The triple p_E, η, εq
gives the right-dual object for E in the monoidal category BimkpAq. Here
ε : E bA

_E Ñ A is given by evaluation, and η : A Ñ _E bA E is given via
the isomorphism _E bA E

„
ÝÑ HomApAE,Eq by the right A-action whereby

ηpaq : e ÞÑ e.a. (Note that we say _E is the left-dual bimodule, even though
it gives the right-dual object.)

Conversely, assume that pE bA ´, _E bA ´q is an adjoint pair for some
bimodule AEA. The adjunction gives equivalences of functors:

HomApAE,´q – HomApAA,
_E bA ´q – _E bA ´,
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so all three are both right- and left-exact functors. So AE is projective. Fur-
thermore, these functors commute with infinite direct sums, so AE is finitely
generated as well.

In this paper we consider 2-representations for which the image of F in
BimkpAq, i.e. the bimodule AFA, is identically the left-dual bimodule _E.
There is no loss of generality because any 2-representation of U in BimkpAq
is equivalent to one of these. (For any 2-representation in BimkpAq, the end-
ofunctor AF bA ´ of A-mod is right adjoint to AE bA ´, and is therefore
unique up to unique isomorphism.) A 2-representation of U given by the data
pA,E, F, x, τ, η, εq in BimkpAq is said to extend a 2-representation pA,E, x, τq
of U` when F “ _E and η, ε arise from the duality.

It was a hypothesis of the main theorem of [McM22] that AE is f.g. pro-
jective. This condition was needed in order to show that E 1X was a perfect
complex (for example). In light of the above, we see that the existence of an
extension of the 2-representation of U` to a 2-representation of U in BimkpAq
also necessitates that hypothesis.

The following lemma is a consequence of the foregoing discussion.

Lemma 2.2. Suppose the data pA,E, x, τq determines a 2-representation of
U` in BimkpAq having a weight decomposition. This data extends to determine
a 2-representation of U , with F “ _E, if and only if AE is f.g. projective and
the commutator morphisms ρλ (determined by x, τ , η, ε) are isomorphisms.

In [McM22] the author defined the data pC, Ẽ, x̃, τ̃q of a product 2-represen-
tation of U` in terms of given data pA,E, x, τq satisfying some conditions. In
that paper it was seen that CẼ is f.g. projective, and it follows that F̃ “ _Ẽ

is right adjoint to Ẽ. In this paper we aim to show that pC, Ẽ, F̃ , x̃, τ̃ , η̃, ε̃q
determines a 2-representation of U . Our argument uses the above Lemma: it
will suffice to show that the commutator morphisms ρ̃λ are isomorphisms.

2.5. Integrability. In the literature, a 2-representation is typically defined in
terms of weight categories Cλ and functors E and F between them, whereas we
have framed our results entirely in terms of bimodules E and F . One reason
for this is that a certain pair of bimodules may determine several functors (by
the operation of tensoring on the left) that act on several reasonable categories
of modules. The most important ones are A-mod and A-proj.

The distinction between A-mod and A-proj interacts with our results and
the hypothesis of integrability in an interesting way. This interaction is medi-
ated by the property of “second adjunction” that a 2-representation of U may
possess. We explain this next. Note that some authors include the second
adjunction in their definition of a 2-representation, and for them, this discus-
sion will be of minor significance. It may be interesting for them to observe,
though, that in our construction of tensor product, the hypothesis of integra-
bility passes from the factors to the product quite easily, while it is not clear
that a second adjunction alone passes from the factors to the product at all.

Every 2-representation of U given with functors E and F comes with one
adjunction pE, F q, and with the data of a “candidate” unit and counit pair
for a second adjunction pF,Eq. When the 2-representation acts on a category
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A-mod and E and F are given by tensoring with bimodules, the first adjunc-
tion implies that AE is f.g. projective. In this case, the upper half U` also
acts on the smaller category A-proj. If the 2-representation is assumed to be
integrable, and the full U acts, i.e. the ρλ are isomorphisms, then by Theorem
5.16 of [Rou08] the given candidates do provide a second adjunction pF,Eq.
This adjunction implies that AF is also f.g. projective, and now the full U
action may be restricted to A-proj.

Given only the first adjunction with an action of U`, so AE is f.g. projective,
together with the hypothesis that En is free over Pn, we can form the 2-
representation of U` called Lp1q b V in [McM22]. In that paper it was shown

that CẼ is f.g. projective, so it may be interpreted either in an action on C-mod
or else in an action restricted to C-proj. Given also a second adjunction p_E,Eq
determining an action of the full U , we know that U acts on A-proj through
E and _E in the 2-representation V, but we are not (currently) able to show

from this alone that U acts on C-proj through Ẽ and _Ẽ, since we do not
know that _Ẽ is f.g. projective.

Given the first adjunction pE, _Eq and also the hypothesis of integrability
of an action of the full U , we know that there is a second adjunction p_E,Eq.
Now the hypothesis of integrability itself passes to the product bimodule Ẽ.
(Prop. 4.24 of [McM22].) Given that we can also show that the product maps
ρ̃λ are isomorphisms (the main effort of this paper), so we have an action of the
full U on C-mod, it follows from integrability that there is a second adjunction
p_Ẽ, Ẽq for the product. This implies, in turn, that C

_Ẽ is f.g. projective and
that the full U action may be restricted to the category C-proj.

To summarize, second adjunctions enable restriction of the full U action to
the subcategories A-proj and C-proj. The existence of a second adjunction
p_E,Eq in V is not enough (with the arguments below) to guarantee a second

adjunction p_Ẽ, Ẽq in Lp1q b V. But integrability of V is enough to guarantee
integrability of Lp1q b V, as well as to give both second adjunctions p_E,Eq

and p_Ẽ, Ẽq.

2.6. Background: 2-product for U`. We recall some definitions and results
from [McM22]. The reader is encouraged to review that paper and to consult
it for additional details and conventions.

Definition 2.3 (Def. 3.1 of [McM22]). Let B be the k-algebra:

B “

ˆ

Arys Ey

0 Arys

˙

.

The algebra structure of B is given by matrix multiplication, where products
involving generators in rBs12 are defined using the bimodule structure of Ey.

Modules over B are naturally written in terms of components. A left B-
module is given by a pair

`

M1

M2

˘

of left Arys-modules, together with a morphism
α : Ey bArys M2 Ñ M1 of left Arys-modules specifying the action of Ey gener-
ators; analogously a right B-module is given by a pair p N1 N2 q and morphism
β : N1 bArys Ey Ñ N2.
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A bimodule consists of a 2 ˆ 2 matrix with additional data. The direct
sum of coefficients in the top row of such a matrix gives the top component of
the pair corresponding to the left-module structure, and the bottom row gives
the bottom component of the pair; similarly the columns give the components
of the right-module structure. The additional data consists of α determining
‘vertical’ maps and β giving ‘horizontal’ maps. A matrix together with maps α
and β determines a bimodule only if the left and right actions of Ey specified by
α and β commute. (In this situation the vertical and horizontal maps respect
the decompositions into horizontal and vertical components, respectively.)

A complex of left B-modules is equivalent to a pair of complexes of Arys-
modules and a map of complexes α; analogously for right B-modules and for
bimodules. Complexes in this paper have a cohomological grading.

Definition 2.4 (Def. 3.2 of [McM22]). Let E 1 be the complex of pB,Bq-
bimodules that is nonzero in degrees 0 and 1, where it is given by:

E 1
0 “

ˆ

Erys ErysEy

0 Erys

˙

, E 1
1 “

ˆ

Ey EyEy

Arys Ey

˙

.

The left action of a generator in Ey Ă B is specified on vertical columns of
E 1

0 by the maps 0 : Ey b 0 Ñ Erys and s : EyErys Ñ ErysEy. The left action
on E 1

1 is specified by the identity map on vertical columns. The right action on
E 1

0 is specified by the identity on the top row, and 0 on the bottom row. The
right action on E 1

1 is specified by the identity on both rows. The differential
E 1

0 Ñ E 1
1 is given componentwise by

`

π πEy

0 π

˘

.

Lemma 2.5 (Lemma 3.3 of [McM22]). Let M “
``

M1

M2

˘

, α
˘

be a complex of
left B-modules (written as a pair of complexes), where α : Ey bArys M2 Ñ M1

specifies the action for generators in Ey. The functor E 1 bB ´ on M may be
given by:

ˆˆ

M1

M2

˙

, α

˙

E1

ÞÝÑ

¨

˚

˝

¨

˚

˝

ErysM1

πM1
ñ

‘ EyM1r´1s

ErysM2

α˝πM2
ñ

‘ M1r´1s

˛

‹

‚
,

ˆ

Erysα ˝ sM2 0
0 IdEyM1

˙

˛

‹

‚
.

Here the top and bottom rows express cocones of the maps πM1 and α ˝ πM2.

Definition 2.6 (Def. 3.5 of [McM22]). Let X be the following complex of
B-modules:

X “ X1 ‘ X2; X1 “

ˆ

Arys
0

˙

, X2 “ E 1X1 “

ˆ

Erys
π

ÝÑ Ey

0 ÝÑ Arys

˙

,

where X1 lies in degree 0 and X2 in degrees 0 and 1. The Ey action on X2 is
given by Ey bArys Arys

„
ÝÑ Ey, e b 1 ÞÑ e.

Proposition 2.7 (Prop. 3.6 of [McM22]). The complex X is strictly per-
fect and generates per B, the full subcategory of DbpBq of complexes quasi-
isomorphic to strictly perfect complexes.

Next we recall an important series of bimodules introduced in [McM22]:

Definition 2.8 (Def. 3.16 of [McM22]). Let Gn denote HomKbpBqpX2, E
1nX1q.
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Note that the quotient projection to the derived category is an isomorphism
Gn

„
ÝÑ HomDbpBqpX2, E

1nX1q because X2 is strictly perfect. Note also that G1

has an algebra structure given by composition of endomorphisms.

Proposition 2.9 (Props. 3.18, 3.20, and 3.22 together with 3.27 and 3.28
of [McM22]). There are isomorphisms of pArys, Arysq-bimodules Ḡ1

„
ÝÑ G1,

Ḡ2
„
ÝÑ G2, Ḡ3

„
ÝÑ G3, where:

Ḡ1 “

B

pθ, ϕq P Aoprys ‘ EndApAEqrys

ˇ

ˇ

ˇ

ˇ

ϕ “ .θ ` y1ϕ1

for some ϕ1 P EndApAEqrys

F

,

Ḡ2 “

B

pe1, e2, ξq P Erys‘2 ‘ HomApAE,E2qrys

ˇ

ˇ

ˇ

ˇ

e1 ´ e2 “ y1e
1

ξ “ b e1 ` y2ξ1

ξ1 “ τp b e2q ` y1ξ
1

for some e1 P Erys and ξ1 P HomApAE,E2qrys

F

,

Ḡ3 “

B

pee1, ee2, ee3, χq P E2rys‘3 ‘ HomApAE,E3qrys

ˇ

ˇ

ˇ

ˇ

ee1 ´ ee2 “ y2ee
1

ee3 ´ ee2 “ y1ee
2

τy1pee3q ´ ee1 “ y1ee
3,

χ “ b ee1 ` y3χ1

χ1 “ τEp b ee2q ` y2χ
1
1

χ1
1 “ Eτ ˝ τEp b ee3q ` y1χ

2

for some eepkq P E2rys and χ2 P HomApAE,E3qrys

F

.

Here .θ P EndApAEqrys is the morphism sending e to e.θ, and b e1 P
HomApAE,E2qrys sends e to e b e1, and b ee1 sends e to e b ee1. Note that
e1, ξ1, and ξ1 are uniquely determined by pe1, e2, ξq, and ee1, ee2, ee3 and χ1,
χ1
1, χ

2 are uniquely determined by pee1, ee2, ee3, χq.

We rely on this proposition in what follows and do not distinguish between
Gi and Ḡi for i “ 1, 2, 3. For example, we may write pθ, ϕq P G1. (We also
write pθ, ϕq for the element of Gop

1 .) The interpretations of elements pθ, ϕq
etc. as explicit homomorphisms of complexes are given by Props. 3.18, 3.20,
and 3.22 of [McM22].

Also recall the two complexes of B-modules:
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Definition 2.10. Let R,X 1
2 P B-cplx be given by:

R “

˜

E2rys
p πE
πE˝τ q

ÝÝÝÝÝÑ EyE ‘ EyE

0 Ñ Erys ‘ Erys

¸

,

X 1
2 “

ˆ

τy1E
2rys

πE
ÝÑ EyE

0 ÝÑ Erys

˙

,

both lying in degrees 0 and 1 (cohomological grading), and the Ey action on
R specified by 0 and the canonical map

Ey b pErys ‘ Erysq Ñ EyE ‘ EyE,

and on X 1
2 specified by 0 and IdEyErys.

Now recall the following three lemmas:

Lemma 2.11 (Lem. 3.11 of [McM22]). We have that X 1
2 is a finite direct sum

of summands of X.

The nil-affine Hecke algebra has the structure of an n! ˆ n! matrix alge-
bra over the symmetric polynomials P Sn

n (cf. Prop. 3.4 of [Rou08]). Among
other things, this gives a decomposition of En into submodules called ‘divided
powers’:

En „
ÝÑ

n copies
hkkkkkkkkkikkkkkkkkkj

Epnq ‘ ¨ ¨ ¨ ‘ Epnq.

We will make use of this for n “ 2, where the isomorphism is given (by
extension to left Arys-modules) explicitly as follows:

(2.3) E2rys
„

ÝÝÝÝÑ
p τy1

τ q
τy1E

2rys ‘ τy1E
2rys.

The inverse of this map is pι,´y2q, where ι : τy1E
2rys ãÑ E2rys is the in-

clusion. The elements τy1 and ´y2τ are orthogonal idempotents summing
to Id, and τ gives an isomorphism from ´y2τE

2rys to τy1E
2rys. (To check

this: τp´y2τqee “ τee “ τy1pτeeq P τy1E
2rys, τp´y2τqy1ee “ τy1ee, and if

τp´y2τqee “ 0 then τee “ 0 so ´y2τee “ 0.)

Lemma 2.12 (Lem. 3.12 of [McM22]). There is an isomorphism R
„
ÝÑ X 1

2‘X 1
2

in B-cplx given by the above isomorphism on the degree 0 term of the top row,
and the identity on all other terms. So R is a finite direct sum of summands
of X. In particular, R is strictly perfect.

Lemma 2.13 (Lem. 3.13 of [McM22]). There is a quasi-isomorphism R
q.i.
ÝÝÑ

E 1X2 determined by IdE2rys on the degree 0 term of the top row and
`

1 0
1 ´y1

˘

on the degree 1 term of the bottom row.

We recall, finally, the main construction from [McM22]. That construction
was given using an equivalence:

per B
„

ÝÝÝÝÝÝÝÝÑ
H omBpX,´q

per C,
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where C “ EndKbpBqpX1 ‘ X2qop. The algebra C can be presented using a
matrix of pArys, Arysq-bimodules (see Prop. 3.31 and Lem. 3.34 of [McM22]):

rCs
„
ÝÑ

ˆ

EndpX1qop HompX1, X2q
HompX2, X1q EndpX2q

op

˙

„
ÝÑ

ˆ

Arys y1Erys
F rys G

op

1

˙

.

The functor E 1 b ´ on per B translates to the functor E b ´ on per C, with

E “ H omBpX,E 1Xq, and there is a quasi-isomorphism Ẽ
q.i.
ÝÝÑ E with Ẽ “

HomKbpBqpX,E 1Xq. This Ẽ is a pC,Cq-bimodule. It can be presented as a
matrix of pArys, Arysq-bimodules (see §3.4.2 of [McM22]):

(2.4) rẼs
„
ÝÑ

ˆ

y1Erys y1y2E
2rys

G1 G2

˙

.

Using the derived equivalence we also have an isomorphism Ẽ2 “ Ẽ bC Ẽ
„
ÝÑ

HomKbpBqpX,E 12Xq, which yields a matrix presentation:

(2.5) rẼ2s
„
ÝÑ

ˆ

y1y2E
2rys y1y2y3E

3rys
G2 G3

˙

.

Lastly, in §4 of [McM22], the author defined pC,Cq-bimodule endomor-
phisms x̃ and τ̃ . They are given componentwise by:

(2.6) rx̃s œ rẼs by:

ˆ

x xE
pθ,ϕqÞÑ

pyθ,x˝ϕq
pe1,e2,ξqÞÑ

pye1,xe2,xE˝ξq

˙

,

(2.7) rτ̃ s œ rẼ2s by:

ˆ

τ τE
pe1,e2,ξqÞÑ
pe1,e1,τ˝ξq

pee1,ee2,ee3,χqÞÑ
pee1,ee1,τpee3q,τE˝χq

˙

.

In the last row, e1 is determined by e1 ´ e2 “ y1e
1, and ee1 is determined by

ee1 ´ ee2 “ y2ee
1. (See Prop. 2.9 above.) In [McM22] it was established that

these endomorphisms satisfy the nil-affine Hecke relations (1.1).

3. More bimodules

We add a new series of bimodules for this paper:

Definition 3.1. Let Ln denote HomDbpBqpE
1nX1, X2q.

Note that L1 “ G1. We will only need L1 and L2 in what follows. Observe
that Ln has a right Gop

1 -module structure given by post-composition. We now
study L2 and provide it with the structure of a pGop

1 , G
op

1 q-bimodule.
We need an additional feature of the complex R:

Lemma 3.2. The complex R carries a right action of the algebra G
op

1 , where
pθ, ϕq P G

op

1 acts by post-composing with Eϕ P EndpE2rysq on the top row of
R0, namely E2rys, and by the matrix

Φ “

ˆ

ϕ 0
ϕ1 θ

˙

on the bottom row of R1, namely Erys‘2, and by EyΦ on the top row of R1,
namely EyE

‘2. Through the quasi-isomorphism of Lemma 2.13, this action
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induces the canonical action of Gop

1 “ EndKbpBqpX2qop on E 1X2 given by func-
toriality of E 1.

Proof. First we check that the right action of pθ, ϕq described in the lemma
gives a morphism of complexes of left B-modules. The action is clearly Arys-
linear in the top and bottom rows, and it is clearly linear over the off-diagonal
generators in Ey Ă B. The action commutes with the differential on the
bottom row. We check the top row:

ˆ

Eyϕ 0
Eyϕ1 Eyθ

˙

¨

ˆ

πE

πE ˝ τ

˙

“

ˆ

Eyϕ ˝ πE

Eyϕ1 ˝ πE ` Eyθ ˝ πE ˝ τ

˙

“

ˆ

πE ˝ Eϕ

πE ˝ Eϕ1 ` πE ˝ τ ˝ Eθ

˙

“

ˆ

πE

πE ˝ τ

˙

˝ EΦ.

Next we check that the action commutes with multiplication in the algebra.
In G

op

1 we have pθ, ϕq ¨ pθ1, ϕ1q “ pθθ1, ϕ1 ˝ ϕq, while the action of the product
on the bottom row of R1 is given by:

ˆ

ϕ1 0
ϕ1
1 θ1

˙

¨

ˆ

ϕ 0
ϕ1 θ

˙

“

ˆ

ϕ1 ˝ ϕ 0
ϕ1
1 ˝ ϕ ` p .θ1q ˝ ϕ1 θθ1

˙

.

Note that
ϕ1 ˝ ϕ ´ .θθ1 “ y1

`

p .θ1q ˝ ϕ1 ` ϕ1
1 ˝ ϕ

˘

,

so the composition of the actions agrees with the action of the product on that
term. The other terms are trivial to check.

Lastly we check that through the quasi-isomorphism of Lemma 2.13, this
action is compatible with the canonical action on E 1X2. Start with the bottom
row of R1:

ˆ

1 0
1 ´y1

˙

¨

ˆ

ϕ 0
ϕ1 θ

˙

“

ˆ

ϕ 0
ϕ ´ y1ϕ1 ´y1θ

˙

,

ˆ

ϕ 0
0 θ

˙

¨

ˆ

1 0
1 ´y1

˙

“

ˆ

ϕ 0
θ ´θy1

˙

.

These agree because ϕ ´ y1ϕ1 “ θ. The other terms are trivial to check. �

Now we compute a model for L2 using the strictly perfect R as a replacement
for E 1X2.

Definition 3.3. Define the following pArys, Arysq-sub-bimodule of F rys‘2 ‘
HomApAE

2, Eqrys:

L̄2 “

B

pf 1, f, ρq P F rys‘2 ‘ HomApAE
2, Eqrys

ˇ

ˇ

ˇ

ˇ

ρ “ Ef ` Ef 1 ˝ τ ` y1 ˝ ρ1

for some ρ1 P HomApAE
2, Eqrys

F

.

One easily checks that the set L̄2 is closed under the bimodule operations.
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Proposition 3.4. There is an isomorphism of pArys, Arysq-bimodules L̄2
„
ÝÑ

HomKbpBqpR,X2q determined by equivariance over Ey Ă B with the following
data:

pf 1, f, ρq ÞÑ

ˆˆ

pee, p 0
0 qq

p0, p e
e1 qq

˙

ÞÑ

ˆ

pρpeeq, 0q
p0, fpeq ` f 1pe1qq

˙˙

.

Proof. The proof is seen by directly computing Z0H omBpR,X2q. It is easy
to check that the morphism given as the image of pf 1, f, ρq is a morphism of
complexes of left B-modules. The condition ρ “ Ef ` Ef 1 ˝ τ ` y1 ˝ ρ1 is
equivalent to the statement that this morphism has zero differential. �

(Recall the notation from [McM22]: ee is an arbitrary element of E2rys, not
a simple tensor. It is unrelated to e and e1, which are arbitrary in Erys.)

Corollary 3.5. The isomorphism above, followed by the canonical isomor-
phism of functors HomKbpBqpR,´q

„
ÝÑ HomDbpBqpR,´q applied to X2, gives an

isomorphism L̄2
„
ÝÑ L2 of pArys, Arysq-bimodules.

Proposition 3.6. There is an isomorphism of pArys, Arysq-bimodules
F 2rys

„
ÝÑ HomKbpBqpR,X1q determined by equivariance over Ey Ă B with the

following data:

F 2rys Q ff ÞÑ

ˆˆ

pee, p 0
0 qq

p0, p e
e1 qq

˙

ÞÑ

ˆ

ffpeeq
0

˙˙

.

Proof. The proof is seen by directly computing Z0
H omBpR,X1q. �

It is useful to give a model of G2 that is compatible with this model of L2

by using the replacement R for E 1X2.

Definition 3.7. Define the following pArys, Arysq-sub-bimodule of Erys‘2 ‘
HomApAE,E2qrys:

Ḡ1
2 “

B

pe1, e, ξq P Erys‘2 ‘ HomApAE,E2qrys

ˇ

ˇ

ˇ

ˇ

ξ “ b e ` y2τ p b pe ´ y1e
1qq ` y1y2ξ

1

for some ξ1 P HomApAE,E2qrys

F

.

One quickly checks that the condition is closed under the bimodule operations.
It is sometimes convenient to rewrite the condition as

ξ “ τy1p b eq ´ y2τy1p b e1q ` y1y2ξ
1.

Proposition 3.8. There is an isomorphism of pArys, Arysq-bimodules Ḡ1
2

„
ÝÑ

HomKbpBqpX2, Rq determined by equivariance over Ey Ă B with the following
data:

pe1, e, ξq ÞÑ

ˆˆ

pe, 0q
p0, 1q

˙

ÞÑ

ˆ

pξpeq, 0q
p0, p e

e1 qq

˙˙

.

Proof. The proof is seen by directly computing Z0H omBpX2, Rq. �
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The quasi-isomorphism R
q.i.
ÝÝÑ E 1X2 determines an isomorphism Ḡ1

2

„
ÝÑ Ḡ2,

since X2 is strictly perfect, given by pe1, e, ξq ÞÑ pe, e ´ y1e
1, ξq, with inverse

given by pe1, e2, ξq ÞÑ py´1
1 pe1 ´ e2q, e1, ξq. In most of this paper we will use Ḡ1

2

instead of Ḡ2 as a model for G2.

Definition 3.9. Let U denote HomKbpBqpR,Rq. It is canonically isomorphic
to HomDbpBqpE

1X2, E
1X2q.

Now we describe a model for U . For U and L2 later in this paper, as for
Gn, we frequently assume the terms of the models to denote morphisms of
complexes, passing without mention through the isomorphisms Ū

„
ÝÑ U and

L̄2
„
ÝÑ L2.

Definition 3.10. Define the following pArys, Arysq-sub-bimodule of
FErys‘4 ‘ HomApAE

2, E2qrys:

Ū “

B

pΦ11,Φ21,Φ12,Φ22,Λq P FErys‘4 ‘ HomApAE
2, E2qrys

ˇ

ˇ

ˇ

ˇ

Λ “ τy1pEΦ11 ` EΦ12 ˝ τq ´ y2τy1pEΦ21 ` EΦ22 ˝ τq ` y1y2Λ
˝

for some Λ˝ P HomApAE
2, E2qrys

F

.

Here Φij give the components of the matrix rΦs of a map
Φ P EndApAErys ‘ Erysq. Note that because y1y2 is injective, Λ˝ is uniquely
determined by pΦ,Λq. The condition on Λ is clearly closed under the
bimodule operations.

Proposition 3.11. There is an isomorphism of pArys, Arysq-bimodules Ū
„
ÝÑ

U determined by equivariance over Ey Ă B with the following data:

pΦ,Λq ÞÑ

ˆˆ`

ee, p 0
0 q

˘

`

0, p e
e1 q

˘

˙

ÞÑ

ˆ `

Λpeeq, p 0
0 q

˘

`

0, rΦs ¨ p e
e1 q

˘

˙˙

.

Proof. The proof is seen by directly computing U “ Z0H omBpR,Rq. We
must show that the condition on Λ is equivalent to the statement that the
image of pΦ,Λq has zero differential. One computes directly that the morphism
given as this image has zero differential if and only if the following pair of
equations holds:

"

πE ˝ Λ “ EyΦ11 ˝ πE ` EyΦ12 ˝ πE ˝ τ

πE ˝ τΛ “ EyΦ21 ˝ πE ` EyΦ22 ˝ πE ˝ τ.

These are morphisms from E2rys in the top row of R0. On the left side they
are given by applying the image of pΦ,Λq first (namely Λ on E2rys) and then
d. On the right side, EyΦ is induced on the top row of R1 by Φ on the bottom
row of R1 together with equivariance over Ey Ă B.
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That pair of equations is equivalent to the condition:
#

Λ “ EΦ11 ` EΦ12 ˝ τ ` y2Λ
1

τΛ “ EΦ21 ` EΦ22 ˝ τ ` y2Λ
2(3.1)

for some Λ1,Λ2 P HomApAE
2, E2qrys.

For example, the first equation of the pair is equivalent to πE ˝ pΛ ´ EΦ11 ´
EΦ12˝τq “ 0 because πE commutes with EyΦij . This identity implies the first
equation of (3.1) by Lemma 3.7 of [McM22]; cf. also the proof of Prop. 3.26 in
that paper.

Claim 3.12. Suppose pΦ,Λq is given such that (3.1) holds for some Λ1, Λ2.
Then there is Λ˝ P HomApAE

2, E2qrys such that

(3.2) Λ “ τy1pEΦ11 ` EΦ12 ˝ τq ´ y2τy1pEΦ21 ` EΦ22 ˝ τq ` y1y2Λ
˝.

Proof. Multiply the second equation of (3.1) by τ and obtain:

´τy2Λ
2 “ τ ˝ EΦ21 ` τ ˝ EΦ22 ˝ τ.

Multiply the first by τ and the second by τy1 and identify the results to obtain:

τy2Λ
1 “ y1y2τΛ

2 ` τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

´ τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

.

Then:

Λ1 “ py1τ ´ τy2q ˝ Λ1

“ y1τΛ
1 ´ y1y2τΛ

2 ´ τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

“ y1
`

τΛ1 ´ y2τΛ
2
˘

´ τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

.

Let Λ˝ “ τΛ1 ´ y2τΛ
2. Then:

Λ “ EΦ11 ` EΦ12 ˝ τ ` y1y2Λ
˝

´ y2τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` y2τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

“ τy1 ˝ pEΦ11 ` EΦ12 ˝ τq ´ y2τy1 ˝ pEΦ21 ` EΦ22 ˝ τq ` y1y2Λ
˝,

as desired. �

Claim 3.13. Now suppose pΦ,Λq and Λ˝ are given such that (3.2) holds. Then
there are Λ1, Λ2 such that (3.1) holds.

Proof. Let

Λ1 “ τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

´ τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` y1Λ
˝,

Λ2 “ τ ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` y1τΛ
˝.

Multiplying the first by y2, adding EΦ11`EΦ12 ˝τ , and simplifying with (3.2),
we find:

y2Λ
1 ` EΦ11 ` EΦ12 ˝ τ “ Λ.

Multiplying the second by y2 and adding EΦ21 ` EΦ22 ˝ τ , we find:

y2Λ
2 ` EΦ21 ` EΦ22 ˝ τ “ τy1 ˝

`

EΦ21 ` EΦ22 ˝ τ
˘

` τy1y2Λ
˝,
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while

τΛ “ ´τy2τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` τy1y2Λ
˝

“ τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` y1y2τΛ
˝

using (3.2). So the pair of equations (3.1) is satisfied. �

The proposition follows. �

We will need one more description of U :

Lemma 3.14. The composition map L2 bG
op

1
G2 Ñ U is an isomorphism.

Proof. Consider the triangulated functor:

H omBpX2,´q : KbpBq Ñ KbpGop

1 q.

By the same reasoning as in §3.3.2 of [McM22], this functor descends to the
derived categories

H omBpX2,´q : DbpBq Ñ DbpGop

1 q,

it is fully faithful when restricted to xX2y∆, and it is essentially surjective from
xX2y∆ (because the image of X2 is quasi-isomorphic to G

op

1 ). The inverse is
given by X2 bG

op

1
´. It follows from R P xX2y∆ (Lemma 3.12 of [McM22]) and

HomKbpBqpX2, Rq
„
ÝÑ HomKbpBqpX2, E

1X2q

q.i.
ÝÝÑ H omBpX2, E

1X2q

q.i.
ÝÝÑ H omBpX2, Rq

that the evaluation map is an isomorphism:

X2 bG
op

1
HomKbpBqpX2, Rq

„
ÝÑ R.

This shows that the map in the lemma statement is an isomorphism:

HomKbpBqpR,X2q bG
op

1
HomKbpBqpX2, Rq

„
ÝÑ HomKbpBq

`

R,X2 bG
op

1
HomKbpBqpX2, Rq

˘

„
ÝÑ HomKbpBqpR,Rq.

�

We will need to know the pArys, Arysq-bimodule structure of the components

of Ẽ and Ẽ2 and F̃ . These may be read off of presentations we have given by
using the fact that yi “ xi ´ y is injective as an endomorphism of Enrys (for
any n). We write y´1

i for the inverse morphism defined on the image yiE
nrys.

Proposition 3.15. We have isomorphisms of pArys, Arysq-bimodules:

‚ y1 . . . ynE
nrys

„
ÝÑ Enrys given by application of py1 . . . ynq´1.

‚ L1 “ G1
„
ÝÑ Arys ‘ FErys given by pθ, ϕq ÞÑ pθ, ϕ1q, where

ϕ1 “ y´1
1 pϕ ´ θq

is interpreted in FErys. Note that the summand FE2rys is not only a left
Arys-submodule of G2, but moreover a left Gop

1 -submodule of G2.
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‚ G2
„
ÝÑ Erys ‘ Erys ‘ FE2rys given by pe1, e, ξq ÞÑ pe1, e, ξ1q, where

ξ1 “ py1y2q
´1

`

ξ ´ b e ´ y2τp b pe ´ y1e
1qq

˘

is interpreted in FE2rys. Note that the summand FE2rys is a left G
op

1 -
submodule of G2.

‚ L2
„
ÝÑ F rys ‘ F rys ‘ F 2Erys given by pf 1, f, ρq ÞÑ pf 1, f, ρ1q, where

ρ1 “ y´1
1

`

ρ ´ Ef ´ Ef 1 ˝ τ
˘

is interpreted in F 2Erys. Note that the summand F 2Erys is a left G
op

1 -
submodule of L2.

‚ U
„
ÝÑ FErys‘4 ‘ F 2E2rys given by

pΦ11,Φ21,Φ12,Φ22,Λq ÞÑ pΦ11,Φ21,Φ12,Φ22,Λ
˝q,

where

(3.3) Λ “ τy1pEΦ11 ` EΦ12 ˝ τq ´ y2τy1pEΦ21 ` EΦ22 ˝ τq ` y1y2Λ
˝

determines Λ˝, which is interpreted in F 2E2rys. Note that the summand
F 2E2rys is a left Gop

1 -submodule of U .

Proof. The first point is obvious. The second point follows from Prop. 2.9
because pθ, ϕ1q may be chosen arbitrarily inAoprys‘EndApAEqrys, determining
ϕ; while a given choice of pθ, ϕq satisfying the condition determines ϕ1 by way
of y´1

1 . Similar reasoning applies to G2, L2, and U , working with Defs. 3.7,
3.3, and 3.10, respectively. �

In what follows, we will frequently use the bimodule descriptions on the
right sides of the isomorphisms in Prop. 3.15. Sometimes, to avoid confusion,
we will use the shorthand expression ‘submodule form’ to refer to the left sides
of the isomorphisms (i.e. presentations as submodules cut out by conditions, as
in the definitions of these structures), and ‘bimodule form’ to refer to the right
sides of the isomorphisms. Considering the component data of an element in
one of these structures, the components in submodule form and bimodule form
differ only in the last component: in submodule form the last component gives
the full morphism on the degree 0 part of the top row of the complex, and
in bimodule form the last component gives the remainder term ‘ϕ1’, ‘ξ

1’, ‘χ2’,
‘ρ1’, or ‘Λ

˝’ that is produced from the conditions by inverting some yi.

4. Adjunction

Definition 4.1. Let F̃ denote the pC,Cq-bimodule _Ẽ, that is, HomCpCẼ, Cq.

We know that CẼ is f.g. projective. It follows that the right adjoint functor
HomCpCẼ,´q of ẼbC ´ is canonically isomorphic to F̃ bC ´. We have already

defined x̃ and τ̃ . We define ε̃ : ẼF̃ Ñ C and η̃ : C Ñ F̃ Ẽ using the duality,
and then σ̃ and ρ̃λ using the formulas in §2.2 with pA,E, F, x, τ, η, εq replaced
by pC, Ẽ, F̃ , x̃, τ̃ , η̃, ε̃q. Note that sometimes we view F̃ Ẽ through the canonical

isomorphism HompẼ, Cq bC Ẽ
„
ÝÑ HompẼ, Ẽq.

Now we construct an isomorphism of pC,Cq-bimodules

F̃
„
ÝÑ HomKbpBqpX2 ‘ R,Xq
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as follows:

F̃ “ HomCpCẼ, Cq
„
ÝÑ HomDbpCqpẼ, Cq
„
ÝÑ HomDbpCq pH omBpX,E 1Xq,H omBpX,Xqq
„
ÝÑ HomDbpBqpE

1X,Xq
„
ÝÑ HomDbpBqpX2 ‘ R,X1 ‘ X2q
„
ÝÑ HomKbpBqpX2 ‘ R,X1 ‘ X2q.

The second arrow comes from the quasi-isomorphisms of Lemma 3.33 and
Corollary 3.41 of [McM22]. The third arrow comes from the equivalence

per B
„
ÝÑ per C. (By a similar calculation we have F̃ n „

ÝÑ HomDbpBqpE
1nX,Xq.

This explains the use of the derived category for Gn and Ln.) The fourth ar-

row holds because R
q.i.
Ñ E 1X2 (Lemma 2.13), and the fifth holds because R is

strictly perfect (Lemma 2.12).
With this description of F̃ , we can express it as a 2ˆ2 matrix of pArys, Arysq-

bimodules whose entries we have studied:

(4.1) rF̃ s
„
ÝÑ

ˆ

HompX2, X1q HompX2, X2q
HompR,X1q HompR,X2q

˙

„
ÝÑ

ˆ

F rys L1

F 2rys L2

˙

.

The top row of rF̃ s has been computed as the bottom row of rCs. We found
HomKbpBqpR,X1q in Prop. 3.6, and we found HomKbpBqpR,X2q in Prop. 3.4.

We have C “ EndKbpBqpX1 ‘ X2q, and the right action of C on F̃ is given
by post-composition. The left action of C is by pre-composition, but one must
first apply functoriality of E 1 and use the quasi-isomorphism from Lemma 2.13,

which we write γ : R
q.i.
ÝÝÑ E 1X2; we have:

‚ A generator φ P Z0H omBpX1, X1q
op – Arys Ă C determines E 1φ P

HomKbpBqpX2, X2q that acts on F̃ (on the top row) by pre-composition.
An element φ “ θ P Arys acts in the obvious way on the left on F rys and
L1.

‚ A generator φ P Z0H omBpX2, X1q – F rys Ă C determines

E 1φ P HomDbpBqpE
1X2, E

1X1q
´˝γ
ÝÝÑ

„
HomKbpBqpR,X2q.

So φ acts on F̃ by pre-composition with E 1φ˝γ : R Ñ X2, taking the top row
to the bottom row. Recall that we have the model L̄2 for HomKbpBqpR,X2q.
An element φ “ f P F rys acts by pre-composition with the morphism
determined by E 1φ ˝ γ “ p0, f, 0q P L̄2.

‚ A generator φ P Z0H omBpX1, X2q – y1Erys Ă C determines

E 1φ P HomKbpBqpE
1X1, E

1X2q
γ˝´

ÐÝÝ
„

HomKbpBqpX2, Rq.

Recall that we have the models Ḡ2 for HomKbpBqpX2, E
1X2q and Ḡ1

2 for

HomKbpBqpX2, Rq, and the isomorphism Ḡ2
„
ÝÑ Ḡ1

2 given by pe1, e2, ξ
1q ÞÑ

py´1
1 pe1 ´ e2q, e1, ξ

1q (in bimodule forms). An element φ “ y1e P y1Erys
determines E 1φ “ py1e, 0, 0q P Ḡ2, so this acts on F̃ by pre-composition
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with the morphism determined by pe, y1e, 0q P Ḡ1
2, taking the bottom row

to the top row.
‚ A generator

φ P Z0
H omBpX2, X2q

op – G
op

1 Ă C

determines φR P HomKbpBqpR,Rq from the right action of Gop

1 on R. In

terms of the model Ū , we have φR “ pϕ, ϕ1, 0, θ, Eϕq (in submodule form),

determined by φ “ pθ, ϕq P G
op

1 . This acts on F̃ (on the bottom row) by
pre-composition.

5. Isomorphisms ρ̃λ

5.1. Some tensor products of pC,Cq-bimodules. In this section we com-

pute three tensor products of bimodules over C, namely ẼẼ, F̃ Ẽ, and ẼF̃ ,
and describe the products in each case as matrices of pArys, Arysq-bimodules.
These calculations are used in the remaining sections to verify that ρ̃λ are
isomorphisms. Note that the product ẼẼ “ Ẽ2 is already given a description
(Eq. 2.5) as a matrix of pArys, Arysq-bimodules using the identification with
HomKbpBqpX,E 12Xq, but in order to compute σ̃ it is also necessary to realize

Ẽ2 as the tensor product over C of the bimodule Ẽ with itself.
These tensor products are computed according to the general formulation

described in §2.4 of [McM22]. First we take the tensor product over the sub-

algebra ∆ :“
´

Arys 0

0 G
op

1

¯

Ă C. This product is given on components by matrix

multiplication and tensor product over Arys or Gop

1 . After this we must take
the quotient by ImpIy1Erysq`ImpIF rysq, where Iy1Erys and IF rys apply the actions
of the off-diagonal generators in C. This quotient may be taken separately on
each coefficient of the product over ∆.

Using the language of §2.4 of [McM22] with some given MR “ p M1 M2 q,

RN “
`

N1

N2

˘

, and R “ p A B
C D q, the simplest technique at our disposal for com-

puting a quotient by the image of (say) IB is to identify one of its projections
as an isomorphism. (In §2.4 of [McM22], there is, for example, a projection of
IB to M1 bA N1 and another projection to M2 bD N2.) In this situation the
quotient by ImpIBq reduces to the summand of the second projection, because
every element of the first summand (in the quotient) has a unique represen-
tative in the second summand. If it also happens that ImpICq Ă ImpIBq, then
the quotient by the sum ImpIBq ` ImpICq is still isomorphic to the second
summand. Many of the components computed below are found in this way,
but a few of them require more complicated reasoning.

Let us write, in general, I 1
β for the projection of IB to the first summand,

and ´I2
β for the projection to the second. Similarly write I 1

δ and ´I2
δ for the

projections of IC . Here ‘first’ and ‘second’ summand and ‘IB’ and ‘IC ’ are
understood as in §2.4 of [McM22]. In a tensor product of pC,Cq-bimodules,
each of the four coefficients will have its own set of maps I 1

β, I
2
β , I

1
δ, I

2
δ .

The matrix forms of the bimodules Ẽ, Ẽ2, and F̃ are given in Eqs. (2.4),
(2.5), and (4.1). For some of our calculations it helps to be clear about the
structures of the component bimodules, so we translate the components to the
bimodule forms on the right sides of the isomorphisms in Prop. 3.15. Note
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the consequence that the formulas for multiplication within C and for the
actions of elements of C on components of Ẽ or F̃ are more complicated; this
is illustrated, for example, in the formula for Γ12 |E2rysGG2

in the next section.

5.1.1. ẼẼ. For the product ẼẼ, we already know the structures of the coef-
ficients of the matrix presentation from Eq. (2.5) (and Prop. (3.15)). We will
need to compute the action of τ̃ on elements of ẼẼ in order to compute σ̃,
and for this it will be necessary and sufficient to identify the map from the
tensor product over ∆ to the tensor product over C, i.e. to the quotient by
ImpI 1

β ´ I2
βq ` ImpI 1

δ ´ I2
δ q. Write Γ for this map. Let the subscript ‘G’ be-

tween concatenated modules indicate the tensor product over Gop

1 . (An empty
subscript indicates the product over Arys.) So we have:

Ẽ b∆ Ẽ –

ˆ

Erys E2rys
G1 G2

˙

b∆

ˆ

Erys E2rys
G1 G2

˙

–

ˆ

EErys ‘ E2rysGG1 EE2rys ‘ E2rysGG2

G1Erys ‘ pG2qGG1 G1E
2rys ‘ pG2qGG2

˙

Γ
ÝÑ

ˆ

E2rys E3rys
G2 G3

˙

– rẼ2s,

(5.1)

and we wish to understand the map Γ on each component. We find these
component maps for simple tensors using the following steps. First we interpret
a pair of elements of the left and right tensor factors Ẽ as morphisms in
Z0H omBpX,E 1Xq using isomorphisms such as Prop. 3.18 in [McM22]. Then
we apply E 1 to the morphism of the right factor, and post-compose the result
with the morphism of the left, obtaining an element of Z0H omBpX,E 12Xq.
That element is interpreted again in Ẽ2. (See Prop. 3.37 and Lemmas 3.44
and 3.45 of [McM22].)

To facilitate checking these steps, the reader is encouraged to write out the
complexes for X , E 1X , and E 12X , and to be familiar with Prop. 3.15 and the
interpretations of elements of the structures in that proposition as homomor-
phisms of complexes. With this in mind, the calculations are mechanical, if
tedious. We demonstrate the first cases with detailed explanation, and for the
remaining cases we record the results.

‚ For Γ11, we have:
– Γ11 |EErys is given by IdEErys.

To see this, let e1 represent an element of the left factor Erys, and e2 an
element of the right factor Erys. (We are suppressing the isomorphism

EErys
„
ÝÑ ErysErys.) Viewed in rẼs11 through Prop. 3.15, these corre-

spond to y1e1 and y1e2. As a homomorphism of complexes, y1e2 sends

p 1
0 q P X1 to

´

py1e2,0q
p0,0q

¯

P E 1X1 “ X2. (Use Prop. 3.31, Lemma 3.34,

and Lemma 3.7 of [McM22].) Applying functoriality (with Lemma 3.8
of [McM22] in mind to notate E 1X2), we have E 1py1e2q : X2 Ñ E 1X2 by
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a map that (among other things) takes the element
´

py1e1,0q
p0,0q

¯

to
ˆ

py1e1 b y1e2, p 0
0 q , 0q

p0, p 0
0 q , 0q

˙

“

ˆ

py1y2pe1 b e2q, p 0
0 q , 0q

p0, p 0
0 q , 0q

˙

,

which is therefore the image of p 1
0 q P X1 under E 1py1e2q ˝ y1e1 : X1 Ñ

E 1X2. By Lemma 3.47 of [McM22] combined with Prop. 3.15, this image

corresponds to e1 b e2 in E2rys – rẼ2s11, so Γ11 is the identity.

– Γ11 |E2rysGG1
is given as the inverse of E2rys

„
ÝÑ E2rysGG1, ee ÞÑ eeb1G1

.

Here ee corresponds to a map X1 Ñ E 1X2. The right action of g P G1

on E2rys is given in terms of maps of complexes by post-composing with
the induced map E 1pgq : E 1X2 Ñ E 1X2, but this is also the effect of
Γ11 on terms in E2rysGG1. (The apparent coincidence derives from the

definition X2 “ E 1X1 and the matrix descriptions of C and Ẽ.)

‚ For Γ21, we have:
– Γ21 |G1Erys is given (in bimodule forms) by

pθ, ϕ1q b e ÞÑ pθe, θy1e, ϕ1p´q b eq P G2.

The map pθ, ϕ1q : X2 Ñ X2 is determined (as in Prop. 3.18 of [McM22]
except in bimodule form) by:

ˆ

pe1, 0q
p0, 1q

˙

pθ,ϕ1q
ÞÝÑ

ˆ

pe1.θ ` y1ϕ1pe1q, 0q
p0, θq

˙

.

Further, e corresponds to the map e : X1 Ñ X2 given by p 1
0 q ÞÑ

´

py1e,0q
p0,0q

¯

,

which by functoriality induces a map E 1peq : E 1X1 Ñ E 1X2 that is given
(similarly to Γ11 |EErys above) by:

ˆ

pe1, 0q
p0, 1q

˙

E1peq
ÞÝÑ

ˆ

pe1 b y1e, p 0
0 q , 0q

p0, p y1e
0 q , 0q

˙

.

Therefore the composition is given by:
ˆ

pe1, 0q
p0, 1q

˙

E1peq˝pθ,ϕ1q
ÞÝÑ

ˆ

pe1.θ b y1e ` y1ϕ1pe1q b y1e, p 0
0 q , 0q

p0,
`

θy1e
0

˘

, 0q

˙

.

This image is in E 1X2. The map corresponds to the element

pθy1e, 0, b θy1e ` y1y2pϕ1p´q b eq P Ḡ2

(written in submodule form), which translates (see the paragraph after
Prop. 3.8) to the element

pθe, θy1e, ϕ1p´q b eq P Ḡ1
2

(written in bimodule form) considering Def. 3.7 and Prop. 3.8 (and
Prop. 3.15 for the bimodule form); this is the formula we wished to
establish.
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– Γ21 |pG2qGG1
is given as the inverse of G2

„
ÝÑ pG2qGG1, g2 ÞÑ g2 b 1G1

.

This is similar to Γ11 |E2rysGG1
above.

‚ For Γ12, we have:
– Γ12 |EE2rys is given by IdE3rys.

We leave this and the remaining calculations to the reader, and record
the results.

– Γ12 |E2rysGG2
is given (in bimodule forms) by

ee b pe1, e, ξ1q ÞÑ py1y2y3q
´1pEξqpy1y2eeq P E3rys.

‚ For Γ22, we have:
– Γ22 |G1E2rys is given by

pθ, ϕ1q b ee ÞÑ pθy1y2ee, 0, 0, ϕ1p´q b eeq P G3.

A remark: in §4.2 of [McM22], the horizontal arrows of the diagrams are
based on the same type of calculations, except that submodule forms are
used. For example, the map specified just above is E 1peeq ˝ pθ, ϕ1q. In
submodule form it would be written E 1py1y2eeq ˝ pθ, ϕq with ϕ “ .θ `
y1ϕ1, and this results from the horizontal arrow in Diagram D1|2p2, 1, 1q.
So this composite would be written in G3 in submodule form as

E 1py1y2eeq ˝ pθ, ϕq “ pθy1y2ee, 0, 0, ϕ b eeq.

We encourage the reader to check §4.2 of [McM22] for occasional further
hints regarding some of these calculations.

– Γ22 |pG2qGG2
is given (in submodule forms) by

pe1, e2, ξq b pē1, ē2, ξ̄q ÞÑ pξ̄pe1q, e2 b ē1, e2 b ē2, Eξ̄ ˝ ξq P G3

(c.f. Diagram D1|2p2, 2, 1q). We will need to have this map written for
the bimodule forms. First translate the notation from Ḡ2 to Ḡ1

2 (cf. the
paragraph after Prop. 3.8) using e1, e for the first factor (so e1 “ y´1

1 pe1 ´
e2q and e “ e1) and ē1, ē for the second factor. Then expand ξ in terms
of e1, e, and ξ1 according to the condition for elements of G2 (Def. 3.7),
and likewise expand ξ̄. Now compute Eξ̄ ˝ ξ:

Eξ̄ ˝ ξ “
`

b ē ` y2τp b pē ´ y1ē
1qq ` y1y2Eξ̄1

˘

˝
`

b e ` y2τp b pe ´ y1e
1qq ` y1y2ξ

1
˘

“ b
`

eē ` y2τpeē ´ y1eē
1q ` y1y2ξ̄

1peq
˘

` y3 ˝ τE
`

b peē ´ y2e
1ēq

˘

` y2y3 ˝ Eτ ˝ τE
`

b pe ´ y1e
1qpē ´ y1ē

1q
˘

` y1y2y3
`

Eξ̄1 ˝ τp b pe ´ y1e
1qq ` Eτpξ1 b pē ´ y1ē

1qq ` ξ1 b ē1
˘

.
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To find χ2, subtract all but the last term of χ in the condition of Ḡ3 in
Prop. 2.9 and remove y3y2y1. Obtain the complete image in bimodule
form:

pe1, e, ξ1q b pē1, ē, ξ̄1q ÞÑ
`

eē ` y2τpeē ´ y1eē
1q ` y1y2ξ̄

1peq, eē ´ y2e
1ē, pe ´ y1e

1qpē ´ y1ē
1q,

Eξ̄1 ˝ τp b pe ´ y1e
1qq ` Eτpξ1 b pē ´ y1ē

1qq ` ξ1 b ē1
˘

.

5.1.2. F̃ Ẽ. For the product F̃ Ẽ, we can find the pArys, Arysq-bimodule struc-
ture of the components of its matrix presentation using the same technique as
for F̃ and Ẽ2. We have:

F̃ Ẽ “ HomCpCẼ, Cq bC Ẽ
„
ÝÑ HomCpCẼ, Ẽq

„
ÝÑ HomDbpCqpẼ, Ẽq

„
ÝÑ HomDbpCqpE , E q

„
ÝÑ HomDbpCq pH omBpX,E 1Xq,H omBpX,E 1Xqq

“ HomDbpBqpE
1X,E 1Xq

„
ÝÑ HomKbpBqpX2 ‘ R,X2 ‘ Rq.

(The last isomorphism uses the quasi-isomorphism R
q.i.
Ñ E 1X2 and the fact

that E 1X1 “ X2 and R are strictly perfect.) So the matrix presentation is:

(5.2) rF̃ Ẽs
„
ÝÑ

ˆ

HompX2, X2q HompX2, Rq
HompR,X2q HompR,Rq

˙

„
ÝÑ

ˆ

G1 G2

L2 U

˙

.

As we did for Ẽ2, we study the map Γ from the components of the product
over ∆ to those of the product over C:

F̃ b∆ Ẽ –

ˆ

F rys L1

F 2rys L2

˙

b∆

ˆ

Erys E2rys
G1 G2

˙

–

ˆ

FErys ‘ pL1qGG1 FE2rys ‘ pL1qGG2

F 2Erys ‘ pL2qGG1 F 2E2rys ‘ pL2qGG2

˙

–

ˆ

FErys ‘ G1 FE2rys ‘ G2

F 2Erys ‘ L2 F 2E2rys ‘ pL2qGG2

˙

Γ
ÝÑ

ˆ

G1 G2

L2 U

˙

.

(5.3)

The bulleted claims below are justified in the paragraphs following them.

‚ We have Γ11 : FErys ‘ G1 Ñ G1 given by pι, IdG1
q.

Here the map ι : FErys ãÑ L1 “ G1 is the inclusion of the second sum-
mand as written in Prop. 3.15.

– I 1
β : FErysGG1

„
ÝÑ FErys given as the inverse of the isomorphism

`

fe ÞÑ

fe b 1G1

˘

,

– I2
β : FErysGG1

ιbG1ÝÝÝÑ pL1qGG1 – G1,

– I 1
δ : pG1qGFErys

„
ÝÑ FErys given as the inverse of the isomorphism

`

fe ÞÑ 1G1
b fe

˘

,

– I2
δ : pG1qGFErys

G1bι
ÝÝÝÑ pG1qGL1 – G1.
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Using either I2
β ˝ I 1´1

β , or I2
δ ˝ I 1´1

δ , one associates a unique representative in

pL1qGG1 – G1 to each element of FErys. We see that I2
β ˝ I 1´1

β “ I2
δ ˝ I 1´1

δ ,
so the two associate the same representatives. It follows that the quotient
projection Γ11 is given by pι, IdG1

q as proposed.

‚ We have Γ21 : F
2Erys ‘ L2 Ñ L2 given by pι1, IdL2

q.
Here the map ι1 : F 2Erys ãÑ L2 is the inclusion of the third summand as

written in Prop. 3.15.

– I 1
β : F 2ErysGG1

„
ÝÑ F 2Erys given as the inverse of

`

ffe ÞÑ ffe b 1G1

˘

,

– I2
β : F 2ErysGG1

ι1bG1ÝÝÝÑ pL2qGG1 – L2,

– I 1
δ : pL2qGFErys Ñ F 2Erys given by

pf 1, f, ρ1q b f̄ ē ÞÑ pf̄ ˝ ρq b ē

“
`

f̄ ˝ pEf ` Ef 1 ˝ τ ` y1ρ
1q

˘

b ē.

Note that here f̄ is interpreted as a map of complexes f̄ : X2 Ñ X1

which is composed with the map pf 1, f, ρ1q : R Ñ X2 to obtain a map
R Ñ X1. The composite f̄ ˝ ρ is a map R Ñ X1, interpreted again in
F 2rys according to Prop. 3.6. (So, coincidentally, the notation ‘f̄ ˝ρ’ has
two valid interpretations: one as a map R Ñ X1, and another as a map
E2rys Ñ Arys represented by an element of F 2rys.)

– I2
δ : pL2qGFErys

L2bι
ÝÝÝÑ pL2qGG1 – L2.

Consider the first two maps. We have that I2
β ˝ I 1´1

β “ ι1 as maps F 2Erys Ñ
L2. Consider the last two maps. One may check that ι1 ˝ I 1

δ “ I2
δ . It follows

that ImpI 1
δ ´ I2

δ q Ă ImpI 1
β ´ I2

βq, so in the quotient every element of F 2Erys
is associated to a unique element of L2, given by applying the map ι1.

‚ We have Γ12 : FE2rys ‘ G2 Ñ G2 given by pι2, IdG2
q.

Here the map ι2 : FE2rys ãÑ G2 is the inclusion of the third summand
as written in Prop. 3.15.

– I 1
β : FErysGG2 Ñ FE2rys given by

f̄ ē b pe1, e, ξ1q ÞÑ f̄ b py1y2q
´1ξpy1ēq

“ f̄ b
`

τpē b eq ´ y2τpē b e1q ` ξ1py1ēq
˘

.

The map is given by considering ē as a map of complexes X1 Ñ X2,
and pe1, e, ξ1q as a map of complexes X2 Ñ R, and then composing,
and translating the result to bimodule form (removing y1y2). The final
expression is computed by plugging y1ē into

ξ “ τy1p b eq ´ y2τy1p b e1q ` y1y2ξ
1
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from the condition of Def. 3.7, and we obtain:

ξpy1ēq “ τy1py1ē b eq ´ y2τy1py1ē b e1q ` y1y2ξ
1

“ τy1y2pē b eq ´ y2τy1y2pē b e1q ` y1y2ξ
1

“ y1y2 pτpē b eq ´ y2τpē b e1q ` ξ1q .

– I2
β : FErysGG2

ιbG2ÝÝÝÑ pL1qGG2 – G2,

– I 1
δ : pG1qGFE2rys

„
ÝÑ FE2rys given as the inverse of

`

fee ÞÑ 1G1
b fee

˘

,

– I2
δ : pG1qGFE2rys

G1bι2

ÝÝÝÝÑ pL1qGG2 – G2.

Consider the last two maps. We have that I2
δ ˝ I 1´1

δ “ ι2 as maps FE2rys Ñ
G2. Now consider the first two maps. Observe that I2

β “ ι2 ˝ I 1
β. It follows

that ImpI 1
β ´ I2

βq Ă ImpI 1
δ ´ I2

δ q, so every element of FE2rys is associated in
the quotient to a unique element of G2 by applying the map ι2.

‚ We have Γ22 : F
2E2rys ‘ pL2qGG2 Ñ U given by pι3, IdUq.

Here the map ι3 : F 2E2rys Ñ U is the inclusion of the fifth summand as
written in Prop. 3.15.

– I 1
β : F 2ErysGG2 Ñ F 2E2rys given by ffēbpe1, e, ξ1q ÞÑ ffbpy1y2q

´1ξpy1ēq,

– I2
β : F 2ErysGG2

ι1bG2ÝÝÝÑ pL2qGG2
„
ÝÑ U (using Lemma 3.14),

– I 1
δ : pL2qGFE2rys Ñ F 2E2rys given by pf 1, f, ρ1q b f̄ ee ÞÑ pf̄ ˝ ρq b ee,

– I2
δ : pL2qGFE2rys

L2bι2

ÝÝÝÑ pL2qGG2
„
ÝÑ U .

Consider the first two maps. Observe that

I 1
β

`

ff ē b pe, y1e, ξ
1 “ 0q

˘

“ ff b pē b eq P F 2E2rys.

It follows that I 1
β is surjective. Now we show that ι3 ˝ I 1

β “ I2
β and that

ι3 ˝ I 1
δ “ I2

δ using the bimodule forms. First apply ι3 to the image under
I 1
β of an arbitrary simple tensor ff ē b pe1, e, ξ1q P F 2ErysGG2:

ι3
`

ff b py1y2q
´1ξpy1ēq

˘

“
`

0, 0, 0, 0,Λ˝ “ ff b py1y2q
´1ξpy1ēq

˘

,

then apply I2
β to the same arbitrary simple tensor, and view the result

through the isomorphism pL2qGG2
„
ÝÑ U :

I2
β

`

ff ē b pe1, e, ξ1q
˘

“ p0, 0, ffēq bG
op

1
pe1, e, ξ1q

ÞÑ
`

0, 0, 0, 0, ff b py1y2q
´1ξpy1ēq

˘

P U.

So ι3 ˝ I 1
β “ I2

β. Repeat the procedure with the second pair of maps:

ι3
`

pf̄ ˝ ρq b ee
˘

“
`

0, 0, 0, 0, pf̄ ˝ ρq b ee
˘

,

I2
δ

`

pf 1, f, ρ1q b f̄ee
˘

“ pf 1, f, ρ1q bG
op

1
p0, 0, f̄eeq

ÞÑ
`

0, 0, 0, 0, pf̄ ˝ ρq b ee
˘

,

so ι3 ˝ I 1
δ “ I2

δ . It follows that every element of F 2E2rys is associated in the
quotient to a unique representative in U by applying ι3.
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Remark 5.1. The map ι3 describes the inclusion of the morphisms of HomKbpBqpR,Rq
that factor through X1. The maps I 1

β and I 1
δ are in fact isomorphisms:

HomKbpBqpX1, X2q bG
op

1
HomKbpBqpX2, Rq

„
ÝÑ HomKbpBqpX1, Rq,

HomKbpBqpR,X2q bG
op

1
HomKbpBqpX2, X1q

„
ÝÑ HomKbpBqpR,X1q.

They are produced by reasoning as in Lemma 3.14, using that R is a finite
direct sum of summands of X2.

5.1.3. ẼF̃ . We do not have a matrix presentation of the components of the
product ẼF̃ from the Rickard equivalence. Instead, in this section, we proceed
by studying the quotient directly, by components, determining the structure of
the quotient itself, as well as the quotient projection Γ from the tensor product
over ∆ to the tensor product over C.

As before, in each bulleted section we propose a component of Γ. Here
the arguments following a bulleted line also must justify the structure of the
codomain of the Γ component written in that bulleted line. The domains are
known, and in each case the annihilated submodule ImpI 1

β ´ I2
βq ` ImpI 1

δ ´ I2
δ q

is defined already. Our method is to write down a map called Γij from the
appropriate domain, show that it is surjective, and show that its kernel is
ImpI 1

β ´ I2
βq ` ImpI 1

δ ´ I2
δ q. The codomain of Γ can be summarized in a matrix:

Ẽ b∆ F̃ –

ˆ

Erys E2rys
G1 G2

˙

b∆

ˆ

F rys L1

F 2rys L2

˙

–

ˆ

EF rys ‘ E2rysGF
2rys ErysG1 ‘ E2rysGL2

G1F rys ‘ pG2qGF
2rys G1G1 ‘ pG2qGL2

˙

Γ
ÝÑ

ˆ

EF rys ErysG1

G1F rys G1G1 ‘ EF rys

˙

.

(5.4)

‚ We have Γ11 : EF rys ‘ E2rysGF
2rys Ñ EF rys given by pIdEF rys, ωq.

Define a map ω : E2rys bArys F
2rys Ñ EF rys by:

e1e2 b f2f1 ÞÑ e1.f2py1e2q b f1 “ e1 b f2py1e2q.f1.

Let ϕ1 P FErys be given in the second summand of (the bimodule form)
G

op

1 – Arys ‘ FErys. Observe that
`

e1 b ϕ1py1e2q
˘

b f2f1 and e1e2 b
`

pf2 ˝

y1ϕ1q b f1
˘

are both sent by ω to e1.pf2 ˝ y1ϕ1qpy1e2q b f1. This means ω

is middle-linear over generators in both summands of Gop

1 , so it descends
to a map, also called ω, from the tensor product E2rysGF

2rys taken over Gop

1 .

– I 1
β : EErysGF

2rys Ñ EF rys given (using bimodule forms) by

e1 b e2 b f2f1 ÞÑ e1 b
`

f1 ˝ Ef2 ˝ pe2, y1e2, 0q
˘

“ e1 b
`

f1 ˝ Ef2 ˝ p b y1e2q
˘

“ e1 b f1p .f2py1e2qq

“ e1 b f2py1e2q.f1.
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In this calculation, e2 is interpreted as a map of complexes X1 Ñ X2

which induces a map X2 Ñ R (from E 1X1 Ñ E 1X2), precomposition

with which gives the left action of e2 P Erys Ă C on F 2rys Ă F̃ . The
induced map corresponds to pe2, y1e2, 0q in G2 (strictly speaking, in Ḡ1

2)
in bimodule form. Further, f2f1 P F 2rys is interpreted as a map R Ñ X1,

which is identified by E2rys
Ef2Ñ Erys

f1Ñ Arys applied to E2rys in the top
row of R0. The composite X2 Ñ X1 is identified (in the second row) by
the morphism f1 ˝ Ef2 ˝ p b y1e2q : Erys Ñ Arys, which is evaluated in
the third and fourth lines.

– I2
β : EErysGF

2rys
Id
ÝÑ E2rysGF

2rys,

– I 1
δ : E

2rysGFF rys Ñ EF rys given (using bimodule forms) by

e1e2 b f2 b f1 ÞÑ
`

p0, f2, 0q ˝ e1e2
˘

b f1

“ y´1
1 pEf2qpy1y2pe1e2qq b f1

“ e1.f2py1e2q b f1.

Here f2 : X2 Ñ X1 induces p0, f2, 0q : R Ñ X2 in L2. Further,
e1e2 : X1 Ñ R, and the composite map X1 Ñ X2 is identified by apply-
ing Ef2 to the top row of R0 after putting y1y2e1e2 in that term, and
removing the final y1 to obtain the bimodule form.

– I2
δ : E2rysGFF rys

Id
ÝÑ E2rysGF

2rys.

We see that I 1
β “ ω and I 1

δ “ ω after identifying EErys – E2rys and

FF rys – F 2rys. It follows that the kernel of Γ11 is the image of I 1
β´I2

β, which
is also the image of I 1

δ ´ I2
δ , and thus kerpΓ11q “ ImpI 1

β ´ I2
βq ` ImpI 1

δ ´ I2
δ q

as desired.

Remark 5.2. The map ω corresponds on the models to the map given by
composition:

HomKbpBqpX2, Rq bG
op

1
HomKbpBqpR,X2q Ñ HomKbpBqpX2, X2q.

‚ We have Γ21 : G1F rys ‘ pG2qGF
2rys Ñ G1F rys given by pIdG1F rys, ω

1q.

Let ω1 : pG2qGF
2rys Ñ G1F rys be defined (using bimodule forms) by

pe1, e, ξ1q b f2f1 ÞÑ
`

p0, f2, 0q ˝ pe1, e, ξ1q
˘

b f1

“
´

f2peq, y´1
1 Ef2 ˝

`

y2τp b pe ´ y1e
1qq ` y1y2ξ

1
˘

¯

b f1

“
´

f2peq, Ef2 ˝ τp b pe ´ y1e
1qq ` Epf2 ˝ y1q ˝ ξ1

¯

b f1.

Here f2 : X2 Ñ X1 again induces p0, f2, 0q : R Ñ X2 in L2. The composite

X2

pe1,e,ξ1q
ÝÑ R

p0,f2,0q
ÝÑ X2

is a map X2 Ñ X2 identified by the element of G1 given in the next line.
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– I 1
β : G1ErysGF

2rys Ñ G1F rys given (using bimodule form) by

ge b f2f1 ÞÑ g b
`

pf1 ˝ Ef2q ˝ pe, y1e, 0q
˘

“ g b f2py1eq.f1.

The map ErysGF
2rys Ñ F rys used here is the same as the one in I 1

β of
Γ11 above.

– I2
β : G1ErysGF

2rys Ñ pG2qGF
2rys given (using bimodule forms) by

pθ, ϕ1q b e b f2f1 ÞÑ
`

pe, y1e, 0q ˝ pθ, ϕ1q
˘

b f2f1

“ pθe, θy1e, ϕ1p´q b eq b f2f1.

The map G1Erys Ñ G2 used here is the same as the one in Γ21 for ẼẼ.

– I 1
δ : pG2qGFF rys Ñ G1F rys given by the map ω1 (after identifying FF rys
with F 2rys),

– I2
δ : pG2qGFF rys

Id
ÝÑ pG2qGF

2rys.

We show that ω1 ˝ I2
β “ I 1

β:

ω1
`

pθe, θy1e, ϕ1 b eq b f2f1
˘

“
`

f2pθy1eq, Epf2 ˝ y1q ˝ pϕ1 b eq
˘

b f1

“
`

θf2py1eq, ϕ1.f2py1eq
˘

b f1

“ pθ, ϕ1q.f2py1eq b f1

“ I 1
β

`

pθ, ϕ1q b e b f2f1
˘

.

In the first line, note that pθy1eq ´ y1pθeq “ 0 so the term ‘Ef2 ˝ τp b pe ´
y1e

1qq’ in the image under ω1 disappears. Then f2 ˝ y1 applied to e produces
f2py1eq P Arys, which acts on the right on ϕ1 for the second line. For the
third line, the element f2py1eq P Arys acts on G1 on the right diagonally. It
follows that I 1

β ´ I2
β “ pω1 ´ IdqI2

β , and therefore ImpI 1
β ´ I2

βq Ă ImpI 1
δ ´ I2

δ q.
Thus kerpΓ21q “ ImpI 1

β ´ I2
βq ` ImpI 1

δ ´ I2
δ q, as desired.

‚ We have Γ12 : ErysG1 ‘ E2rysGL2 Ñ ErysG1 given by pIdErysG1
, ω2q.

Let ω2 : E2rysGL2 Ñ ErysG1 be defined (using bimodule forms) by

e1e2 b pf 1, f, ρ1q ÞÑ e1 b
`

pf 1, f, ρ1q ˝ pe2, y1e2, 0q
˘

“ e1 b
`

fpy1e2q ` f 1pe2q, Ef 1 ˝ τp b e2q ` ρ1p b y1e2q
˘

.

– I 1
β : EErysGL2 Ñ ErysG1 given by the map ω2 (after identifying EErys

with E2rys),

– I2
β : EErysGL2

Id
ÝÑ E2rysGL2,

– I 1
δ : E

2rysGF rysG1 Ñ ErysG1 given (borrowing from I 1
δ of Γ11) by

e1e2 b f2 b g ÞÑ e1 b f2py1e2q.g,
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– I2
δ : E2rysGF rysG1 Ñ E2rysGL2 given (using bimodule forms) by

e1e2 b f b pθ, ϕ1q ÞÑ e1e2 b
`

pθ, ϕ1q ˝ p0, f, 0q
˘

“ e1e2 b p0, f.θ, f b ϕ1q.

Here f : X2 Ñ X1 induces p0, f, 0q : R Ñ X2, and the reader may check
the composition with pθ, ϕ1q : X2 Ñ X2.

We show that ω2 ˝ I2
δ “ I 1

δ:

ω2
`

e1e2 b p0, f.θ, ϕ1 ˝ Efq
˘

“ e1 b
`

fpy1e2q.θ, pϕ1 ˝ Efqp b y1e2q
˘

“ e1 b
`

fpy1e2q.θ, ϕ1p .fpy1e2qq
˘

“ e1 b
`

fpy1e2q.θ, fpy1e2q.ϕ1

˘

“ e1 b fpy1e2q.pθ, ϕ1q

“ I 1
δ

`

e1e2 b f b pθ, ϕ1q
˘

.

Thus I 1
δ ´ I2

δ “ pω2 ´ IdqI2
δ , and therefore ImpI 1

δ ´ I2
δ q Ă ImpI 1

β ´ I2
βq. It

follows that kerpΓ12q “ ImpI 1
β ´ I2

βq ` ImpI 1
δ ´ I2

δ q, as desired.

‚ We have Γ22 : G1G1 ‘ pG2qGL2 Ñ G1G1 ‘ EF rys given by

ˆ

IdG1G1
ω3

0 κ

˙

.

Below we describe the maps I 1
β, I2

β , I 1
δ, I2

δ , and define a map ω3 :
pG2qGL2 Ñ G1G1, and we show that ω3 ˝ I2

β “ I 1
β and ω3 ˝ I2

δ “ I 1
δ. Then

we describe a decomposition of pG2qGL2 into pArys, Arysq-sub-bimodules
pG2qGL2 – H ‘ EF rys where H “ ImpI2

βq ` ImpI2
δ q. The projection onto

EF rys is called κ. (This copy of EF rys lies in the kernel of ω3.) From all
this it follows that kerpΓ22q “ ImpI 1

β ´ I2
βq ` ImpI 1

δ ´ I2
δ q and Γ22 describes

the projection to the quotient.

– I 1
β : G1ErysGL2 Ñ G1G1 given (borrowing from I 1

β of Γ12) by

g b e b pf 1, f, ρ1q ÞÑ

g b
`

f 1peq ` fpy1eq, Ef 1 ˝ τp b eq ` ρ1p b y1eq
˘

,

– I2
β : G1ErysGL2 Ñ pG2qGL2 given (borrowing from I2

β of Γ21) by

pθ, ϕ1q b e b ℓ ÞÑ pθe, θy1e, ϕ1p´q b eq b ℓ,

– I 1
δ : pG2qGF rysG1 Ñ G1G1 given (borrowing from I 1

δ of Γ21) by

pe1, e, ξ1q b f b g ÞÑ
`

fpeq, Ef ˝ τp b pe ´ y1e
1qq ` Epf ˝ y1q ˝ ξ1

˘

b g,

– I2
δ : pG2qGF rysG1 Ñ pG2qGL2 given (borrowing from I2

δ of Γ12) by

g b f b pθ, ϕ1q ÞÑ g b p0, f.θ, f b ϕ1q.
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Now we define a morphism of pArys, Arysq-bimodules ω3 : G2 bArys L2 Ñ
G1G1, and in a subsequent lemma we show that ω3 descends to a morphism
ω3 : G2 bG

op

1
L2 Ñ G1G1 by showing that it is also middle-linear over

generators of Gop

1 in FErys. (Since G1 – Arys ‘ FErys as a bimodule, this
ensures linearity over all of Gop

1 .) Let pe1, e, ξ1q b pf 1, f, ρ1q P G2 bArys L2 be
an arbitrary simple tensor. We define:

ω3 : pe1, e, ξ1q b pf 1, f, ρ1q ÞÑ
´

εpe1 b f 1q ` εpe b fq, FEpε ˝ y1F qpξ1 b fq

` FEεpξ1 b f 1q ` σpe b fq ´ σpy1e
1 b fq

¯

b p1, 0q

` p1, 0q b
´

0, εFEpe b ρ1q ` σpe1 b f 1q
¯

` σFEpe b ρ1q

´ σFEpy1e
1 b ρ1q ` FEσpξ1 b f 1q ` FEpε ˝ y1F qFEpξ1 b ρ1q.

The last four terms, beginning with σFEpebρ1q, are elements of FEFErys.
They should be interpreted in the last summand of G1G1 that appears in
the following decomposition of bimodules:

G1 bArys G1
„
ÝÑ Arys ‘ FErys ‘ FErys ‘ FEFErys,

pθ, ϕ1q b pθ1, ϕ1
1q ÞÑ

`

θθ1, θ.ϕ1
1, ϕ1.θ

1, ϕ1 b ϕ1
1

˘

.
(5.5)

At this point ω3 has been defined as a map G2 bArys L2 Ñ G1G1. It is
useful to go further and record the data of ω3 as a matrix. We can give a
decomposition of G2 bArys L2 into a direct sum of pArys, Arysq-bimodules:

G2 bArys L2
„
ÝÑ EF rys‘4 ‘ FE2F rys‘2 ‘ EF 2Erys‘2 ‘ FE2F 2Erys,

pe1, e, ξ1q b pf 1, f, ρ1q ÞÑ pe1 b f 1, e1 b f, e b f 1, e b fq

‘ pe1 b ρ1, e b ρ1q ‘ pξ1 b f 1, ξ1 b fq ‘ pξ1 b ρ1q.

Each of the terms in the formula for ω3 is a morphism of pArys, Arysq-
bimodules.

Definition 5.3. Using the ordered decompositions of G2 bArys L2 and of
G1G1 above, the map ω3 : G2 bArys L2 Ñ G1G1 is given by the following
matrix:
¨

˚

˚

˝

ε 0 0 ε 0 0 0 0 0

σ 0 0 0 0 εFE 0 0 0

0 ´σ ˝ y1F 0 σ 0 0 FEε FEpε ˝ y1F q 0

0 0 0 0 ´pσ ˝ y1F qFE σFE FEσ 0 FEpε ˝ y1F qFE

˛

‹

‹

‚

.

Lemma 5.4. The map ω3 is middle-linear over the action of generators of
the summand FErys Ă G

op

1 .

Proof. We first compute the middle actions pe1, e, ξ1q.ϕ1 and ϕ1.pf
1, f, ρ1q for

ϕ1 P FErys Ă G
op

1 , pe1, e, ξ1q P G2, and pf 1, f, ρ1q P L2, both in bimodule
form. These are:

pe1, e, ξ1q.ϕ1 “
`

ϕ1peq, y1ϕ1peq, Eϕ1 ˝ τp b pe ´ y1e
1qq ` Epϕ1y1q ˝ ξ1

˘

ϕ1.pf
1, f, ρ1q “

`

0, f ˝ y1ϕ1 ` f 1 ˝ ϕ1, Ef 1 ˝ τ ˝ Eϕ1 ` ρ1 ˝ Epy1ϕ1q
˘

.
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Using the formulas above, one easily computes the images under ω3 of
pe1, e, ξ1q.ϕ1 b pf 1, f, ρ1q and pe1, e, ξ1q b ϕ1.pf

1, f, ρ1q and checks that they
agree. �

Corollary 5.5. It follows from Lemma 5.4 that ω3 determines a morphism
of pArys, Arysq-bimodules ω3 : pG2qGL2 Ñ G1G1.

We show next that ω3 ˝ I2
β “ I 1

β and ω3 ˝ I2
δ “ I 1

δ. The formula for ω3 is
determined by these conditions and may be derived from them. Evaluating
the left side of the first equation:

ω3 ˝ I2
β

`

pθ, ϕ1q b e b pf 1, f, ρ1q
˘

“ ω3
`

pθe, θy1e, ϕ1 b eq b pf 1, f, ρ1q
˘

“
`

f 1pθeq ` fpθy1eq, ϕ1.fpy1eq ` ϕ1.f
1peq

˘

b p1, 0q

` p1, 0q b
`

0, ρ1p b θy1eq ` Ef 1 ˝ τp b θeq
˘

` p0, ϕ1q b
`

0, Ef 1 ˝ τp b eq ` ρ1p b y1eq
˘

“
`

θ.pf 1peq ` fpy1eqq, ϕ1.pf
1peq ` fpy1eqq

˘

b p1, 0q

` pθ, ϕ1q b
`

0, Ef 1 ˝ τp b eq ` ρ1p b y1eq
˘

“ pθ, ϕ1q b
`

f 1peq ` fpy1eq, Ef 1 ˝ τp b eq ` ρ1p b y1eq
˘

“ I 1
β

`

pθ, ϕ1q b e b pf 1, f, ρ1q
˘

.

Now evaluating the left side of the second equation:

ω3 ˝ I2
δ

`

pe1, e, ξ1q b f b pθ, ϕ1q
˘

“ ω3
`

pe1, e, ξ1q b p0, f.θ, f b ϕ1q
˘

“
`

fpeq.θ, Epf.θ ˝ y1q ˝ ξ1 ` Epf.θq ˝ τp b pe ´ y1e
1qq

˘

b p1, 0q

` p1, 0q b
`

0, fpeq.ϕ1

˘

`
`

0, Ef ˝ τp b pe ´ y1e
1q

˘

b p0, ϕ1q

`
`

0, Epf ˝ y1q ˝ ξ1
˘

b p0, ϕ1q

“
`

fpeq, Epf ˝ y1q ˝ ξ1 ` Ef ˝ τp b pe ´ y1e
1qq

˘

b pθ, 0q

`
`

fpeq, Ef ˝ τp b pe ´ y1e
1qq ` Epf ˝ y1q ˝ ξ1

˘

b p0, ϕ1q

“
`

fpeq, Ef ˝ τp b pe ´ y1e
1qq ` Epf ˝ y1q ˝ ξ1

˘

b pθ, ϕ1q

“ I 1
δ

`

pe1, e, ξ1q b f b pθ, ϕ1q
˘

.

Now the product pG2qGL2 is the quotient of the product pG2qArysL2 by
the image of γ1 ´ γ2, where:

– γ1 :
`

G2 bArys FErys
˘

bArys L2 Ñ pG2qArysL2 given by

pe1, e, ξ1q b ϕ1 b ℓ ÞÑ
`

ϕ1peq, y1ϕ1peq, Eϕ1 ˝ τp b pe ´ y1e
1qq ` Epϕ1 ˝ y1q ˝ ξ1

˘

b ℓ,

– γ2 : G2 bArys

`

FErys bArys L2

˘

Ñ pG2qArysL2 given by

g b ϕ1 b pf 1, f, ρ1q ÞÑ

g b
`

0, f 1 ˝ ϕ1 ` f ˝ y1ϕ1, Ef 1 ˝ τ ˝ Eϕ1 ` ρ1 ˝ Epy1ϕ1q
˘

.
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There is a copy of EF rys in pG2qArysL2 generated by terms of the form
p0, e, 0q b pf 1, 0, 0q. Let H̄ be its direct complement. The images of γ1 and
γ2 lie in H̄, so pG2qGL2 – H ‘EF rys, where H is the quotient of H̄ by the
image of γ1 ´ γ2.

The image of I2
β includes every term of the form pe, y1e, ϕ1 b eq b ℓ, and

the image of I2
δ includes every term of the form gbp0, f, f bϕ1q. By adding

appropriate linear combinations of terms of the first form, one obtains any
element pe, y1e, ξ

1q b ℓ, and similarly from terms of the second form one
obtains any g b p0, f, ρ1q. It follows that ImpI2

β ` I2
δ q “ H .

5.2. Maps ρ̃λ: formulas. In this section we derive formulas by matrix com-
ponents for the maps σ̃ “ F̃ Ẽε̃ ˝ F̃ τ̃ F̃ ˝ η̃ẼF̃ , ε̃ ˝ x̃iF̃ , and F̃ x̃i ˝ η̃ that are
used to define the maps ρ̃λ. We will be using the matrix components for Ẽ,
F̃ , ẼẼ, F̃ Ẽ, and ẼF̃ that were found and studied in previous sections. (See
Eqs. (2.4), (4.1), (2.5), (5.2), and (5.4), respectively.) The unit and counit η̃
and ε̃ are given by the duality pairing and thus are easily interpreted in terms
of maps between complexes where that is convenient. The morphisms x̃ and
τ̃ were given on components in Eqs. (2.6) and (2.7).

5.2.1. Map σ̃ : ẼF̃ Ñ F̃ Ẽ. We begin by computing the map σ̃ : ẼF̃ Ñ F̃ Ẽ.
Recall that σ̃ is defined by σ̃ “ F̃ Ẽε̃ ˝ F̃ τ̃ F̃ ˝ η̃ẼF̃ , and η̃, ε̃, and τ̃ are
determined already. We will need formulas for each component of σ̃ in its
matrix presentation.

We use the following technique to derive the formulas. We start with an
appropriate matrix coefficient of the element rη̃p1qs P rF̃ Ẽs, together with an

arbitrary generator of a component of the matrix rẼF̃ s. Then we write the
latter as a sum of simple tensor products of elements of rẼs with elements of

rF̃ s. As a point of notation, this will be said to lie in rẼs¨rF̃ s (and similarly for
other matrix products). Then we write rη̃p1qs in rF̃ s ¨ rẼs, and taking another

tensor product we have an element we can write in rF̃ s¨rẼs¨rẼs¨rF̃ s. Upon this
we apply rF̃ s ¨ rτ̃ s ¨ rF̃ s using (2.7). We view the result in rF̃ s ¨ rẼs ¨ rẼF̃ s, apply
rF̃ s ¨ rẼs ¨ rε̃s to obtain an element of rF̃ s ¨ rẼs ¨ rCs, view this in rF̃ Ẽs ¨ rCs, and
allow the coefficient in rCs to act on the right on the coefficient in rF̃ Ẽs. The
result is the image under rσ̃s of the arbitrary generator in rẼF̃ s with which
we began.

The following bulleted lines state the results of this procedure, and the
procedure itself is carried out in detail in the paragraphs below those lines.

‚ We have rσ̃s11 : rẼF̃ s11 Ñ rF̃ Ẽs11 given by p ε
σ q using the decompositions:

– rẼF̃ s11 – EF rys,
– rF̃ Ẽs11 – pG1qGG1 – G1 – Arys ‘ FErys.
We take rη̃p1qs11 “ p1, 0q b p1, 0q P pG1qGG1 – rF̃ Ẽs11 (using bimodule

form), and an arbitrary generator eb f P EF rys – rẼF̃ s11. The product of
these in rF̃ Ẽs ¨ rẼF̃ s can be represented in rF̃ s ¨ rẼs ¨ rẼs ¨ rF̃ s by:

`

0 p1,0q
0 0

˘

¨
`

0 0
p1,0q 0

˘

¨p e 0
0 0 q¨

`

f 0
0 0

˘

P
´

F rys L1

F 2rys L2

¯

¨
´

Erys E2rys
G1 G2

¯

¨
´

Erys E2rys
G1 G2

¯

¨
´

F rys L1

F 2rys L2

¯

.
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The middle factors give p1, 0q b e P G1 bArys Erys. Passing through Γ21

of Eq. (5.1), this represents pe, y1e, 0q P G2 – rẼ2s21. To apply rτ̃ s21 from
Eq. (2.7) we translate that formula from the terms of Ḡ2 to those of Ḡ1

2 in
bimodule form. Using e1 ´ e2 “ y1e

1, we have:

ξ “ b e1 ` y2τp b e2q ` y1y2ξ
1

“ b pe1 ´ e2q ` τy1p b e2q ` y1y2ξ
1;

τ ˝ ξ “ τp b pe1 ´ e2qq ` τ 2y1p b e2q ` τy1y2ξ
1

“ τy1p b e1q ` y1y2τ ˝ ξ1

“ b e1 ` y2τp b e1q ` y1y2pτ ˝ ξ1q.

So instead of pe1, e2, ξq
τ̃

ÞÑ pe1, e1, τ ˝ ξq in the terms of Ḡ2, the formula is

pe1, e, ξ1q
τ̃

ÞÑ p0, e1, τ ˝ξ1q in the terms of Ḡ1
2. Application of rτ̃ s21 to pe, y1e, 0q

therefore yields p0, e, 0q, which may be represented in rẼs ¨ rẼs by:
`

0 0
0 p0,e,0q

˘

¨
`

0 0
p1,0q 0

˘

P rẼs ¨ rẼs.

Then:
`

0 0
p1,0q 0

˘

¨
`

f 0
0 0

˘ ε̃
ÞÝÑ

`

0 0
f 0

˘

P rCs

and
`

0 p1,0q
0 0

˘

¨
`

0 0
0 p0,e,0q

˘ Γ12ÞÝÑ
`

0 p0,e,0q
0 0

˘

P
`

G1 G2

L2 U

˘

“ rF̃ Ẽs

using Γ12 in Eq. (5.3). Finally letting f P C act on the right, we have:
`

0 p0,e,0q
0 0

˘

¨
`

0 0
f 0

˘

“
´ `

fpeq,Ef˝τp beq
˘

0

0 0

¯

P rF̃ Ẽs.

The nonzero coefficient may be interpreted as
`

εpe b fq, σpe b fq
˘

.

‚ We have rσ̃s21 : rẼF̃ s21 Ñ rF̃ Ẽs21 given by
´

1 0
0 Fε
0 Fσ

¯

using the decomposi-

tions:
– rẼF̃ s21 – G1F rys – F rys ‘ FEF rys,
– rF̃ Ẽs21 – L2 – F rys ‘ F rys ‘ F 2Erys.
Considering the isomorphism FE

„
ÝÑ HomApAE,Eq, we can choose an ex-

pression for ηp1q P FE Ă FErys corresponding to IdE P HomApAE,Eq as a
sum of simple tensors:

ηp1q “
ÿ

aPQ

fa b ea P FE Ă FErys,

where Q is some finite index set. Using fa, ea for a P Q, we find an
expression for rη̃p1qs22 in pL2qGG2:

Lemma 5.6. The element
ÿ

aPQ

pfa, 0, 0q b pea, 0, 0q `
ÿ

bPQ

p0, fb, 0q b p0, eb, 0q P pL2qGG2

(written using bimodule forms) is sent to IdR P U under the composition
morphism pL2qGG2

„
ÝÑ Uof Lemma 3.14. We write rη̃p1qs22 for this element.

Proof. We first take composition of the first sum, and then of the second.
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Claim 5.7. Under the map pL2qGG2
„
ÝÑ U , we have:

ÿ

aPQ

pfa, 0, 0q b pea, 0, 0q ÞÑ p0, 0, 0, IdErys, 0q.

Proof of Claim. The matrix rΦs giving the degree 1 bottom row part of the
image, which is a morphism in HomKbpBqpR,Rq written in U , is

ř

aPQ

`

0 0
0 fap qbea

˘

“
p 0 0
0 1 q. To compute the fifth coefficient Λ˝ of the image, we find the degree

0 part Λ of the map on the top row, given by taking the composition
E2rys Ñ Arys Ñ E2rys:

ÿ

aPQ

´y2τp b y1eaq ˝ pEfa ˝ τq

“
ÿ

aPQ,dPP

´y2τy1
`

τp qp1dq b fapτp qp2dqq.ea
˘

“ ´y2τy1τ “ ´y2τ

(in the second line we introduce notation for a decomposition τpeeq “
ř

dPP τpeeqp1dq b τpeeqp2dq for some choices of τpeeqpidq, i “ 1, 2 and finite
index set P , and in the third line we use that

ř

aPQ fape˚q.ea “ e˚ for any

e˚ P Erys). Then Λ˝ “ 0 is determined by Eq. (3.3) with this Λ and Φ. �

Claim 5.8. Under the map pL2qGG2
„
ÝÑ U , we have:

ÿ

bPQ

p0, fb, 0q b p0, eb, 0q ÞÑ pIdErys, 0, 0, 0, 0q.

Proof of Claim. Computing as above, the matrix rΦs is given by p 1 0
0 0 q, and

we have:
ÿ

bPQ

`

b eb ` y2τp b ebq
˘

˝ Efb “
ÿ

bPQ

τy1p b ebq ˝ Efb

“ τy1p
ÿ

bPQ

fbp q.ebq “ τy1.

Again, Λ˝ “ 0 is determined by Eq. (3.3) with this Λ and Φ. �

So rη̃p1qs22 is sent to p1, 0, 0, 1, 0q P U , which indeed corresponds to IdR.
�

Then we take an arbitrary generator pθ, ϕ1q b f P G1F rys – rẼF̃ s21.
Expressing the product η̃p1q b pθ, ϕ1q b f in rF̃ s ¨ rẼs ¨ rẼs ¨ rF̃ s, we have:

ÿ

aPQ

`

0 0
0 pfa,0,0q

˘

¨
`

0 0
0 pea,0,0q

˘

¨
`

0 0
pθ,ϕ1q 0

˘

¨
`

f 0
0 0

˘

`
ÿ

bPQ

`

0 0
0 p0,fb,0q

˘

¨
`

0 0
0 p0,eb,0q

˘

¨
`

0 0
pθ,ϕ1q 0

˘

¨
`

f 0
0 0

˘

P
´

F rys L1

F 2rys L2

¯

¨
´

Erys E2rys
G1 G2

¯

¨
´

Erys E2rys
G1 G2

¯

¨
´

F rys L1

F 2rys L2

¯

.

Now we interpret
`

0 0
0 pea,0,0q

˘

¨
`

0 0
pθ,ϕ1q 0

˘

and
`

0 0
0 p0,eb,0q

˘

¨
`

0 0
pθ,ϕ1q 0

˘

in rẼ2s
using Γ21 from Eq. (5.1); this requires the right action of Gop

1 on R from
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Lemma 3.2. Then we apply rτ̃ s.

Γ21 : pea, 0, 0q b pθ, ϕ1q ÞÑ pea, 0, 0q.pθ, ϕ1q

“
`

ea.θ, 0,´Eϕ1 ˝ τp b y1eaq
˘

P G2 “ rẼ2s21
τ̃

ÞÑ
`

0, ea.θ,´τ ˝ Eϕ1 ˝ τp b y1eaq
˘

P rẼ2s21,

Γ21 : p0, eb, 0q b pθ, ϕ1q ÞÑ p0, eb, 0q.pθ, ϕ1q

“
`

ϕ1pebq, ϕpebq, Eϕ1 ˝ τp b ebq
˘

P rẼ2s21
τ̃

ÞÑ
`

0, ϕ1pebq, τ ˝ Eϕ1 ˝ τp b ebq
˘

P rẼ2s21.

We can represent these in rẼs ¨ rẼs using the isomorphism G2
„
ÝÑ pG2qGG1,

g ÞÑ g b p1, 0q. So, after applying rF̃ s ¨ rτ̃ s ¨ rF̃ s to the middle terms, we
have:

ÿ

aPQ

`

0 0
0 pfa,0,0q

˘

¨
´

0 0

0

`

0,ea.θ,´τ˝Eϕ1˝τp by1eaq
˘

¯

¨
`

0 0
p1,0q 0

˘

¨
`

f 0
0 0

˘

`
ÿ

bPQ

`

0 0
0 p0,fb,0q

˘

¨
´

0 0

0

`

0,ϕ1pebq,τ˝Eϕ1˝τp bebq
˘

¯

¨
`

0 0
p1,0q 0

˘

¨
`

f 0
0 0

˘

.

Then ε̃ :
`

0 0
p1,0q 0

˘

¨
`

f 0
0 0

˘

ÞÑ f P F rys – rCs21, so by applying rF̃ s ¨ rẼs ¨ rε̃s

and viewing the first two factors in pL2qGG2 Ă rF̃ Ẽs22 we obtain:
¨

˝

0 0

0
ř

aPQpfa,0,0qb
`

0,ea.θ,´τ˝Eϕ1˝τp by1eaq
˘

`
ř

bPQp0,fb,0qb
`

0,ϕ1pebq,τ˝Eϕ1˝τp bebq
˘

˛

‚¨

ˆ

0 0
f 0

˙

P rF̃ Ẽs ¨ rCs.

Now we express this element in L2 “ rF̃ Ẽs21 by applying the composition
map pL2qGG2

„
ÝÑ U and then evaluating the action of f P rCs21 on the

right. The latter may be computed by embedding f in L2 as p0, f, 0q and
post-composing with this element.

Passing first through the composition map pL2qGG2
„
ÝÑ U , we have:

ÿ

aPQ

`

0, ea.θ,´τ ˝ Eϕ1 ˝ τp b y1eaq
˘

˝ pfa, 0, 0q ÞÑ p0, 0, θ, 0,´τ ˝ Eϕ1 ˝ τq.

In the first components of this calculation, we have used:
ÿ

aPQ

fap´q.pea.θq : Erys Ñ Erys

e ÞÑ
ÿ

aPQ

fapeq.pea.θq “ e.θ,

and for the last component we have used:
ÿ

aPQ

`

b ea.θ ` y2τp b ea.θq ´ y1y2τ ˝ Eϕ1 ˝ τp b y1eaq
˘

˝ pEfa ˝ τq

“ τ.θ ´ y1y2τ ˝ Eϕ1 ˝ τ

“ τy1pEθ ˝ τq ` y1y2p´τ ˝ Eϕ1 ˝ τq.
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The fact that Λ˝ “ ´τ ˝Eϕ1˝τ can be deduced by comparing with Eq. (3.3)
where rΦs “ p 0 Eθ

0 0 q. Similarly, we have:
ÿ

bPQ

`

0, ϕ1pebq, τ ˝ Eϕ1 ˝ τp b ebq
˘

˝ p0, fb, 0q ÞÑ pϕ1, 0, 0, 0, τ ˝ Eϕ1 ˝ τq,

where again we have used:
ÿ

bPQ

`

b ϕ1pebq ` y2τp b ϕ1pebqq ` y1y2τ ˝ Eϕ1 ˝ τp b ebq
˘

˝ Efb

“ τy1 ˝ Eϕ1 ` y1y2τ ˝ Eϕ1 ˝ τ

“ τy1pEϕ1q ` y1y2pτ ˝ Eϕ1 ˝ τq,

so Λ˝ “ τ ˝ Eϕ1 ˝ τ . For the sum of the images, we have pϕ1, 0, θ, 0, 0q P U .
Next we compute the right action of f P rCs21 on this element:

p0, f, 0q ˝ pϕ1, 0, θ, 0, 0q “ pθ.f, f ˝ ϕ1, Ef ˝ τ ˝ Eϕ1q,

where we have used:

Ef ˝
`

τy1pEϕ1 ` Eθ ˝ τq
˘

“ Ef ˝
`

τy1 ˝ Eϕ1 ` τy1τ ˝ Eθ
˘

“ Ef ˝
`

τy1 ˝ Eϕ1 ` τ ˝ Eθ
˘

“ Ef ˝
`

y2τ ˝ Eϕ1 ` Eϕ1 ` Eθ ˝ τ
˘

“ Epθ.fq ˝ τ ` Epf ˝ ϕ1q ` y1 ˝ pEf ˝ τ ˝ Eϕ1q.

Our final expression for the image of
`

0 0
0 pθ,ϕ1qbf

˘

under rσ̃s21 is therefore:
ˆ

0 0
`

θ.f, f ˝ ϕ1, Ef ˝ τ ˝ Eϕ1

˘

0

˙

P

ˆ

G1 G2

L2 U

˙

“ rF̃ Ẽs.

The bulleted statement follows from the fact that f ˝ ϕ1 “ Fεpϕ1 b fq and
Ef ˝ τ ˝ Eϕ1 “ Fσpϕ1 b fq.

‚ We have rσ̃s12 : rẼF̃ s12 Ñ rF̃ Ẽs12 given by
´

0 εE
1 y1˝εE
0 σE

¯

using the decomposi-

tions:
– rẼF̃ s12 – ErysG1 – Erys ‘ EFErys,
– rF̃ Ẽs12 – G2 – Erys ‘ Erys ‘ FE2rys.
We take rη̃p1qs11 “ p1, 0q b p1, 0q P G1G1 – rF̃ Ẽs11, and an arbitrary
generator e b pθ, ϕ1q P ErysG1 – rẼF̃ s12. The product of these in rF̃ Ẽs ¨
rẼF̃ s can be expressed in rF̃ s ¨ rẼs ¨ rẼs ¨ rF̃ s by:

`

0 p1,0q
0 0

˘

¨
`

0 0
p1,0q 0

˘

¨ p e 0
0 0 q ¨

`

0 pθ,ϕ1q
0 0

˘

,

and application of rF̃ s ¨ rτ̃ s ¨ rF̃ s gives:
`

0 p1,0q
0 0

˘

¨
`

0 0
0 p0,e,0q

˘

¨
`

0 0
p1,0q 0

˘

¨
`

0 pθ,ϕ1q
0 0

˘

.

This is sent by rF̃ s ¨ rẼs ¨ rε̃s to
`

0 p0,e,0q
0 0

˘

¨
`

0 0
0 pθ,ϕ1q

˘

P rF̃ Ẽs ¨ rCs

which, after computing the action using Lemma 3.2, gives
`

ϕ1peq, ϕpeq, Eϕ1 ˝ τp b eq
˘

P G2 – rF̃ Ẽs12.
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For the last term, set ξ “ b e ` y2τp b eq. Then Eϕ ˝ ξ is:

Eϕ ˝ ξ “ b ϕpeq ` Eθ ˝ y2τp b eq ` Epy1ϕ1q ˝ y2τp b eq

“ b ϕpeq ` y2τp b e.θq ` y1y2Eϕ1 ˝ τp b eq.

Subtracting bϕpeq ` y2τ
`

b pϕpeq ´ y1ϕ1peqq
˘

to isolate y1y2ξ
1, we obtain

y1y2Eϕ1 ˝ τp b eq and the last component follows. For the final result
observe that Eϕ1 ˝ τp b eq “ σEpe b ϕ1q.

‚ We have rσ̃s22 : rẼF̃ s22 Ñ rF̃ Ẽs22 given by:
¨

˚

˚

˚

˚

˝

0 0 1 0 0
0 0 0 FεE 0
η y1 0 0 σ

0 1 0 0 0
0 0 0 FσE 0

˛

‹

‹

‹

‹

‚

using the ordered decompositions from Eq. 5.5 and Prop. 3.15:
– rẼF̃ s22 – G1G1 ‘EF rys – Arys ‘FErys ‘FErys ‘FEFErys ‘EF rys,
– rF̃ Ẽs22 – U – FErys‘4 ‘ F 2E2rys.
We compute rσ̃s22 first on G1G1, and afterwards on EF rys. We can use the
same presentation for rη̃p1qs22 as in the calculations for rσ̃s21. Let pθ, ϕ1q b
pθ1, ϕ1

1q P G1G1 be an arbitrary generator. Then the presentation for the
product in rF̃ s ¨ rẼs ¨ rẼs ¨ rF̃ s is:

ÿ

aPQ

`

0 0
0 pfa,0,0q

˘

¨
`

0 0
0 pea,0,0q

˘

¨
`

0 0
pθ,ϕ1q 0

˘

¨
`

0 pθ1,ϕ1
1

q
0 0

˘

`
ÿ

bPQ

`

0 0
0 p0,fb,0q

˘

¨
`

0 0
0 p0,eb,0q

˘

¨
`

0 0
pθ,ϕ1q 0

˘

¨
`

0 pθ1,ϕ1
1

q
0 0

˘

P
´

F rys L1

F 2rys L2

¯

¨
´

Erys E2rys
G1 G2

¯

¨
´

Erys E2rys
G1 G2

¯

¨
´

F rys L1

F 2rys L2

¯

.

Using again the calculations for rσ̃s21, we see that application of rF̃ Ẽε̃s ˝
rF̃ τ̃ F̃ s yields:

ˆ

0 0
0 pϕ1, 0, θ, 0, 0q

˙

¨

ˆ

0 0
0 pθ1, ϕ1

1q

˙

P rF̃ Ẽs ¨ rCs.

Now compute the action of pθ1, ϕ1
1q on the right on U using Lemma 3.2. For

the matrix part rΦs, we have:
ˆ

ϕ1 0
ϕ1
1 θ1

˙

¨

ˆ

ϕ1 θ

0 0

˙

“

ˆ

ϕ1 ˝ ϕ1 θ.ϕ1

ϕ1
1 ˝ ϕ1 θ.ϕ1

1

˙

.

The submodule form of pϕ1, 0, θ, 0, 0q is pϕ1, 0, θ, 0, τ ˝ Eϕq using:

Λ “ τy1pEϕ1 ` Eθ ˝ τq

“ τ ˝ Epy1ϕ1q ` τ ˝ Eθ

“ τ ˝ Eϕ.

Then after taking the action, the last coefficient of the submodule form is
given by post-composing with Eϕ1 to obtain Λ “ Eϕ1 ˝ τ ˝ Eϕ, which we
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expand using ϕ “ .θ ` y1ϕ1 and similarly for ϕ1:

Λ “ Eϕ1 ˝ τ ˝ Eϕ

“ Eθ1 ˝ τ ˝ Eθ ` Eθ1 ˝ τ ˝ Epy1ϕ1q

` Epy1ϕ
1
1q ˝ τ ˝ Eθ ` Epy1ϕ

1
1q ˝ τ ˝ Epy1ϕ1q.

To compute the bimodule form, evaluate Eq. (3.3) using rΦs:

Λ “

τy1
`

Epϕ1 ˝ ϕ1q ` Epθ.ϕ1q ˝ τ
˘

´ y2τy1
`

Epϕ1
1 ˝ ϕ1q ` Epθ.ϕ1

1q ˝ τ
˘

` y1y2Λ
˝

“ τy1 ˝ Eϕ1 ˝
`

Eϕ1 ` Eθ ˝ τ
˘

´ y2τ ˝ Epy1ϕ
1
1q ˝

`

Eϕ1 ` Eθ ˝ τ
˘

` y1y2Λ
˝

“ τy1 ˝ Eθ1 ˝
`

Eϕ1 ` Eθ ˝ τ
˘

` Epy1ϕ
1
1q ˝

`

Eϕ1 ` Eθ ˝ τ
˘

` y1y2Λ
˝.

(For the last equality we expand ϕ1 “ .θ1 ` y1ϕ
1
1 and use the relation

τy1 ´ y2τ “ Id.) By identifying the two expressions we can solve to find
Λ˝ “ Eϕ1

1 ˝ τ ˝ Eϕ1. So the image is given using the bimodule form of U
by:
ˆ

0 0
0

`

ϕ1 ˝ ϕ1, ϕ
1
1 ˝ ϕ1, θ.ϕ

1, θ.ϕ1
1, Eϕ1

1 ˝ τ ˝ Eϕ1

˘

˙

P

ˆ

G1 G2

L2 U

˙

“ rF̃ Ẽs.

Using the fact that Eϕ1
1 ˝ τ ˝Eϕ1 “ FσEpϕ1 bϕ1

1q and ϕ1
1 ˝ϕ1 “ FεEpϕ1 b

ϕ1
1q, one recovers the first four columns of the matrix of rσ̃s22.
For the fifth column of rσ̃s22, we start with an arbitrary generator ebf 1 P

EF rys Ă rẼF̃ s22. The element p0, e, 0q b pf 1, 0, 0q P pG2qGL2 is sent by Γ22

of rẼF̃ s to e b f 1. So we consider the element:
ÿ

aPQ

`

0 0
0 pfa,0,0q

˘

¨
`

0 0
0 pea,0,0q

˘

¨
`

0 0
0 p0,e,0q

˘

¨
`

0 0
0 pf 1,0,0q

˘

`
ÿ

bPQ

`

0 0
0 p0,fb,0q

˘

¨
`

0 0
0 p0,eb,0q

˘

¨
`

0 0
0 p0,e,0q

˘

¨
`

0 0
0 pf 1,0,0q

˘

P
´

F rys L1

F 2rys L2

¯

¨
´

Erys E2rys
G1 G2

¯

¨
´

Erys E2rys
G1 G2

¯

¨
´

F rys L1

F 2rys L2

¯

,

and we compute its image under F̃ Ẽε̃ ˝ F̃ τ̃ F̃ . First apply Γ22 of rẼẼs to
pea, 0, 0q b p0, e, 0q and p0, eb, 0q b p0, e, 0q, using the rule for bimodule forms
on p. 23:

pea, 0, 0q b p0, e, 0q
Γ22ÞÝÑ p0,´y2pea b eq,´y2pea b eq, 0q P G3,

p0, eb, 0q b p0, e, 0q
Γ22ÞÝÑ pτy1peb b eq, eb b e, eb b e, 0q P G3.

Next we apply rτ̃ s22 to these elements:

p0,´y2pea b eq,´y2pea b eq, 0q
rτ̃ s22
ÞÝÑ

`

ea b e, ea b e,´τy2pea b eq, 0
˘

,

pτy1peb b eq, eb b e, eb b e, 0q
rτ̃ s22
ÞÝÑ

`

τpeb b eq, τpeb b eq, τpeb b eq, 0
˘

.

Note that formula (2.7) is given for the submodule form of G3. Using
Prop. 3.21 of [McM22], one defines a bimodule form in the usual way, where
the last coefficient is χ2 instead of χ. By studying the proof of Lemma 4.3
of [McM22], one observes that the action of τ̃ on the last coefficient in this
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bimodule form is (also) given by post-composition with τE, whence the
final zeros above.

The next step is to express
`

eae, eae,´τy2peaeq, 0
˘

and
`

τpebeq, τpebeq, τpebeq, 0
˘

back in pG2qGG2 (i.e. find a preimage under Γ22|pG2qGG2
) in order to view

them in rẼs¨rẼs. We will need the notation τpeeq “
ř

dPP τpeeqp1dqbτpeeqp2dq

introduced to compute rσ̃21s above.

Claim. We have:

ÿ

dPP

`

0,τpeaeqp1dq,0

˘

b
`

τpeaeqp2dq,y1τpeaeqp2dq,0

˘

´
`

0,τy1peaeqp1dq,0

˘

b
`

0,τy1peaeqp2dq,0

˘

Γ22ÞÝÑ
`

eae, eae,´τy2peaeq, 0
˘

,

ÿ

dPP

`

0, τpebeqp1dq, 0
˘

b
`

0, τpebeqp2dq, 0
˘ Γ22ÞÝÑ

`

τpebeq, τpebeq, τpebeq, 0
˘

.

Proof. The proof is a direct calculation using the bimodules formulation of
Γ22|pG2qGG2

on p. 23. �

Thus, after applying F̃ τ̃ F̃ , we have the element:
ÿ

aPQ,dPP

`

0 0
0 pfa,0,0q

˘

¨
´

0 0

0 p0,τpeaeqp1dq,0q

¯

¨
´

0 0

0 pτpeaeqp2dq,y1τpeaeqp2dq,0q

¯

¨
`

0 0
0 pf 1,0,0q

˘

`
ÿ

aPQ,dPP

`

0 0
0 pfa,0,0q

˘

¨
´

0 0

0 ´p0,τy1peaeqp1dq,0q

¯

¨
´

0 0

0 p0,τy1peaeqp2dq,0q

¯

¨
`

0 0
0 pf 1,0,0q

˘

`
ÿ

bPQ,dPP

`

0 0
0 p0,fb,0q

˘

¨
´

0 0

0 p0,τpebeqp1dq,0q

¯

¨
´

0 0

0 p0,τpebeqp2dq,0q

¯

¨
`

0 0
0 pf 1,0,0q

˘

,

and we need to apply rF̃ Ẽs ¨ ε̃ and then realize the result in rF̃ Ẽs. Observe
that:

`

0, τy1peaeqp2dq, 0
˘

b pf 1, 0, 0q
ε̃

ÞÑ 0,
`

0, τpebeqp2dq, 0
˘

b pf 1, 0, 0q
ε̃

ÞÑ 0.

Therefore only the top row will remain. We have in submodule form:

`

τpeaeqp2dq, y1τpeaeqp2dq, 0
˘

b pf 1, 0, 0q

rε̃s22
ÞÝÑ

`

f 1pτpeaeqp2dqq, Ef 1 ˝ τ ˝
`

b y1τpeaeqp2dq

˘˘

P G1.

We convert to bimodule form and give this a name:

pθ, ϕ1qa,d :“
`

f 1pτpeaeqp2dqq, Ef 1 ˝ τp b τpeaeqp2dqq
˘

P G1.

Observe that under the composition isomorphism pL2qGG2
„
ÝÑ U we have:

pfa, 0, 0q b
`

0, τpeaeqp1dq, 0
˘

ÞÑ
`

0, 0, fap q.τpeaeqp1dq, 0, 0
˘

P U.

We are therefore left with:

ÿ

aPQ,dPP

ˆ

0 0
0

`

0, 0, fap q.τpeaeqp1dq, 0, 0
˘

˙

¨

ˆ

0 0
0 pθ, ϕ1qa,d

˙

P rF̃ Ẽs ¨ rCs.
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It remains to use the right action of Gop

1 on R (Lemma 3.2) to compute
the action of pθ, ϕ1qa,d. The new matrix is given for each term of the sum
by:

ˆ

Ef 1 ˝ τy1
`

b τpeaeqp2dq

˘

0
Ef 1 ˝ τp b τpeaeqp2dqq f 1pτpeaeqp2dqq

˙

¨

ˆ

0 fap q.τpeaeqp1dq

0 0

˙

“

¨

˝

0 Ef 1 ˝ τy1

´

fap q.τpeaeqp1dq b τpeaeqp2dq

¯

0 Ef 1 ˝ τ
´

fap q.τpeaeqp1dq b τpeaeqp2dq

¯

˛

‚.

After summing over a and d this becomes:

ř

a,d
///o/o/o

ˆ

0 Ef 1 ˝ τ ˝ y1τp b eq
0 Ef 1 ˝ τ

`

τp b eq
˘

˙

“

ˆ

0 Ef 1 ˝ τp b eq
0 0

˙

.

This matrix gives the first four components of the final element of U .
To find the fifth in submodule form, we compute the submodule form of
`

0, 0, fap q.τpeaeqp1dq, 0, 0
˘

and post-compose with Eϕ:

Eϕ ˝
´

τy1 ˝ E
`

fap q.τpeaeqp1dq

˘

˝ τ
¯

“ Eϕ ˝
´

τy1
`

Efa ˝ τp q b τpeaeqp1dq

˘

¯

“
´

E2f 1 ˝ Eτ ˝ y1
`

b τpeaeqp2dq

˘

¯

˝
´

τy1
`

Efa ˝ τp q b τpeaeqp1dq

˘

¯

“ E2f 1 ˝ Eτ ˝ y1
`

τy1
`

Efa ˝ τp q b τpeaeqp1dq

˘

b τpeaeqp2dq

˘

“ E2f 1 ˝ Eτ ˝ τE ˝ y2y1
`

Efa ˝ τp q b τpeaeqp1dq b τpeaeqp2dq

˘

.

(The last equality is, schematically, y1
`

pτy1AAqbB
˘

“ τE˝y2y1pAAbBq.)
Summing over d and a we obtain:

ř

a,d
///o/o/o E2f 1 ˝ Eτ ˝ τE ˝ y2y1

`

Eτ ˝ τEp b eq
˘

.

Now observe the following calculation in the nil affine Hecke algebra:

τ1pτ2y2qy1τ1τ2 “ τ1py3τ2qy1τ1τ2 ` τ1y1τ1τ2

“ pτ1y3qpτ2y1qτ1τ2 ` pτ1y1qτ1τ2

“ py3τ1qpy1τ2qτ1τ2 ` py2τ1qτ1τ2 ` τ1τ2

“ y3pτ1y1qτ2τ1τ2 ` 0 ` τ1τ2

“ y3py2τ1qτ2τ1τ2 ` y3τ2τ1τ2 ` τ1τ2

“ 0 ` y3τ2τ1τ2 ` τ1τ2.

(Here τi “ En´i´1τEi´1 for whatever n.) Therefore we have:

E2f 1 ˝ Eτ ˝ τE ˝ y2y1
`

Eτ ˝ τEp b eq
˘

“ y2E
2f 1 ˝ τE ˝ Eτ ˝ τEp b eq ` E2f 1 ˝ Eτ ˝ τEp b eq.
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Now to find the bimodule form of the fifth component we consider:

τy1 ˝
`

E2f 1 ˝ Eτp b eq ˝ τ
˘

“ τy1 ˝ E2f 1 ˝ Eτ ˝ τEp b eq

“ y2E
2f 1 ˝ τE ˝ Eτ ˝ τEp b eq ` E2f 1 ˝ Eτ ˝ τEp b eq,

and since this agrees with the expression before it, Eq. (3.3) implies that the
fifth component in bimodule form is zero. The final expression is

`

0, 0, Ef 1 ˝

τ
`

b e
˘

, 0, 0
˘

P U – rF̃ Ẽs22. Observe that Ef 1 ˝ τp b eq “ σpe b f 1q. This
gives the fifth column of the matrix of rσ̃s22, and we have now justified all
components of that matrix.

5.2.2. Maps ε̃ ˝ x̃iF̃ and F̃ x̃i ˝ η̃. We continue by computing the maps ε̃ ˝ x̃iF̃

and F̃ x̃i ˝ η̃ on the various components of the matrices rẼF̃ s, rF̃ Ẽs, and rCs.
As before, we propose these maps in the bulleted lines and justify them in the
paragraphs following.

‚ We have rε̃ ˝ x̃iF̃ s11 : rẼF̃ s11 Ñ rCs11 given by ε ˝ xiy1F using the decom-
positions:
– rẼF̃ s11 – EF rys,
– rCs11 – Arys.
The endomorphism x̃ P EndpẼq (see (2.6)) determines an endomorphism
of rẼF̃ s11 given by xF on EF rys. The morphism ε̃ composes elements of

Ẽ with those of F̃ when they are interpreted in HomDbpBqpX,E 1Xq and

HomDbpBqpE
1X,Xq. In particular, e P Erys – rẼs11 represents the mor-

phism X1 Ñ E 1X1 given by 1 ÞÑ y1e in degree 0 of the top row, and
f P F rys – rF̃ s11 represents the morphism given by e ÞÑ fpeq in degree 0 of
the top row.

‚ We have rF̃ x̃i ˝ η̃s11 : rCs11 Ñ rF̃ Ẽs11 given by
´

yi

Fhi´1px,yq˝η

¯

using the

decompositions:
– rCs11 – Arys,
– rF̃ Ẽs11 – G1 – Arys ‘ FErys.
Here hipz1, . . . , znq is the complete homogeneous symmetric polynomial of
degree i in the variables z1, . . . , zn. Note the small case interpretations:

$

’

’

’

&

’

’

’

%

hi´1px, yq “ 0 i “ 0

hi´1px, yq “ 1 i “ 1

hi´1px, yq “ x ` y i “ 2

. . . . . .

Observe that rη̃s11 is given by 1 ÞÑ IdX2
P G

op

1 – EndKbpBqpX2q, and
IdX2

“ p1, 0q (in bimodule form). More generally θ ÞÑ .θ P HomApAE,Eqrys –
FErys Ă G

op

1 . From (2.6) we have the action of rx̃s11 on G
op

1 in submodule
form: x̃i.pθ, ϕq “ pyiθ, xi ˝ ϕq. Now convert this expression to bimodule
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form:

xi ˝ ϕ “ xi ˝ .θ ` xiy1ϕ1

“ yiθ ` pxi ´ yiq ˝ .θ ` y1x
iϕ1

“ yiθ ` y1
`

hi´1px, yq ˝ .θ ` xi ˝ ϕ1

˘

,

so x̃i.pθ, ϕ1q “ pyiθ, hi´1px, yq ˝ .θ ` xi ˝ ϕ1q. In particular, x̃i.p1, 0q “
pyi, hi´1px, yqq, which gives the proposed formula by viewing x, y as endo-
functors of E instead of as elements of FErys.

‚ We have rε̃ ˝ x̃iF̃ s21 : rẼF̃ s21 Ñ rCs21 given by
`

xi, F pε ˝ xiy1F q
˘

using the
decompositions:
– rẼF̃ s21 – G1F rys – F rys ‘ FEF rys,
– rCs21 – F rys.
(Here x P EndpF qrys is given by xpfq “ f ˝ x.) The map rε̃s21 : G1F rys Ñ
F rys is given (using submodule form) by pθ, ϕq b f ÞÑ f ˝ϕ. The endomor-
phism rx̃s21 acts on G1 as described under the previous bullet: x̃i.pθ, ϕ1q “
pyiθ, hi´1px, yq ˝ .θ ` xi ˝ ϕ1q. Then rε̃ ˝ x̃iF̃ s21 : G1F rys Ñ F rys is given
using bimodule form by:

x̃i.pθ, ϕ1q b f ÞÑ f ˝ xi ˝ ϕ

“ f ˝ xi ˝ .θ ` f ˝ xiy1ϕ1,

and the component data follows from this formula.

‚ We have rF̃ x̃i ˝ η̃s21 : rCs21 Ñ rF̃ Ẽs21 given by

ˆ

0
yi

F pFhi´1px,yq˝ηq

˙

using the

decompositions:
– rCs21 – F rys,
– rF̃ Ẽs21 – L2 – F rys ‘ F rys ‘ F 2Erys.

Let
`

0 0
f 0

˘

P
´

Arys Erys

F rys G
op

1

¯

“ rCs, and observe that:

η̃
``

0 0
f 0

˘˘

“ η̃
``

0 0
f 0

˘

. p 1 0
0 0 q

˘

“
`

0 0
f 0

˘

.η̃ pp 1 0
0 0 qq

“
`

0 0
f 0

˘

.
`

p1,0q 0
0 0

˘

“
`

0 0
p0,f,0q 0

˘

P
`

G1 G2

L2 U

˘

“ rF̃ Ẽs.

Here p0, f, 0q is written in the bimodule form of L2. (The action of f P
F rys Ă rCs21 on generators in G1 Ă rF̃ Ẽs is given by F rysG1 Ñ L2,
f bpθ, ϕq ÞÑ p0, f ˝ .θ, ϕ˝Efq (written in submodule form), and this image
is p0, f ˝ .θ, ϕ1 ˝ Efq in bimodule form.)

Now we apply rF̃ x̃is21. From Eq. (5.3):

rF̃ s ¨ rẼs Ą pL2qGG1 Q p0, f, 0q b p1, 0q
Γ21ÞÝÑ p0, f, 0q P L2 Ă rF̃ Ẽs.

We have already seen that x̃i.p1, 0q “ pyi, hi´1px, yqq P G1, so we have:

p0, f, 0q b p1, 0q
rF̃ x̃is21
ÞÝÑ p0, f, 0q b pyi, hi´1px, yqq.

Then
Γ21 : p0, f, 0q b pyi, hi´1px, yqq ÞÑ

`

0, yif, xi ˝ Ef
˘

written in submodule form. In bimodule form the image is:
`

0, yif, hi´1px, yq ˝ Ef
˘

,
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which we compute using:

xi ˝ Ef “
`

yi ` y1hi´1px, yq
˘

˝ Ef

“ Epyifq ` y1
`

hi´1px, yq ˝ Ef
˘

.

Note that F 2Erys Q hi´1px, yq ˝ Ef “ F
`

hi´1px, yq ˝ η
˘

pfq.

‚ We have rε̃ ˝ x̃iF̃ s12 : rẼF̃ s12 Ñ rCs12 given by
`

xi, pε ˝ xiy1F qE
˘

using the
decompositions:
– rẼF̃ s12 – ErysG1 – Erys ‘ EFErys,
– rCs12 – Erys.
The endomorphism rx̃s12 acts as x on Erys “ rẼs11, and thus as xG1 on
ErysG1 “ rẼF̃ s12. The map rε̃s12 : ErysG1 Ñ Erys is given (using submod-
ule form) by e b pθ, ϕq ÞÑ y´1

1 ϕpy1eq. (Recall that e P Erys indicates the
map X1 Ñ X2 given on the top row by Arys Ñ Erys, 1 ÞÑ y1e.) So we have:

xipeq b pθ, ϕ1q
rε̃s12
ÞÝÑ y´1

1 ϕpxiy1eq “ xipeq.θ ` ϕ1px
iy1eq,

and the component data follows from this formula.

‚ We have rF̃ x̃i ˝ η̃s12 : rCs12 Ñ rF̃ Ẽs12 given by

ˆ

yi

yiy1
pFhi´1px,yq˝ηqE

˙

using the

decompositions:
– rCs12 – Erys,
– rF̃ Ẽs12 – G2 – Erys ‘ Erys ‘ FE2rys.
By reasoning as in the rF̃ x̃i ˝ η̃s21 case, we find:

rCs Q p 0 e
0 0 q

rη̃s
ÞÝÑ

`

0 pe,y1e,0q
0 0

˘

P
`

G1 G2

L2 U

˘

“ rF̃ Ẽs,

using the bimodule form of G2. Now we apply rF̃ x̃is12. From Eq. (5.3):

rF̃ s ¨ rẼs Ą pL1qGG2 Q p1, 0q b pe, y1e, 0q
Γ12ÞÝÑ pe, y1e, 0q P G2 Ă rF̃ Ẽs.

In (2.6) we have a formula for the action of rx̃is22 on G2 Ă rẼs written in
terms of the data e1, e2, ξ. The data pe, y1e, 0q corresponds to e1 “ y1e,
e2 “ 0, ξ “ b y1e (see the paragraph after Prop. 3.8). Applying rx̃is22
gives e1 “ yiy1e, e2 “ 0, ξ “ b yiy1e ` y1y2hi´1px2, yqp b eq, where to
compute ξ we have used:

xi
2 ˝ p b y1eq “

`

yi ` y2hi´1px2, yq
˘

˝ p b y1eq

“ b yiy1e ` y1y2hi´1px2, yqp b eq.

This corresponds to the data
`

yie, yiy1e, hi´1px2, yqp b eq
˘

P G2 in the
bimodule form. So we have:

p1, 0q b pe, y1e, 0q
rF̃ x̃is12
ÞÝÑ p1, 0q b

`

yie, yiy1e, hi´1px2, yqp b eq
˘

Γ12ÞÝÑ
`

yie, yiy1e, hi´1px2, yqp b eq
˘

P G2 Ă rF̃ Ẽs.

Note that FE2rys Q hi´1px2, yqp b eq “
`

pFhi´1px, yq ˝ ηqE
˘

peq.

‚ We have rε̃ ˝ x̃iF̃ s22 : rẼF̃ s22 Ñ rCs22 given by:
ˆ

yi 0 0 0 ´ε ˝ hi´1px, yqF

hi´1px, yq ˝ η xiE Fxi F pε ˝ xiy1F qE ´FEε˝F pτ˝hi´1px1,x2qqF˝ηEF
´FEε˝F phi´2px1,x2,yqqF˝ηEF

˙
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using the ordered decompositions (recall Eq. (5.5)):

– rẼF̃ s22 – G1G1 ‘EF rys – Arys ‘FErys ‘FErys ‘FEFErys ‘EF rys,
– rCs22 – G1 – Arys ‘ FErys.
Consider the first four columns first, i.e. the restriction of the map to G1G1.
Take an arbitrary generator pθ, ϕ1q b pθ1, ϕ1

1q. Borrowing a calculation from

the case rε̃ ˝ x̃iF̃ s21 we find:

pθ, ϕ1q b pθ1, ϕ1
1q

rx̃iF̃ s22
ÞÝÑ pyiθ, hi´1px, yq ˝ .θ ` xi ˝ ϕ1q b pθ1, ϕ1

1q.

Now rε̃s22 : G1G1 Ñ G1 is given by composition, so we have:

pyiθ, hi´1px, yq ˝ .θ ` xi ˝ ϕ1q b pθ1, ϕ1
1q

rε̃s22
ÞÝÑ

`

yiθθ1, .θ1 ˝ hi´1px, yq ˝ .θ ` p .θ1q ˝ xi ˝ ϕ1 ` ϕ1
1 ˝ p .yiθq

` ϕ1
1 ˝ pxi ´ yiq ˝ .θ ` ϕ1

1 ˝ y1x
i ˝ ϕ1

˘

“
`

yiθθ1, hi´1px, yq ˝ .θθ1 ` ϕ1
1 ˝ xi ˝ .θ ` xi ˝ .θ1 ˝ ϕ1 ` ϕ1

1 ˝ y1x
i ˝ ϕ1

˘

.

The first four columns of the matrix of rε̃ ˝ x̃iF̃ s22 can be read off this
formula.

The last column gives the restriction of rε̃ ˝ x̃iF̃ s22 to a map EF rys Ñ
Arys ‘FErys. Its computation is more involved. We start with a generator
e b f , and note that:

rẼs ¨ rF̃ s Ą pG2qGL2 Q p0, e, 0q b pf, 0, 0q
Γ22ÞÝÑ e b f P EF rys Ă rẼF̃ s22

using Γ22 |pG2qGL2
“ κ from Eq. (5.4). Now we must apply rx̃s22 to the first

factor, and then compose the factors, thereby applying rε̃s22 and giving an
element of G2 – EndKbpBqpX2q.

The data p0, e, 0q corresponds to e1 “ e2 “ e, ξ “ τy1p b eq (see the

paragraph after Prop. 3.8). The action of rx̃is22 on G2 Ă rẼs then gives
e1 “ yie, e2 “ xie, ξ “ xi

2 ˝ τy1p b eq. We can compute the composite with
pf, 0, 0q directly using this information. It is given in submodule form by:

`

f ˝ y´1
1 pyie ´ xieq, Ef ˝ τ ˝ xi

2 ˝ τy1p b eq
˘

“
`

fp´hi´1px, yqeq, Ef ˝ τ ˝ xi
2 ˝ τy1p b eq

˘

P G1.

It remains to convert this to bimodule form. In the calculation we will
use three facts, easily checked by the reader:

– xi
2 ˝ τ “ τ ˝ xi

1 ´ hi´1px1, x2q,
– x

j
2 “ yj ` y2hi´1px2, yq,

–
ř

j`k“i´1 x
j
1hk´1px2, yq “ hi´2px1, x2, yq.
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Then we have for the main calculation:

Ef ˝ τ ˝ xi
2 ˝ τy1p b eq

“ ´Ef ˝ τy1 ˝ hi´1px1, x2qp b eq

“ ´Ef ˝ hi´1px1, x2qp b eq ´ y1Ef ˝ τ ˝ hi´1px1, x2qp b eq

“ ´Ef ˝
ÿ

j`k“i´1

x
j
1

`

yk ` y2hk´1px2, yq
˘

p b eq ´ y1 ˝ Ef ˝ τ ˝ hi´1px1, x2qp b eq

“ ´Ef ˝ hi´1px1, yqp b eq ´ y1Ef ˝
`

hi´2px1, x2, yqp b eq ` τ ˝ hi´1px1, x2qp b eq
˘

.

Then observe that:

´Ef ˝ hi´1px1, yqp b eq “ b fp´hi´1px, yqeq

“ p´ε ˝ hi´1px, yqF qpe b fq,

and that:

´ Ef ˝
´

hi´2px1, x2, yqp b eq ` τ ˝ hi´1px1, x2qp b eq
¯

“
´

´Ef ˝ F
`

τ ˝ hi´1px1, x2q ` hi´2px1, x2, yq
˘

˝ ηE
¯

peq

“
´

´FEε ˝ F
`

τ ˝ hi´1px1, x2q ` hi´2px1, x2, yq
˘

F ˝ ηEF
¯

pe b fq.

(We are using that b e considered in HomApAE,E2qrys corresponds to
pηEqpeq in FE2rys; also note that εpebfq “ fpeq P Arys induces Efp beq “
.fpeq considered in HomApAE,Eqrys.) The formulas in the last column of

rε̃ ˝ x̃iF̃ s22 follow.

‚ We have rF̃ x̃i ˝ η̃s22 : rCs22 Ñ rF̃ Ẽs22 given by:
¨

˚

˚

˚

˚

˝

Fyi ˝ η yiy1
´Fhi´1px, yq ˝ η yi

0 0
Fxi ˝ η 0

F 2
`

hi´1px1, x2q ˝ τ ´ hi´2px1, x2, yq
˘

˝ η2 F 2hi´1px2, yq ˝ FηE

˛

‹

‹

‹

‹

‚

using the ordered decompositions:
– rCs22 – G1 – Arys ‘ FErys,
– rF̃ Ẽs22 – U – FErys‘4 ‘ F 2E2rys.
Observe first that rη̃s22 : G1 Ñ U is determined by p1, 0q ÞÑ IdR “
p1, 0, 0, 1, 0q P U (using bimodule forms). Recall (Lemma 5.6 used for rσ̃s21)
that:

pL2qGG2 Q rη̃p1qs “
ÿ

aPQ

pfa, 0, 0q b pea, 0, 0q `
ÿ

bPQ

p0, fb, 0q b p0, eb, 0q

Γ21ÞÝÑ p1, 0, 0, 1, 0q P U.

The map Γ21|pL2qGG2
of Eq. (5.3) is given by composition and hence right

G
op

1 -equivariant, so we can compute any rη̃s22
`

pθ, ϕ1q
˘

as rη̃p1qs.pθ, ϕ1q P

pL2qGG2. The action of rF̃ x̃is is applied to elements of pL2qGG2, and after
that we pass through Γ21 again to obtain the final image in U .
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We treat the first column of rF̃ x̃i ˝ η̃s22 first, and consider the second
column afterwards. For the first column it is enough to consider the case
pθ, ϕ1q “ p1, 0q. Starting with the first term, the data pea, 0, 0q corresponds
to e1 “ 0, e2 “ ´y1ea, and ξ “ y2τp bp´y1eaqq. Application of the formula
for rx̃is22 gives e1 “ 0, e2 “ ´xiy1ea, and ξ “ xi

2 ˝ y2τp b p´y1eaqq. Then
we convert this to bimodule form, using:

xi
2 ˝ y2τp b p´y1eaqq

“ y2 ˝ xi
2τp b p´y1eaqq

“ y2 ˝ τxi
1p b p´y1eaqq ` y1y2hi´1px1, x2qp b eaq

“ y2τp b p´y1x
ieaqq ` y1y2hi´1px1, x2qp b eaq,

where in the third line we have used the first fact given under the previous
bullet. So in bimodule form we have:

rx̃is22 : pea, 0, 0q ÞÑ
`

xiea, 0, hi´1px1, x2qp b eaq
˘

.

Now applying Γ21 we obtain:
ÿ

aPQ

`

xiea, 0, hi´1px1, x2qp b eaq
˘

˝ pfa, 0, 0q “
`

0, 0, 0, xi, hi´1px1, x2q ˝ τ
˘

P U,

where the last component is computed using:
´

y2τp b p´y1x
ieaqq ` y1y2hi´1px1, x2qp b eaq

¯

˝ Efa ˝ τ

“ ´y2τy1x
i
1τ ` y1y2hi´1px1, x2qτ,

together with the facts that Φ11 “ Φ12 “ Φ21 “ 0 and Φ22 “ xi so:

Λ “ τy1p0 ` 0q ´ y2τy1 ˝ p0 ` EΦ22 ˝ τq ` y1y2Λ
˝

“ ´y2τy1 ˝ xi
1 ˝ τ ` y1y2Λ

˝.

Continuing with the second term, the data p0, eb, 0q corresponds to e1 “
eb, e2 “ eb, and ξ “ τy1p b ebq. Application of the formula for rx̃is22 gives
e1 “ yieb, e2 “ xieb, and ξ “ xi

2 ˝ τy1p b ebq. Then we convert this to
bimodule form, using:

xi
2 ˝ τy1p b ebq

“ τy1p b xiebq ´ y1hi´1px1, x2qp b ebq

“ τy1p b xiebq ´ y1hi´1px1, yqp b ebq

´ y1y2hi´2px1, x2, yqp b ebq

“ b xieb ` y2τp b xiebq ´ b pxi ´ yiqeb

´ y1y2hi´2px1, x2, yqp b ebq

“ b yieb ` y2τp b xiebq ´ y1y2hi´2px1, x2, yqp b ebq,

where we have made use of the fact, easily checked by the reader, that:
– y2hi´2px1, x2, yq “ hi´1px1, x2q ´ hi´1px1, yq.
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So in bimodule form we have:

rx̃is22 : p0, eb, 0q ÞÑ
´

´hi´1px1, yqeb, y
ieb,´hi´2px1, x2, yqp b ebq

¯

.

Now applying Γ21 we obtain:
ÿ

bPQ

´

´hi´1px1, yqeb, y
ieb,´hi´2px1, x2, yqp b ebq

¯

˝ p0, fb, 0q

“
`

yi,´hi´1px1, yq, 0, 0,´hi´2px1, x2, yq
˘

P U,

where the last component is computed using:

xi
2 ˝ τy1p b ebq ˝ Efb “ xi

2τy1 “ τxi
1y1 ´ y1hi´1px1, x2q

together with the facts that Φ11 “ yi, Φ21 “ ´hi´1px1, yq, Φ12 “ Φ22 “ 0,
so:

Λ “ τy1 ˝
`

yi ` 0 ˝ τ
˘

´ y2τy1 ˝
`

´hi´1px1, yq ` 0 ˝ τ
˘

` y1y2Λ
˝

“ τy1y
i ` y2τy1hi´1px1, yq ` y1y2Λ

˝

“ τy1y
i ` y2τpxi

1 ´ yiq ` y1y2Λ
˝

“ yi ` y2τx
i
1 ` y1y2Λ

˝

“ τxi
1y1 ´ y1hi´1px1, yq ` y1y2Λ

˝,

so, using again the fact above:

y2Λ
˝ “ ´hi´1px1, x2q ` hi´1px1, yq,

Λ˝ “ ´hi´2px1, x2, yq.

Finally taking the sum of the two terms, we conclude that rF̃ x̃i ˝ η̃s22 :
Arys Ñ U is determined by:

1 ÞÑ
`

yi,´hi´1px1, yq, 0, xi, hi´1px1, x2q ˝ τ ´ hi´2px1, x2, yq
˘

.

By describing these coefficients in FErys and F 2E2rys instead of in EndpErysq
and EndpE2rysq, we obtain the formulas in the first column of the matrix
of rF̃ x̃i ˝ η̃s22.

Now we consider the second column of rF̃ x̃i ˝ η̃s22, a map FErys Ñ U . It
is found using the same method but with pθ, ϕ1q “ p0, ϕ1q for a generator
ϕ1 P FErys. We have in bimodule form:

pea, 0, 0q.p0, ϕ1q “
`

0, 0, Eϕ1 ˝ τp b ´y1eaq
˘

p0, eb, 0q.p0, ϕ1q “
`

ϕ1pebq, y1ϕ1pebq, Eϕ1 ˝ τp b ebq
˘

,

where we have used the calculations:

Epy1ϕ1q ˝ y2τp b ´y1eaq “ y1y2Eϕ1 ˝ τp b ´y1eaq

and

Epy1ϕ1q ˝ p b eb ` y2τp b ebqq “ b y1ϕ1pebq ` y1y2Eϕ1 ˝ τp b ebq.

Starting with the first term, the data
`

0, 0, Eϕ1 ˝ τp b ´y1eaq
˘

corresponds
to e1 “ e2 “ 0 and ξ “ y1y2Eϕ1 ˝ τp b ´y1eaq. Application of the formula
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for rx̃is22 gives e1 “ e2 “ 0 and ξ “ xi
2 ˝ y1y2Eϕ1 ˝ τp b ´y1eaq. Converting

this data to bimodule form is trivial. So we have:

rx̃is22 :
`

0, 0, Eϕ1 ˝ τp b ´y1eaq
˘

ÞÑ
`

0, 0, xi
2 ˝ Eϕ1 ˝ τp b ´y1eaq

˘

.

Now applying Γ21 we obtain:
ÿ

aPQ

`

0, 0, xi
2 ˝ Eϕ1 ˝ τp b ´y1eaq

˘

˝ pfa, 0, 0q “
`

0, 0, 0, 0,´Eϕ1 ˝ xi
2τ

˘

P U,

where the last component is computed using:

y1y2x
i
2 ˝ Eϕ1 ˝ τp b ´y1eaq ˝ Efa ˝ τ

“ ´xi
2 ˝ y1y2Eϕ1 ˝ τy1 ˝ τ

“ ´y1y2Eϕ1 ˝ xi
2τ.

Continuing with the second term, the data
`

ϕ1pebq, y1ϕ1pebq, Eϕ1˝τp bebq
˘

corresponds to e1 “ y1ϕ1pebq, e2 “ 0, and ξ “ by1ϕ1pebq `y1y2Eϕ1 ˝ τp b
ebq. Application of the formula for rx̃is22 gives e1 “ y1y

iϕ1pebq, e2 “ 0,
and ξ “ xi

2 ˝
`

b y1ϕ1pebq ` y1y2Eϕ1 ˝ τp b ebq
˘

. Then we convert this to
bimodule form, using:

xi
2 ˝

`

b y1ϕ1pebq ` y1y2Eϕ1 ˝ τp b ebq
˘

“ b yiy1ϕ1pebq ` y2hi´1px2, yqp b y1ϕ1pebqq ` y1y2Eϕ1 ˝ xi
2τp b ebq

“ b yiy1ϕ1pebq ` y1y2

´

hi´1px2, yq ˝ Eϕ1p b ebq ` Eϕ1 ˝ xi
2τp b ebq

¯

“ b yiy1ϕ1pebq ` y1y2Eϕ1 ˝
`

xi
2τ ` hi´1px2, yq

˘

p b ebq

“ b y1y
iϕ1pebq ` y1y2

´

´Eϕ1 ˝ y1hi´2px1, x2, yqp b ebq ` Eϕ1 ˝ τ ˝ xi
1p b ebq

¯

.

So in bimodule form we have:

rx̃is22 :
`

ϕ1pebq, y1ϕ1pebq, Eϕ1 ˝ τp b ebq
˘

ÞÑ
´

yiϕ1pebq, y1y
iϕ1pebq, Eϕ1 ˝

`

xi
2τ ` hi´1px2, yq

˘

p b ebq
¯

.

Now applying Γ21 we obtain:
ÿ

bPQ

´

yiϕ1pebq, y1y
iϕ1pebq, Eϕ1 ˝

`

xi
2τ ` hi´1px2, yq

˘

p b ebq
¯

˝ p0, fb, 0q

“
´

yiy1ϕ1, y
iϕ1, 0, 0, Eϕ1 ˝

`

xi
2τ ` hi´1px2, yq

˘

¯

P U,

where the last component is computed using:
´

b yiy1ϕ1pebq ` y1y2Eϕ1 ˝
`

xi
2τ ` hi´1px2, yq

˘

p b ebq
¯

˝ Efb

“ yiy1Eϕ1 ` y1y2Eϕ1 ˝
`

xi
2τ ` hi´1px2, yq

˘

p b ebq,

together with the facts that Φ11 “ yiy1ϕ1, Φ21 “ yiϕ1, Φ12 “ Φ22 “ 0, so:

Λ “ τy1pyiy1Eϕ1 ` 0 ˝ τq ´ y2τy1py
iEϕ1 ` 0 ˝ τq ` y1y2Λ

˝

“ yiy1Eϕ1 ` y1y2Λ
˝.
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Taking the sum of the two terms, we conclude that rF̃ x̃i ˝ η̃s22 : FErys Ñ U

is given by:

ϕ1 ÞÑ
`

yiy1ϕ1, y
iϕ1, 0, 0, Eϕ1 ˝ hi´1px2, yq

˘

.

The last component, an element of EndApAE
2qrys, is the same as

`

F 2hi´1px2, yq˝

FηE
˘

pϕ1q. This gives the formulas in the second column of the matrix of

rF̃ x̃i ˝ η̃s22.

5.3. Maps ρ̃λ: isomorphisms. Now we have formulas by components for the
maps σ̃, ε̃ ˝ x̃iF̃ , and F̃ x̃i ˝ η̃ that are used to define the maps ρ̃λ. It remains
to make use of the isomorphisms ρλ determined by σ, ε ˝ xiF , and Fxi ˝ η,
together with these formulas, to show that ρ̃λ are isomorphisms. Note that
ρ̃λ are already known to give morphisms of pC,Cq-bimodules, so it suffices to
show that ρ̃λ are isomorphisms of sets. We will work again by components and
show that rρ̃λsij is an isomorphism of pArys, Arysq-bimodules for i, j P t1, 2u.

We remind the reader of our notational convention that Eλ “ Eeλ for the
idempotents eλ P Aλ of a weight decomposition. Recall that the bimodule E

satisfies ejEei “ δi`2,j ¨ ei`2Eei, and similarly for F but with i ´ 2 instead of
i ` 2. Finally, recall Prop. 4.26 of [McM22] that gives the weight idempotents
for the algebra C.

‚ We have for rρ̃λs11, λ ě 0:

rρ̃λs11 : EFλ`1rys Ñ Aλ`1rys ‘ FEλ`1rys ‘ Aλ`1rys‘λ

given by:

rρ̃λs11 “ ε ‘ σ ‘
λ´1
à

i“0

ε ˝ xiy1F.

‚ We have for rρ̃λs11, λ ď 0:

rρ̃λs11 : EFλ`1rys ‘ Aλ`1rys‘´λ Ñ Aλ`1rys ‘ FEλ`1rys

given by:

rρ̃λs11 “

˜

p ε
σ q ,

´λ´1
ÿ

i“0

´

yi

Fhi´1px,yq˝η

¯

¸

.

Proposition 5.9. The morphism of pArys, Arysq-bimodules rρ̃λs11 is an iso-
morphism for all λ.

Proof. When λ ě 0 and therefore λ ` 1 ě 0, the map:

σ ‘
λ

à

i“0

ε ˝ xiF : EFλ`1rys
„
ÝÑ FEλ`1rys ‘ Aλ`1rys‘λ`1

is just ρλ`1 bk krys. It is an isomorphism because ρλ`1 is an isomorphism.

Claim 5.10. When λ ě 0, the map

σ ‘ ε ‘
λ´1
à

i“0

ε ˝ xiy1F : EFλ`1rys Ñ FEλ`1rys ‘ Aλ`1rys‘λ`1

is also an isomorphism.
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Proof. Let M´y P EndAλ`1rys

`

Aλ`1rys‘λ`1
˘

be the endomorphism with ma-
trix coefficients rM´ys P Matpλ`1qˆpλ`1q pAλ`1rysopq given by 1 on the diago-
nal and ´y on the subdiagonal, and 0 elsewhere. This matrix is invertible,
and M´y is an isomorphism. Observe that:

ε ˝ p´xi´1yF q “ ´y ¨ ε ˝ xi´1F.

Using this we write the map in question as a composition of isomorphisms:

σ ‘ ε ‘
λ´1
à

i“0

ε ˝ xiy1F “

ˆ

1 0
0 M´y

˙

˝

˜

σ ‘
λ

à

i“0

ε ˝ xiF

¸

.

By reordering the first two summands in the codomain, we obtain the map
rρ̃λs11. �

When λ “ 0, the two formulas for rρ̃λs11 agree. Now assume λ ă 0, so
λ ` 1 ď 0 and the map:

(5.6)

˜

σ,

´pλ`1q´1
ÿ

i“0

Fxi ˝ η

¸

: EFλ`1 ‘ Aλ`1rys‘´pλ`1q „
ÝÑ FEλ`1rys

is ρλ`1 bk krys, an isomorphism.

Claim 5.11. When λ ă 0, the map:
˜

σ,

´λ´1
ÿ

i“1

Fhi´1px, yq ˝ η

¸

: EFλ`1rys ‘ Aλ`1rys‘´pλ`1q Ñ FEλ`1rys

is also an isomorphism.

Proof. This time we define an isomorphismMh P EndAλ`1rys

`

Aλ`1rys‘´pλ`1q
˘

with components rMhsii “ 1, rMhsij “ yj´i for j ą i, and rMhsij “ 0 for
j ă i. This is an upper-triangular invertible matrix:

rMhs “

¨

˝

1 y y2 ... y´pλ`1q´1

0 1 y ... y´pλ`1q´2

0 0 1 ... y´pλ`1q´3

... ... ... ... ...
0 0 0 ... 1

˛

‚.

Now observe that Fxiyj ˝ η “ pFxi ˝ ηq ¨ yj. We use this and write:

´λ´1
ÿ

i“1

Fhi´1px, yq ˝ η “
´λ´2
ÿ

i“0

ÿ

j`k“i

Fxj ˝ η ¨ yk

“

˜

´pλ`1q´1
ÿ

i“0

Fxi ˝ η

¸

˝ Mh,

and it follows from this and the isomorphism above the claim that the map
of the claim is an isomorphism. �

By writing out terms, we have:
˜

p ε
σ q ,

´λ´1
ÿ

i“0

´

yi

Fhi´1px,yq˝η

¯

¸

“

ˆ

ε 1 y . . . y´λ´1

σ 0 η . . . Fh´λ´2px, yq ˝ η

˙

.
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Interchanging the first two summands of the domain, we obtain the form:
¨

˝

1
`

ε, y, y2, . . . , y´λ´1
˘

0

ˆ

σ,
´λ´1
ř

i“1

Fhi´1px, yq ˝ η

˙

˛

‚,

which (by the claim) is manifestly an isomorphism. �

‚ We have for rρ̃λs21, λ ě 0:

rρ̃λs21 : Fλ`1rys ‘ FEFλ`1rys Ñ Fλ`1rys ‘ Fλ`1rys ‘ F 2Eλ`1rys ‘ Fλ`1rys‘λ

given by:

rρ̃λs21 “

¨

˚

˚

˚

˚

˝

1 0
0 Fε

0 Fσ
λ´1
À

i“0

xi
λ´1
À

i“0

F pε ˝ xiy1F q

˛

‹

‹

‹

‹

‚

.

‚ We have for rρ̃λs21, λ ď 0:

rρ̃λs21 : Fλ`1rys ‘ FEFλ`1rys ‘ Fλ`1rys‘´λ Ñ Fλ`1rys ‘ Fλ`1rys ‘ F 2Eλ`1rys

given by:

rρ̃λs21 “

¨

˚

˚

˚

˚

˝

1 0 0

0 Fε
´λ´1
ř

i“0

yi

0 Fσ
´λ´1
ř

i“0

F pFhi´1px, yq ˝ ηq

˛

‹

‹

‹

‹

‚

.

Proposition 5.12. The morphism of pArys, Arysq-bimodules rρ̃λs21 is an
isomorphism for all λ.

Proof. When λ ě 0, we have that

Fε ‘ Fσ ‘
λ´1
à

i“0

F pε ˝ xiy1F q : FEFλ`1rys

Ñ Fλ`1rys ‘ F 2Eλ`1rys ‘ Fλ`1rys‘λ

is an isomorphism, using Claim 5.10 and the fact that (horizontal) composi-
tion of the identity functor on F with an isomorphism gives an isomorphism.
Then rρ̃λs21 may be compressed to a lower-triangular 2 ˆ 2 matrix with an
isomorphism in position p2, 2q, so it is an isomorphism.

When λ “ 0, the two formulas for rρ̃λs21 agree. Assume now that λ ă 0,
so the map

˜

Fσ,

´λ´1
ÿ

i“1

F
`

Fhi´1px, yq ˝ η
˘

¸

: FEFλ`1rys ‘ Fλ`1rys‘´pλ`1q Ñ F 2Eλ`1rys
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is an isomorphism using Claim 5.11. Now expand the notation of the map
rρ̃λs21 in the third column:

¨

˚

˚

˚

˚

˝

1 0 0 0

0 Fε 1
´λ´1
ř

i“1

yi

0 Fσ 0
´λ´1
ř

i“1

F
`

Fhi´1px, yq ˝ η
˘

˛

‹

‹

‹

‹

‚

.

After switching the second and third summands of the domain, we obtain
an upper-triangular matrix with isomorphisms on the diagonal, so rρ̃λs21 is
an isomorphism. �

‚ We have for rρ̃λs12, λ ě 0:

rρ̃λs12 : Eλ´1rys ‘ EFEλ´1rys Ñ Eλ´1rys ‘ Eλ´1rys ‘ FE2
λ´1rys ‘ Eλ´1rys‘λ

given by:

rρ̃λs12 “

¨

˚

˚

˚

˚

˝

0 εE

1 y1 ˝ εE

0 σE
λ´1
À

i“0

xi
λ´1
À

i“0

pε ˝ xiy1F qE

˛

‹

‹

‹

‹

‚

.

‚ We have for rρ̃λs12, λ ď 0:

rρ̃λs12 : Eλ´1rys ‘ EFEλ´1rys ‘ Eλ´1rys‘´λ Ñ Eλ´1rys ‘ Eλ´1rys ‘ FE2
λ´1rys

given by:

rρ̃λs12 “

¨

˚

˚

˚

˚

˚

˚

˝

0 εE
´λ´1
ř

i“0

yi

1 y1 ˝ εE
´λ´1
ř

i“0

yiy1

0 σE
´λ´1
ř

i“0

pFhi´1px, yq ˝ ηqE

˛

‹

‹

‹

‹

‹

‹

‚

.

Proposition 5.13. The morphism of pArys, Arysq-bimodules rρ̃λs12 is an
isomorphism for all λ.

Proof. When λ ě 0, we have that

εE ‘ σE ‘
λ´1
à

i“0

pε ˝ xiy1F qE : EFEλ´1rys Ñ Eλ´1rys ‘ FE2
λ´1rys ‘ Eλ´1rys‘λ

is an isomorphism, using Claim 5.10 with E applied on the right. Note that
E applied on the right here is equivalent to λ`1Eλ´1 applied on the right,
and this raises the weight by 2, so we still invoke the isomorphism ρλ`1 for
weight λ ` 1.

We perform some row operations on the matrix of rρ̃λs12. Subtract y1
times the first row from the second to eliminate the coefficient y1 ˝ εE.
Then exchange the first and second rows, then exchange the second and
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third rows, then collapse the second and third into the notation of the
fourth. Obtain:

¨

˝

1 0

0 ‘ 0 ‘
λ´1
À

i“0

xi σE ‘ εE ‘
λ´1
À

i“0

pε ˝ xiy1F qE

˛

‚,

which is upper-triangular with isomorphisms on the diagonal, so the original
matrix for rρ̃λs12 is an isomorphism.

When λ “ 0, the two formulas for rρ̃λs12 agree. Assume now that λ ă 0,
so the map

˜

σE,

´λ´1
ÿ

i“1

`

Fhi´1px, yq ˝ η
˘

E

¸

: EFEλ´1rys ‘ Eλ´1rys‘´pλ`1q Ñ FE2
λ´1rys

is an isomorphism using Claim 5.11. Now expand the notation of the map
rρ̃λs12 in the third column:

rρ̃λs12 “

¨

˚

˚

˚

˚

˚

˚

˝

0 εE 1
´λ´1
ř

i“1

yi

1 y1 ˝ εE y1
´λ´1
ř

i“1

yiy1

0 σE 0
´λ´1
ř

i“1

`

Fhi´1px, yq ˝ η
˘

E

˛

‹

‹

‹

‹

‹

‹

‚

.

Exchange the first and second rows, then the second and third columns,
then collapse the third and fourth columns into the notation of the third,
and obtain:

¨

˚

˚

˚

˚

˚

˚

˝

1 y1

ˆ

y1 ˝ εE,
´λ´1
ř

i“1

yiy1

˙

0 1

ˆ

εE,
´λ´1
ř

i“1

yi
˙

0 0

ˆ

σE,
´λ´1
ř

i“1

`

Fhi´1px, yq ˝ η
˘

E

˙

˛

‹

‹

‹

‹

‹

‹

‚

.

Since this is upper-triangular with isomorphisms on the diagonal, the orig-
inal matrix rρ̃λs12 is an isomorphism. �

‚ We have for rρ̃λs22, λ ě 0:

(5.7) rρ̃λs22 : Aλ´1rys ‘ FEλ´1rys‘2 ‘ FEFEλ´1rys ‘ EFλ´1rys

Ñ FEλ´1rys‘4 ‘ F 2E2
λ´1rys ‘ Aλ´1rys‘λ ‘ FEλ´1rys‘λ
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given by: rρ̃λs22 “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0
0 0 0 FεE 0
η y1 0 0 σ

0 1 0 0 0
0 0 0 FσE 0

λ´1
À

i“0

yi 0 0 0
λ´1
À

i“0

´ε ˝ hi´1px, yqF

λ´1
À

i“0

hi´1px, yq ˝ η
λ´1
À

i“0

xiE
λ´1
À

i“0

Fxi
λ´1
À

i“0

F pε ˝ xiy1F qE Θ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where

Θ “
λ´1
à

i“0

´FEε ˝ F
`

τ ˝ hi´1px1, x2q ´ hi´2px1, x2, yq
˘

F ˝ ηEF.

‚ We have for rρ̃λs22, λ ď 0:

(5.8) rρ̃λs22 : Aλ´1rys ‘ FEλ´1rys‘2 ‘ FEFEλ´1rys ‘ EFλ´1rys

‘ Aλ´1rys‘´λ ‘ FEλ´1rys‘´λ Ñ FEλ´1rys‘4 ‘ F 2E2
λ´1rys

given by: rρ̃λs22 “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0
´λ´1

ř

i“0

Fyi ˝ η
´λ´1

ř

i“0

yiy1

0 0 0 FεE 0
´λ´1

ř

i“0

´Fhi´1px, yq ˝ η
´λ´1

ř

i“0

yi

η y1 0 0 σ 0 0

0 1 0 0 0
´λ´1

ř

i“0

Fxi ˝ η 0

0 0 0 FσE 0 Θ1
´λ´1

ř

i“0

F 2
`

hi´1px2, yq
˘

˝ FηE

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where

Θ1 “
´λ´1
ÿ

i“0

F 2
`

hi´1px1, x2q ˝ τ ´ hi´2px1, x2, yq
˘

˝ η2.

Proposition 5.14. The morphism of pArys, Arysq-bimodules rρ̃λs22 is an
isomorphism for all λ.

Proof. When λ ą 0 and therefore λ ´ 1 ě 0, the map

σ ‘
λ´2
à

i“0

´ε ˝ xiF : EFλ´1rys Ñ FEλ´1rys ‘ Aλ´1rys‘λ´1

is an isomorphism. (The minus sign does not interfere.)

Claim 5.15. When λ ą 0, the map

σ ‘
λ´1
à

i“1

´ε ˝ hi´1px, yqF : EFλ´1rys Ñ FEλ´1rys ‘ Aλ´1rys‘λ´1

is an isomorphism.
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Proof. Define an isomorphism M 1
h P EndAλ´1rys

`

Aλ´1rys‘λ´1
˘

with compo-
nents rM 1

hsii “ 1, rM 1
hsij “ yi´j for i ą j, and rM 1

hsij “ 0 for i ă j. This is
a lower-triangular invertible matrix:

rM 1
hs “

˜ 1 0 0 ... 0
y 1 0 ... 0

y2 y 1 ... 0
... ... ... ... ...

yλ´2 yλ´3 yλ´4 ... 1

¸

.

Now observe that ε ˝ xiyjF “ yj ¨ ε ˝ xiF . Using this, we can write:

λ´1
à

i“1

´ε ˝ hi´1px, yqF “
λ´2
à

i“0

ÿ

j`k“i

yk ¨ p´ε ˝ xjF q

“ M 1
h ˝

˜

λ´2
à

i“0

´ε ˝ xjF

¸

,

and it follows from this and the isomorphism above the claim that the map
of the claim is an isomorphism. �

Now assume λ ą 0 and reorder the summands of the domain and codomain
to permute the rows and columns of the matrix of rρ̃λs22. Let the domain
be given in the order:

FEλ´1rys‘2 ‘ Aλ´1rys ‘ EFλ´1rys ‘ FEFEλ´1rys,

where the first two identical summands appear in the same order as before.
Let the codomain be given in the order:

FEλ´1rys‘2 ‘ Aλ´1rys ‘ FEλ´1rys ‘ Aλ´1rys‘λ´1

‘ F 2E2
λ´1rys ‘ FEλ´1rys ‘ FEλ´1rys‘λ´1,

where the new summand number (numbered left to right) and corresponding
old summand number are given precisely in the following chart:

new: 1 2 3 4 5 6 7 . . . λ ` 3 λ ` 4 λ ` 5 λ ` 6 . . . 2λ ` 5
old: 4 1 6 3 7 8 9 . . . λ ` 5 2 5 λ ` 6 . . . 2λ ` 5.

Writing the matrix of rρ̃λs22 for λ ą 0, with columns and rows changed by
the above permutations, we obtain:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
y1 0 η σ 0

0 0
λ´1
À

i“1

yi
λ´1
À

i“1

´ε ˝ hi´1px, yqF 0

0 0 0 0 FεE

0 0 0 0 FσE
λ´1
À

i“0

xiE
λ´1
À

i“0

Fxi
λ´1
À

i“0

hi´1px, yq ˝ η Θ
λ´1
À

i“0

F pε ˝ xiy1F qE

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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After compressing the notation of rows 4-5 and 6-8 of this matrix, we obtain
a lower-triangular matrix. The last two diagonal entries are:

¨

˝

σ
λ´1
À

i“1

´ε ˝ hi´1px, yqF

˛

‚,

which is an isomorphism by the claim, and:
˜

FεE
FσE

λ´1
À

i“0

F pε˝xiy1F qE

¸

: FEFEλ´1rys Ñ FEλ´1rys ‘ F 2E2
λ´1rys ‘ FEλ´1rys‘λ,

which is an isomorphism for λ ą 0, and therefore for λ`1 ě 0, using Claim
5.10 with F applied on the left and E on the right.

When λ “ 0 the matrix of rρ̃λs22 is given by removing rows 3, 5–pλ ` 3q,
and pλ ` 6q–p2λ ` 5q:

¨

˚

˚

˚

˚

˝

1 0 0 0 0
0 1 0 0 0
y1 0 η σ 0
0 0 0 0 FεE

0 0 0 0 FσE

˛

‹

‹

‹

‹

‚

.

When λ “ 0 we also have isomorphisms:

pη, σq : EFλ´1rys ‘ Arysλ´1
„
ÝÑ FEλ´1rys

and

p FεE
FσE q : F

`

FEλ`1

˘

Erys
„
ÝÑ Fλ`1Erys ‘ F

`

EFλ`1

˘

Erys,

so we see that again the matrix can be written as a lower-triangular matrix
with invertible diagonal entries.

Finally, assume λ ă 0. We have an isomorphism:
˜

σ,

´λ
ÿ

i“0

Fxi ˝ η

¸

: EFλ´1rys ‘ Aλ´1rys‘´pλ´1q „
ÝÑ FEλ´1rys,

which is the isomorphism ρλ´1 bk krys. There is a final claim to check:

Claim 5.16. When λ ă 0, the map
˜

σ, η,

´λ´1
ÿ

i“0

´Fxiy1 ˝ η

¸

: EFλ´1rys ‘ Aλ´1rys‘´pλ´1q Ñ FEλ´1rys

is an isomorphism.

Proof. Define an isomorphismM 1
´y P EndAλ´1rys

`

Aλ´1rys‘´pλ´1q
˘

with com-
ponents rMhsij given by 1 along the diagonal and ´y along the subdiagonal.
This is a lower-triangular invertible matrix. We write the map in question
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as a composition of isomorphisms:

˜

σ, η,

´λ´1
ÿ

i“0

´Fxiy1 ˝ η

¸

“

˜

σ, η,

´λ
ÿ

i“1

Fxi ˝ η

¸

˝

¨

˝

IdEFλ´1rys 0 0
0 IdAλ´1rys 0
0 0 ´IdAλ´1rys‘´λ

˛

‚˝

ˆ

IdEFλ´1rys 0
0 M 1

´y

˙

.

�

Now let W be the endomorphism of the codomain of rρ̃λs22 given by the
invertible matrix:

rW s “

˜

1 0 0 0 0
0 1 0 0 0
0 0 1 ´y1 0
0 0 0 1 0
0 0 0 0 1

¸

.

We show that rW s ¨ rρ̃λs22 is equivalent to a lower-triangular matrix after
giving a suitable permutation of the domain and codomain summands. Let
the domain be given in the order:

EFλ´1rys‘Aλ´1rys´pλ´1q‘FEλ´1rys‘FEFEλ´1rys‘FEλ´1rys´pλ`1q‘FEλ´1rys‘2,

where the change of summand numbers is given by the following chart:

new: 1 2 3 4 . . . ´λ ` 2 ´λ ` 3 ´λ ` 4
old: 5 1 6 7 . . . ´λ ` 5 2 4

new: ´λ ` 5 ´λ ` 6 . . . ´2λ ` 4 ´2λ ` 5 ´2λ ` 6
old: ´λ ` 7 ´λ ` 8 . . . ´2λ ` 5 ´λ ` 6 3.

Let the codomain be given in the order:

FEλ´1rys‘4 ‘ F 2E2
λ´1rys,

where the change of summand numbers is given by the following chart:

new: 1 2 3 4 5
old: 3 4 5 2 1.

The matrix of rW s ¨ rρ̃λs22 for λ ă 0 agrees with that for rρ̃λs22 except in
the third row, where it is:

ˆ

η 0 0 0 σ
´λ´1
ř

i“0

´Fxiy1 ˝ η 0 0

˙

.

Writing now the matrix of rW s ¨ rρ̃λs22 with columns and rows changed by
the above permutations, and compressing the notation for some columns,



TENSOR 2-PRODUCT FOR sl2: EXTENSIONS TO THE NEGATIVE HALF 59

we obtain:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

σ, η,
´λ´1

ř

i“0

´Fxiy1 ˝ η

˙

0 p0, 0q 0 0
ˆ

0, 0,
´λ´1

ř

i“0

Fxi ˝ η

˙

1 p0, 0q 0 0

p0, 0,Θ1q 0

ˆ

FσE,
´λ´1

ř

i“1

F 2hi´1px2, yq ˝ FηE

˙

0 0
ˆ

0, 0,
´λ´1

ř

i“0

´Fhi´1px, yq ˝ η

˙

0

ˆ

FεE,
´λ´1

ř

i“1

yi
˙

1 0
ˆ

0, 0,
´λ´1

ř

i“0

Fyi ˝ η

˙

0

ˆ

0,
´λ´1

ř

i“1

yiy1

˙

y1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The upper left map is an isomorphism by the Claim proved above. The
middle diagonal map is an isomorphism because it is the isomorphism of
Claim 5.11 with F applied on the left and E on the right. So the matrix is
lower-triangular with isomorphisms along the diagonal. �
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[CR08] Joseph Chuang and Raphaël Rouquier, Derived equivalences for symmetric groups

and sl2-categorification, Annals of Mathematics 167 (2008), no. 1, 245–298.
[FKS07] Igor Frenkel, Mikhail Khovanov, and Catharina Stroppel, A categorification of

finite-dimensional irreducible representations of quantum sl2 and their tensor

products, Selecta Mathematica 12 (2007), no. 3-4, 379–431.
[KL09] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorifi-

cation of quantum groups I, Representation Theory 13 (2009), no. 14, 309–347.
[KL11] , A diagrammatic approach to categorification of quantum groups II, Trans-

actions of the American Mathematical Society 363 (2011), no. 5, 2685–2700.
[Lau10] Aaron D. Lauda, A categorification of quantum slp2q, Advances in Mathematics

225 (2010), no. 6, 3327–3424.
[McM22] Matthew McMillan, A tensor 2-product of 2-representations of slp2q`, preprint

arXiv:2209.06782, 50pp. (2022).
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