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TENSOR 2-PRODUCT FOR sl,: EXTENSIONS TO THE
NEGATIVE HALF

MATTHEW MCMILLAN

ABSTRACT. In a recent paper, the author defined an operation of tensor
product for a large class of 2-representations of U™, the positive half of the
2-category associated to sl;. In this paper, we prove that the operation
extends to give an operation of tensor product for 2-representations of the
full 2-category U: when the inputs are 2-representations of the full U, the
2-product is also a 2-representation of the full /. As in the previous paper,
the 2-product is given for a simple 2-representation £(1) and an abelian
2-representation V taken from the 2-category of algebras.

This is the first construction of an operation of tensor product for higher
representations of a full Lie algebra in the abelian setting.
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1. INTRODUCTION

1.1. Background and motivation. This paper is the second part in a series
by the author, starting with [McM22], about an abelian tensor 2-product op-

eration for 2-representations of Lie algebras. This 2-product is designed with
1
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a view to the program by Crane and Frenkel [CF94] seeking a higher repre-
sentation theory in order to upgrade known 3d topological invariants, such as
the TQFT of Witten-Reshetikhin-Turaev [Wit89, RT91], to 4d invariants.

Prior work in this program involved building categories with Grothendieck
groups equal to various representations, including specific tensor products,
and these categories have been used to define homological link invariants.
This includes early work by Bernstein-Frenkel-Khovanov [BFK99] and later
Stroppel and others [Str05, FKS07, MS09, SS15, Sus07] using category O of g,
for tensor products of simples in type A, and work by Webster [Web17, Web16]
using diagrammatic methods for tensor products of simples in other types. We
expect these categories to be equivalent (in an appropriate sense) to the tensor
2-products of 2-representations produced by the operation studied in this paper
when the factors are simple 2-representations.

The received notion of 2-representation was introduced and developed in
[CRO8, Laul0, Rou08, KL09, KL11]. A very general definition of tensor 2-
product operation for 2-representations of Kac-Moody algebras in the setting
of A.-algebras is expected from Rouquier in [Rou]. This general definition
does not come with explicit constructions.

In [McM22], the present author gave an explicit abelian model for the tensor
2-product £(1) ® V in the case of sIJ. This is the construction of an algebra,
bimodule, and bimodule maps producing a 2-action of U™, the positive half of
the 2-category corresponding to the enveloping algebra of sly. Here £(1) is a
certain simple 2-representation and V is a given abelian 2-representation taken
from the 2-category of algebras and satisfying two additional hypotheses.

A related tensor 2-product for the case of gl(1|1)*, which does not involve
homotopical complications that are present for sly (due to the absence of
endomorphisms = € End(F) in the relevant Hecke algebra), was applied by
Manion-Rouquier in [MR20] to describe Heegaard-Floer theory for surfaces.
Their construction has not been extended to the full gl(1[1).

It is not clear whether a 2-representation theory for s[5 could suffice to build
a TQFT, and it is natural to ask whether the construction in [McM22] can be
extended to sly. The main result of this paper is a proof that it can indeed
be extended. It gives, then, the first case of a 2-product operation in the
abelian setting for a full Lie algebra or super-Lie algebra, while [McM22] gave
an operation for a half Lie algebra (in an abelian setting), whereas [MR20]
used an operation for a half super-Lie algebra (in a dg-setting).

1.2. Result. Let U be the 2-category associated with the enveloping algebra
of sly, as given in Rouquier [Rou08, §4.1.3] or Vera [Ver20, §3.2]. Let U™ be
the monoidal category associated to the positive half of the enveloping algebra
of sly. As in [McM22, §1.2], we work with 2-representations in the abelian
2-category of algebras, bimodules, and bimodule maps.

Let A be a k-algebra for a field k, let E be an (A, A)-bimodule, and let
r € End(F), 7 € End(E?) be bimodule endomorphisms satisfying the nil affine
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Hecke relations:
=0,
(1.1) TEoEToTE = EToTE 0o E'T,
TobBr=xFor+1, Exror =702k + 1.

(The notation zF indicates the endomorphism = ® Idg in End(E?), etc.) The
data (A, E,z,T) determines a 2-representation of U™.

Now assume that (A, E,z,7) has a weight decomposition A = [],.; 4\
(cf. [McM22, §4.3.1]). The data (A, E, x, T) extends to determine a 2-represen-
tation of the full 2-category & when the functor £ ®4 — admits a right adjoint
functor F' (with unit 1 and counit ) such that the “commutator” maps py
(determined by x, T, n, €; see §2.2 below) are isomorphisms in each weight
VA

A simple 2-representation £(1) of U that categorifies the fundamental repre-
sentation L(1) of sl; may be given by the following data. Let the k-algebra be
kly]+1xk[y]-1 (decomposed into weight algebras), and the triple be (k[y], v, 0).
Let z act by multiplication by y. Let y € k[y]_1 act on k[y] on the right by
multiplication, and y € k[y],1 act by zero; swap them for the left action.

Let P, = k[z1,...,x,] be the polynomial algebra. Then P, acts on E" with
x; € P, acting by the endomorphism E" ‘xE*!,

Theorem (Main result). Suppose (A, E, x,T) gives the data of a 2-representation

V of UT such that V has a weight decomposition. Define the left-dual (A, A)-

bimodule F' = Homa(aE, A). Suppose E has the following properties:

o 4 FE is finitely generated and projective, so (E®a—, F®4—) is an adjunction
where the unit n and counit € arise from the duality pairing,

o E™ is free as a P,-module,

e I/ and F are locally nilpotent,

o The maps py determined by the given data are isomorphisms for each \ € Z.

These properties imply that (A, E, F,x,T,n,¢) determines an integrable

2-representation of U.

Now let C' be the k-algebra, E the (C,C)-bimodule, and & and 7 the bimodule

endomorphisms constructed in [McM22]. Let F = Home(cE, C). Then:

e AF is finitely generated and projective, so (E @c —, F @c —) is an
adjunction with unit 1 and counit € arising from the duality pairing,

e E and F are locally nilpotent,

e The maps py determined by the given data are isomorphisms, so:

o (C,E,F,x,7,1,&) determines an integrable 2-representation of U.

The data (C, E,#,7) determines a 2-representation of U* that we inter-
preted in [McM22] as the result £(1) @ V of a 2-product operation (with the
factors considered as 2-representations of U*). One reason to interpret the
structure in this way was that it results from a categorification of the Hopf co-
product formula. Another reason was that it recovers the expected structures
in some known cases. For details, see [McM22] in §1.3, §1.4, as well as in Re-
mark 3.4 about the effect of E” and thus F on the Grothendieck group. Since
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the additional components F, 7, and & are fully determined by (C, E, #, 7),
in this article we interpret the 2-representation determined by the combined
data (C,E, F,z,7,7,€) as the result £(1) ® V of a 2-product operation with
the factors considered as 2-representations of .

We emphasize that for an integrable 2-representation of U™ given by the
data (A, E,x, ), the fact that the data determines a 2-representation of the
full 2-category U is equivalent to the data having a property: namely that 4 F
is f.g. projective, and the commutator maps p, determined by the data are
isomorphisms. When this holds, then (according to the theorem) the maps gy
of the product are also isomorphisms. So the new data (C,E,i’,f‘) inherits
the property of determining an action of the full U.

1.3. Outline summary. The paper is organized as follows:

e In §2 we introduce the relevant background theory for extensions of 2-
representations of U™ to the full 2-category Y. This section builds on the
background theory and definitions of [McM22]. We include a discussion of
the adjunction, the commutator maps p,, and the condition of integrability
as it relates to our product construction.

e In §3 we define and study important bimodules, giving concrete algebraic
models for them in the manner of §3.2 of [McM22].

e In §4 we consider the left dual to £, namely F = Homg(cE, C), and we
show how to describe it concretely by using the B side of the equivalence
described in §3.3.2 of [McM22].

e In §5.1 we study the tensor products £ ®c E and E ®¢ F and F ®¢ E,
and describe their structure as (A[y], A[y])-bimodules. In §5.2 we compute
explicit formulas for gy in terms of the structures found in §5.1. In §5.3 we
use the formulas from §5.2 to show that each p, is an isomorphism.

1.4. Acknowledgments. I thank Raphaél Rouquier for advice and encour-
agement during this project. This work was supported by the NSF through
grant DMS-1702305.

2. BACKGROUND: EXTENDING U* ACTIONS TO U ACTIONS

2.1. 2-Representations of U/. We begin with a description of a 2-represen-
tation of the full 2-category U associated to the Lie algebra sl,. The 2-category
U that we mean is defined in §4.1.3 of [Rou08|, but with 7 replaced by —7 in
the Hecke relations. We do not repeat that definition here since we work with
the concrete data of 2-representations and not with the 2-category U itself.

In [McM22], a 2-representation was defined as a strict monoidal functor from
U™ to amonoidal category of the form Bimy(A), which is defined for a k-algebra
A as follows: the objects of Bimy(A) are (A, A)-bimodules, and the morphisms
of Bimy(A) are bimodule maps. The monoidal structure on Bimy(A) is given by
tensor product of bimodules over A. This monoidal category Bimg(A) may also
be interpreted as a 2-category with a single object A, where the 1-morphisms
are given by tensor product with (A, A)-bimodules, and the 2-morphisms are
bimodule maps.
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A 2-representation of the full ¢/ is defined in terms of weights (see Def. 4.25
of [McM22]). When A is provided with a weight decomposition A = [ [, Ax,
then the 2-category Bimy(A) with single object A may be expanded to a 2-
category with objects given by the weight algebras Ay, morphisms given by
(A, Ay)-bimodules, and 2-morphisms given by bimodule maps. With this
interpretation, a 2-representation of U/ may be described as a strict 2-functor
U — Bimy(A) given on objects by 1, — A,.

According to Prop. 2.4 of [McM22], a 2-representation of U™ in Bimy(A)
is equivalent to the data of a k-algebra A together with a bimodule 44 and
bimodule maps = € End(E), 7 € End(E?) satisfying relations (1.1). This paper
will rely on the following analogue of that proposition:

Proposition 2.1. The data of a 2-representationUd — Bimy(A) for a k-algebra
A =[]z Ax consists of bimodules sE 4, aFa (having weights +2 and —2), the
unit n and counit € of an adjunction (E, F), and bimodule maps x € End(E),
7 € End(E?) that satisfy relations (1.1), all such that py (defined below in
terms of x, T, , €) is an isomorphism for each \.

(Bimodules E, F' are said to have weight +2 and —2, respectively, when
6jE6i = 62'_;,_27]' : 6,’+2E6i and 6erz' = 5i—2,j : 6i—2F6i-)

In this paper, a symbol V is used sometimes to denote a 2-representation of
U™, and sometimes to denote the extension of the former to a 2-representation
of U. This is an abuse of notation because the first V is a monoidal category,
and the second V is a 2-category. This abuse is justifiable when both types of
category are determined by the same data.

2.2. Commutator morphisms. Here we define the commutator morphisms.
Assume we are given the data of a k-algebra A, bimodules 4E4, 4F4 which
determine endofunctors of A-mod by tensor product on the left, the unit n and
counit € of an adjunction (£, F'), and endofunctors = and 7 satisfying (1.1).
Assume that A has a weight decomposition A = [[,., A\, and E and F have
weights +2 and —2. Let us use the notation B\ = E-Ay and ,E\ = A,-E-A,,
so B = EB/M wE>. In this paper we also use a convention that ‘@’ and ‘)’
denote the components of a map to and from a direct sum, respectively.
We define 0 : EF — F'E by:

o = (FEs)o (FrF) o (nEF) : EF — FE.

For \ € Z~y we define:

A1
(2.1) pr=0@®Peoa’'F: EF\ - FE\,® A,
i=0
and for \ € Z<q:
e
(22) Py = <O’, Z FLL’ZOT]) ZEF)\@A(;F\)f)‘—)FE)\.
i=0

(The summation terms are neglected when A = 0.)
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2.3. Conventions. We adopt the conventions of [McM22], so the reader may
consult §2.3 of that text for additional details. Assume we are given data
(A, E,z,7) determining a 2-representation V' of U*. Assume that 4 F is
f.g. projective and that E" is free as a P,-module.

The construction of the product £(1) ®) V in [McM22] makes use of the
(Aly], Aly])-bimodule E|y], and the endomorphism = —y € End(E[y]). Write
E, for the quotient Ely]/(z — y)E[y|, and 7 : Ely] — E, for its projection.

Concatenation of the symbols for bimodules indicates tensor product over
some algebra that is determined by context. Sometimes this algebra could be
either A or A[y], so we stipulate that if the expression for a bimodule contains
“y’, it will be understood as an (A[y], A[y])-bimodule, and if the expression
lacks ‘y’, it will be understood as an A-module. We suppress isomorphisms
such as:

ElylE, = Ely] ®apy E, — E®a E, = EE,.

Extend z to an element of End(E[y]) by z : ey™ — z(e)y™ and 7 to
End(E?[y]) by 7 : eey™ — 7(ee)y". When writing formulas for morphisms
we often write an arbitrary element of E|y] with the single letter ‘e’ and an
arbitrary element of E?[y] with the doubled symbol ‘ee’ (which is not assumed
to be a simple tensor).

We make use of the notation y; = z; — y. Here y; indicates (E7zE"™" —y)
for some 7, and context will determine the value of j.

As in §2.3 of [McM22], let s € End(E?) be the bimodule map given by
s =710 (x; —x9) — Id, and extended to E?[y] as x and 7 are extended. Note
that s descends to define maps of (A[y], A[y])-bimodules s : E,E — EFE, and
s: FE, — E,E such that s? descends to Id.

2.4. Adding a dual. Every bimodule 4 F 4 has left- and right-dual bimodules,

E = HOIIlA(AE, A),
EY = HOIIIA(EA,A),

respectively.

Now, when 4F is f.g. projective, the canonical morphism YEF ®4 E —
Hom4(4F, E) is an isomorphism of bimodules. More generally, the canoni-
cal morphism of functors YE ®4 — — Homu(4FE, —) is an isomorphism. In
this situation, the endofunctor YE ®4 — of the category A-mod is right ad-
joint to the endofunctor E' ®4 — of the same category. The triple (YE,n,¢)
gives the right-dual object for E in the monoidal category Bimy(A). Here
e: E®sYE — A is given by evaluation, and n : A - YE®a F is given via
the isomorphism YE ® 4 F — Homy(4F, E) by the right A-action whereby
n(a) : e — e.a. (Note that we say VE is the left-dual bimodule, even though
it gives the right-dual object.)

Conversely, assume that (F ®4 —, YF ®4 —) is an adjoint pair for some
bimodule 4E4. The adjunction gives equivalences of functors:

HOIIIA(AE, —) = HOHIA(AA, Yl ®A —) ~ VE ®A -,
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so all three are both right- and left-exact functors. So 4 F is projective. Fur-
thermore, these functors commute with infinite direct sums, so 4 F is finitely
generated as well.

In this paper we consider 2-representations for which the image of F in
Bimy(A), i.e. the bimodule 4Fl4, is identically the left-dual bimodule VE.
There is no loss of generality because any 2-representation of U in Bimy(A)
is equivalent to one of these. (For any 2-representation in Bimg(A), the end-
ofunctor 4F ®4 — of A-mod is right adjoint to 4F ®4 —, and is therefore
unique up to unique isomorphism.) A 2-representation of U given by the data
(A, E,F,z,7,1m,¢) in Bim(A) is said to extend a 2-representation (A, E,x, T)
of UT when F' = VE and 7, € arise from the duality.

It was a hypothesis of the main theorem of [McM22| that 4F is f.g. pro-
jective. This condition was needed in order to show that E’X was a perfect
complex (for example). In light of the above, we see that the existence of an
extension of the 2-representation of U™ to a 2-representation of U in Bim(A)
also necessitates that hypothesis.

The following lemma is a consequence of the foregoing discussion.

Lemma 2.2. Suppose the data (A, E,z,7T) determines a 2-representation of
U in Bimy(A) having a weight decomposition. This data extends to determine
a 2-representation of U, with ' = VE, if and only if o F is f.g. projective and
the commutator morphisms py (determined by x, T, n, €) are isomorphisms.

In [McM22] the author defined the data (C, E, &, 7) of a product 2-represen-
tation of U" in terms of given data (A, E, x, T) satlsfymg some conditions. In
that paper it was seen that ¢F is f.g. projective, and it follows that F' = VE
is right adjoint to £. In this paper we aim to show that (C,E, F,&,7,7,¢)
determines a 2-representation of /. Our argument uses the above Lemma: it
will suffice to show that the commutator morphisms p, are isomorphisms.

2.5. Integrability. In the literature, a 2-representation is typically defined in
terms of weight categories Cy and functors £ and F' between them, whereas we
have framed our results entirely in terms of bimodules £ and F. One reason
for this is that a certain pair of bimodules may determine several functors (by
the operation of tensoring on the left) that act on several reasonable categories
of modules. The most important ones are A-mod and A-proj.

The distinction between A-mod and A-proj interacts with our results and
the hypothesis of integrability in an interesting way. This interaction is medi-
ated by the property of “second adjunction” that a 2-representation of U may
possess. We explain this next. Note that some authors include the second
adjunction in their definition of a 2-representation, and for them, this discus-
sion will be of minor significance. It may be interesting for them to observe,
though, that in our construction of tensor product, the hypothesis of integra-
bility passes from the factors to the product quite easily, while it is not clear
that a second adjunction alone passes from the factors to the product at all.

Every 2-representation of U given with functors £ and F comes with one
adjunction (F, F'), and with the data of a “candidate” unit and counit pair
for a second adjunction (F, F'). When the 2-representation acts on a category
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A-mod and F and F' are given by tensoring with bimodules, the first adjunc-
tion implies that 4 F is f.g. projective. In this case, the upper half U™ also
acts on the smaller category A-proj. If the 2-representation is assumed to be
integrable, and the full i/ acts, i.e. the p, are isomorphisms, then by Theorem
5.16 of [Rou08] the given candidates do provide a second adjunction (F, E).
This adjunction implies that 4 F' is also f.g. projective, and now the full
action may be restricted to A-proj.

Given only the first adjunction with an action of U™, so 4 F is f.g. projective,
together with the hypothesis that E" is free over P,, we can form the 2-
representation of U+ called £(1) @V in [McM22]. In that paper it was shown
that o F is f.g. projective, so it may be interpreted either in an action on C-mod
or else in an action restricted to C-proj. Given also a second adjunction (VE, E)
determining an action of the full ¢, we know that U acts on A-proj through
E and YE in the 2-representation V but we are not (currently) able to show
from this alone that U acts on C-proj through E and YE, since we do not
know that VE is f.g. projective.

Given the first adjunction (E,YFE) and also the hypothesis of integrability
of an action of the full #, we know that there is a second adjunction (VE, E).
Now the hypothesis of integrability itself passes to the product bimodule E.
(Prop. 4.24 of [McM22].) Given that we can also show that the product maps
P are isomorphisms (the main effort of this paper), so we have an action of the
full U on C-mod, it follows from integrability that there is a second adjunction
(VE, E) for the product. This implies, in turn, that ¢VE is f.g. projective and
that the full ¢/ action may be restricted to the category C-proj.

To summarize, second adjunctions enable restriction of the full & action to
the subcategories A-proj and C-proj. The existence of a second adjunction
(VE,E) in V is not enough (with the arguments below) to guarantee a second
adjunction (VE E) in £(1)® V. But integrability of V is enough to guarantee
integrability of L(1) ® V, as well as to give both second adjunctions (VE, E)
and (VE, E).

2.6. Background: 2-product for U*. We recall some definitions and results
from [McM22]. The reader is encouraged to review that paper and to consult
it for additional details and conventions.

Definition 2.3 (Def. 3.1 of [McM22]). Let B be the k-algebra:

b= (Ac[)y] A%]) |

The algebra structure of B is given by matrix multiplication, where products
involving generators in [B];2 are defined using the bimodule structure of E,,.

Modules over B are naturally written in terms of components. A left B-
module is given by a pair (%; ) of left A[y]-modules, together with a morphism
a: By Qapy) Mo — M, of left Aly]-modules specifying the action of £, gener-
ators; analogously a right B-module is given by a pair ( M N2 ) and morphism
5 : Nl ®A[y] Ey - N2-
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A bimodule consists of a 2 x 2 matrix with additional data. The direct
sum of coefficients in the top row of such a matrix gives the top component of
the pair corresponding to the left-module structure, and the bottom row gives
the bottom component of the pair; similarly the columns give the components
of the right-module structure. The additional data consists of o determining
‘vertical’ maps and [ giving ‘horizontal’ maps. A matrix together with maps «
and 3 determines a bimodule only if the left and right actions of E, specified by
a and B commute. (In this situation the vertical and horizontal maps respect
the decompositions into horizontal and vertical components, respectively.)

A complex of left B-modules is equivalent to a pair of complexes of A[y]-
modules and a map of complexes «; analogously for right B-modules and for
bimodules. Complexes in this paper have a cohomological grading.

Definition 2.4 (Def. 3.2 of [McM22]). Let E’ be the complex of (B, B)-
bimodules that is nonzero in degrees 0 and 1, where it is given by:

g (V) 2 G )

The left action of a generator in £, B is specified on vertical columns of
E{ by the maps 0: £, ® 0 — E[y| and s : E,E[y| — E[y|E,. The left action
on FJ is specified by the identity map on vertical columns. The right action on
Ej is specified by the identity on the top row, and 0 on the bottom row. The
right action on Ej is specified by the identity on both rows. The differential

i /o : : m why
Ey — £ is given componentwise by (0 - )

Lemma 2.5 (Lemma 3.3 of [McM22]). Let M = ((}1t),a) be a complez of
left B-modules (written as a pair of complexes), where o : Ey @apy) My — M,
specifies the action for generators in E,. The functor E' @ — on M may be
given by:
wMy
(<M1> a) = | | ElylMy © E,Mi[-1] (E[y]a osMy, 0 )
My )’ o My ’ 0 ]dEyM1

Ely|My @ My[-1]

Here the top and bottom rows express cocones of the maps My and o o wMs.

Definition 2.6 (Def. 3.5 of [McM22]). Let X be the following complex of
B-modules:

A , T,

where X lies in degree 0 and X5 in degrees 0 and 1. The E, action on Xj is
given by E, ®ap, Aly] = E,, e®1— e.

Proposition 2.7 (Prop. 3.6 of [McM22]). The complex X is strictly per-
fect and generates per B, the full subcategory of D°(B) of complexes quasi-
isomorphic to strictly perfect complezes.

Next we recall an important series of bimodules introduced in [McM22]:

Definition 2.8 (Def. 3.16 of [McM22]). Let G,, denote Hom (g (X2, B X7).
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Note that the quotient projection to the derived category is an isomorphism
G, — Homps(p) (X2, E"X1) because X is strictly perfect. Note also that G4
has an algebra structure given by composition of endomorphisms.

Proposition 2.9 (Props. 3.18, 3.20, and 3.22 together with 3.27 and 3.28
of [McM22]). There are isomorphisms of (Aly], Aly])-bimodules G1 — G,
G2 — Gg, Gg = G3, where:

G, = <(6, ©) € A%®[y] @EndA<AE)[y]'
o =_0+1y1¢

for some 1 € Enda(uF) [y]>,

Gy - << 2,€) € E[y]®? @ Hom (£, E2>[y]\

€1 — €2 = y1€/
§=_®e + 125
& =7(®e) + &

for some €' € Ely] and £ € Hom4 (4 F, Ez)[y]>,

G = ((eer,cen,cea, ) & BD1™ @ Homa(uF. E*)]

eep — eey = ygee’
ees — eey = yiee”
Ty1(ees) — ee; = yree”,
X = -®eer +ysxa
X1 = TE(C®ees) + y2x}
X1 = EToTE(_®ee3) + y1}"

for some ee®™ € E*[y] and x" € Homa(4F, E3)[y]>

Here _.0 € Enda(4F)[y] is the morphism sending e to e.f, and -® e; €
Homu (4 F, E?)[y] sends e to e ® ey, and _® ee; sends e to e ® eey. Note that
e, &, and & are uniquely determined by (e1,es,§), and e€’, ee”, ee” and xi,
X1, X" are uniquely determined by (eeq, eea, ees, X).

We rely on this proposition in what follows and do not distinguish between
G; and G; for i = 1,2,3. For example, we may write (6, ) € G;. (We also
write (6, ) for the element of G{°.) The interpretations of elements (6, ¢)
etc. as explicit homomorphisms of complexes are given by Props. 3.18, 3.20,
and 3.22 of [McM22].

Also recall the two complexes of B-modules:
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Definition 2.10. Let R, X}, € B-cplx be given by:

R (E?[y] {oker), EE@EE)
0— Ely] @ Ely]
r_ Ty E?[y] N E,E
2 ( 0 — E[y])’

both lying in degrees 0 and 1 (cohomological grading), and the E, action on
R specified by 0 and the canonical map

E,Q(Ely]® Ely]) > E,E® E,E,
and on X specified by 0 and Idg, gpy).
Now recall the following three lemmas:

Lemma 2.11 (Lem. 3.11 of [McM22]). We have that X} is a finite direct sum
of summands of X.

The nil-affine Hecke algebra has the structure of an n! x n! matrix alge-
bra over the symmetric polynomials P5» (cf. Prop. 3.4 of [Rou08]). Among
other things, this gives a decomposition of E™ into submodules called ‘divided
powers’:

n copies
A

S EM . @B,
We will make use of this for n = 2, where the isomorphism is given (by
extension to left A[y]-modules) explicitly as follows:

(2.3) E*[y] (T—;)> T E*[y] @ ryn B[y ].

The inverse of this map is (¢, —y»), where ¢ : Ty, E?*[y] — E?[y] is the in-
clusion. The elements 7y; and —ys7 are orthogonal idempotents summing
to Id, and 7 gives an isomorphism from —y»7E?[y] to 7y E*[y]. (To check
this: 7(—yoT)ee = Tee = Tyi(Tee) € Ty E?[y], 7(—y27)y1ee = Tyiee, and if
T(—yo7)ee = 0 then Tee = 0 so —ys7ee = 0.)

Lemma 2.12 (Lem. 3.12 of [McM22]). There is an isomorphism R — X,®X)
in B-cplz given by the above isomorphism on the degree 0 term of the top row,
and the identity on all other terms. So R is a finite direct sum of summands
of X. In particular, R is strictly perfect.

Lemma 2.13 (Lem. 3.13 of [McM22]). There is a quasi-isomorphism R o,
E'Xy determined by Idgzp, on the degree 0 term of the top row and (% ,%1)
on the degree 1 term of the bottom row.

We recall, finally, the main construction from [McM22]. That construction
was given using an equivalence:

~

per B per C,

Homp(X,—)
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where C' = Endgsp)(X1 @ X3)°®. The algebra C' can be presented using a
matrix of (A[y], A[y])-bimodules (see Prop. 3.31 and Lem. 3.34 of [McM22)):

[c] > ( End(X;)°? Hom(XlaXz)) =, (A[y] ylE[y]).
Hom(Xs, X;) End(Xj)°P Fly] G
The functor £ ® — on per B translates to the functor & ® — on per C, with
& = Homg(X,FE'X), and there is a quasi-isomorphism F X% & with £ =
Hom o5y (X, E'X). This E is a (C,C)-bimodule. It can be presented as a
matrix of (Aly], A[y])-bimodules (see §3.4.2 of [McM22]):

(2'4) [E] ~ (ylgl[y] yly2GE22[y]>'

Using the derived equivalence we also have an isomorphism F’=E®c-E >
Hom e () (X, E”X), which yields a matrix presentation:

G Gs

Lastly, in §4 of [McM22], the author defined (C,C)-bimodule endomor-
phisms Z and 7. They are given componentwise by:

~ - €T B
(2.6) i © [E] by ((W B )

y0,zop) (yei,rez,xE0f)

(2.5) (E?] = <y1y2E2[y] y1y2y3E3[y])‘

~ ~ T )
(2'7) [T] O [E2] by: ((61,6276)'—> (ee1,ee2,ee3,x)—> >

(e/ e/, 7o)  (e€’,ee’,T(ees), T Eox)

In the last row, €’ is determined by e; — ey = y1€/, and ee’ is determined by
ee; — eey = yoee'. (See Prop. 2.9 above.) In [McM22] it was established that
these endomorphisms satisfy the nil-affine Hecke relations (1.1).

3. MORE BIMODULES
We add a new series of bimodules for this paper:
Definition 3.1. Let L, denote Hompyp) (£ X1, X3).

Note that L; = G;. We will only need L; and L, in what follows. Observe
that L, has a right G7P-module structure given by post-composition. We now
study Ly and provide it with the structure of a (G7°, G{?)-bimodule.

We need an additional feature of the complex R:

Lemma 3.2. The complex R carries a right action of the algebra G5°, where
(0,) € GSP acts by post-composing with Ep € End(E?[y]) on the top row of
Ry, namely E*[y], and by the matriz

0
o_ (%
(801 9)

on the bottom row of Ry, namely E[y]®?, and by E,® on the top row of Ry,
namely E,E®*. Through the quasi-isomorphism of Lemma 2.13, this action
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induces the canonical action of G* = End g (X2)%® on E' X,y given by func-
toriality of E'.

Proof. First we check that the right action of (6, ¢) described in the lemma
gives a morphism of complexes of left B-modules. The action is clearly Aly]-
linear in the top and bottom rows, and it is clearly linear over the off-diagonal
generators in By, < B. The action commutes with the differential on the
bottom row. We check the top row:

Eyp 0\ o B EypormkE

E,o1 E,0 nEor) \EypmonmE+E#fonEoT
B TEoFEp
- \rEoEp;+nEoT0oFEf

TFE
- <7TE o 7‘> o E®.

Next we check that the action commutes with multiplication in the algebra.
In G we have (0,¢) - (¢/,¢') = (60, o ), while the action of the product
on the bottom row of R; is given by:

¢ 0\ (¢ 0) _ ¢ oy 0
oy 0) \¢1 0 Prop+ (-)opr 00)°

o op— 00 =y ((-0") o1 + ) 0 ),
so the composition of the actions agrees with the action of the product on that
term. The other terms are trivial to check.
Lastly we check that through the quasi-isomorphism of Lemma 2.13, this
action is compatible with the canonical action on £’ X5. Start with the bottom

row of Ry:
(1 0 ) ' ((p 0> - ( ! O >
L =y o1 0 p—yip1r —yb)’
(QP O) . <1 O ) - (QP ; )

These agree because ¢ — y;1 = 6. The other terms are trivial to check. [

Note that

Now we compute a model for L, using the strictly perfect R as a replacement
for B’ X,.

Definition 3.3. Define the following (A[y], A[y])-sub-bimodule of F[y]®?®
Hom (4 E?, E)[y]:

L= {710 € P @ Homa (a2 E)l)
p=Ef+Efor+yop
for some p' € Hom 4 (42, E)[y]>

One easily checks that the set L is closed under the bimodule operations.
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Proposition 3.4. There is an isomorphism of (Aly], Aly])-bimodules Ly —>
Hom gy (R, X3) determined by equivariance over E, < B with the following

data:
(f', fp) = ((%6((8))))> i ((0, jgfe(;i)ﬁ)(e))» '

Proof. The proof is seen by directly computing Z°#omp(R, X5). It is easy
to check that the morphism given as the image of (f’, f, p) is a morphism of
complexes of left B-modules. The condition p = Ef + Ef' o7 + y, 0 p is
equivalent to the statement that this morphism has zero differential. 0

(Recall the notation from [McM22]: ee is an arbitrary element of E?[y], not
a simple tensor. It is unrelated to e and €', which are arbitrary in E[y].)

Corollary 3.5. The isomorphism above, followed by the canonical isomor-
phism of functors Hom g gy (R, —) = Homps g (R, —) applied to X, gives an
isomorphism Ly — Lo of (Aly], Aly])-bimodules.

Proposition 3.6. There is an isomorphism of (Aly], Aly])-bimodules
F?[y] = Hompu(p) (R, X1) determined by equivariance over E, c B with the

following data:
F%Maﬁﬁa((%ﬂ?Q)H*(ﬁgd))’

Proof. The proof is seen by directly computing Z°Zomp(R, X). O

It is useful to give a model of GG that is compatible with this model of L,
by using the replacement R for E'X,.

Definition 3.7. Define the following (A[y], A[y])-sub-bimodule of E[y]®* &
Homy (4 E, E?)[y]:

%=<wx@eEm@@mmmmﬂﬂﬂ
§=_®e+ 1yt (-® (e —yi€)) + y1ya€

for some & € Homy (4 F, EQ)[y]>

One quickly checks that the condition is closed under the bimodule operations.
It is sometimes convenient to rewrite the condition as

E=Ty(L®e) — oty (LR €) + y1ya€’.

Proposition 3.8. There is an isomorphism of (Aly], A[y])-bimodules Gf, =
Hom gy (X2, R) determined by equivariance over E, c B with the following

data:
<9~ ((65) - (637))

Proof. The proof is seen by directly computing Z°#omp(Xs, R). O
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The quasi-isomorphism R 2% E'X, determines an isomorphism G = G,
since X, is strictly perfect, given by (¢,e,&) — (e,e — y1€, &), with inverse
given by (eq, e, &) — (y;(e1 — e2), €1, &). In most of this paper we will use G
instead of G5 as a model for Gs.

Definition 3.9. Let U denote Homgu(p) (R, R). It is canonically isomorphic
to HOIIlDb(B)(E,XQ, E,Xg).

Now we describe a model for U. For U and L, later in this paper, as for
Gy, we frequently assume the terms of the models to denote morphisms of
complexes, passing without mention through the isomorphisms U — U and
Ly = L.

Definition 3.10. Define the following (A[y], A[y])-sub-bimodule of
FE[y]® @ Homa(aE?, E?)[y]:

U= <((I)117 o1, Prg, Poo, A) € FE[y]®4 ® HOmA(AE2, E2)[y]
A =71y (E®11 + EQ1p07) — yomy1 (EPo + EPgy 0 T) + y1y2A°

for some A° € Hom (4 E?, Ez)[y]>

Here ®;; give the components of the matrix [®] of a map

® e Ends(4F|y] ® Ely]). Note that because 3,1y, is injective, A° is uniquely
determined by (®,A). The condition on A is clearly closed under the
bimodule operations.

Proposition 3.11. There is an isomorphism of (A[y], A[y])-bimodules U =
U determined by equivariance over E, — B with the following data:

0 Aee), (§))
oo () ({0,
en= (0 5) ~ (o)
Proof. The proof is seen by directly computing U = Z°#omp(R, R). We
must show that the condition on A is equivalent to the statement that the
image of (®, A) has zero differential. One computes directly that the morphism

given as this image has zero differential if and only if the following pair of
equations holds:

TEoN=E®onE+ E,®ponEoT
{ﬂ'E oTN = B, 09 0onE + E,PpponmEorT.

These are morphisms from E?[y] in the top row of Ry. On the left side they
are given by applying the image of (®, A) first (namely A on E?[y]) and then
d. On the right side, £,® is induced on the top row of R; by ® on the bottom
row of Ry together with equivariance over E, ¢ B.
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That pair of equations is equivalent to the condition:
A=Ed + EPpyo1+ 1\
{TA = E®y + EDyy 07 + 1o\
for some A’, A" € Hom4(4E?, E?)[y].

(3.1)

For example, the first equation of the pair is equivalent to 7E o (A — E®qy —
E®507) = 0 because mE commutes with £,®;;. This identity implies the first
equation of (3.1) by Lemma 3.7 of [McM22]|; cf. also the proof of Prop. 3.26 in
that paper.

Claim 3.12. Suppose (®,A) is given such that (3.1) holds for some A’, A”.
Then there is A° € Hom (4 E?, E?)[y] such that

(3:2) A =71y (EPy + E®@p07) — yaty1 (EPo + EPyp 0 7) + 192",
Proof. Multiply the second equation of (3.1) by 7 and obtain:
—Tyos\" =70 E®gyy + 70 EdPgp 0 7.

Multiply the first by 7 and the second by 7y, and identify the results to obtain:

TyoN = y1yo7A" + Ty1 0 (E®g + E®gp07) — 70 (EPyy + E®p07).
Then:

AN = (7 —7y2) o N

= TN — 1ot — Ty 0 (EQo + E®p07) + 70 (E®yy + EPpp07)

=y (TN — yorA") — 7y1 0 (E®gy + EP@yp07) + 70 (EPyy + E®p07).
Let A° = 7A" — yo7A”. Then:

AN=FE®; + E®p07 + y1y2A°

— yo7y1 © (EPoy + E®ogy 07) + yor 0 (EPqy + EP1p07)
=T7y10 (EPyy + BP0 7) — yaTy1 0 (EPgy + EPgy 0 7) + y192A°,

as desired. 0

Claim 3.13. Now suppose (®, A) and A° are given such that (3.2) holds. Then
there are A’; A” such that (3.1) holds.

Proof. Let
N=r1o0 (Eq>11 —|—E®120’7') —TY1 0 (Eq>21 —|—E®220’7') +y1AO,
N =710 (E<I>21 + E®qyy 0 7') + 1 TA°.

Multiplying the first by s, adding E®q; + E®12 07, and simplifying with (3.2),
we find:

ygA/ + E@ll + Eq)12 oT = A.
Multiplying the second by ¥y, and adding E®y; + EPyy o 7, we find:

Yo" + EDgy + EQyy 07 = 7y1 0 (EDyy + E®gy 0 7) + 1192/,
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while
TA = —Tyoty1 0 (EP91 + E®oy 0 7) + Ty1y2A°
= TyY; 0 (E<I>21 + Edgs 0 7') + y1y2TA°
using (3.2). So the pair of equations (3.1) is satisfied. O
The proposition follows. U

We will need one more description of U:
Lemma 3.14. The composition map Ly Qg Go — U is an isomorphism.
Proof. Consider the triangulated functor:
Homp(Xy,—) : K*(B) — K"(GP).

By the same reasoning as in §3.3.2 of [McM22], this functor descends to the
derived categories

Homp(Xa, —) : D'(B) — D"(G),

it is fully faithful when restricted to (Xs)a, and it is essentially surjective from
(X2)a (because the image of X, is quasi-isomorphic to Gi*). The inverse is
given by Xy ®ger —. It follows from R € (X3)a (Lemma 3.12 of [McM22]) and

Hom () (Xa, R) — Homgs(g) (Xa, E'X>)
ﬂ) ,%”omB(XQ, E,X2>
ﬂ’ %OmB(XQ, R)

that the evaluation map is an isomorphism:
X2 ®G‘;P HOHle(B) (XQ, R) = R.

This shows that the map in the lemma statement is an isomorphism:

Hom o) (R, X2) ®ger Hom oy (Xo, R)
= Hompe () (R, X3 ®ger Homper ) (Xo, R))
— Homyp) (R, R).
0

We will need to know the (A[y], A[y])-bimodule structure of the components
of E and E? and F. These may be read off of presentations we have given by
using the fact that y; = z; — y is injective as an endomorphism of E™[y] (for
any n). We write y; ' for the inverse morphism defined on the image y; E™[y].

Proposition 3.15. We have isomorphisms of (Aly], Aly])-bimodules:

ey ...y E"yl = E"y] given by application of (yi...y,) " .

o Li =Gy — Aly]® FE[y] given by (0,¢) — (0, 1), where
pr=yr (¢ —90)
is interpreted in FE[y|. Note that the summand FE?*[y] is not only a left
Aly]-submodule of Go, but moreover a left G3°-submodule of Gs.
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o Gy — Ely|® E[y] ® FE*[y] given by (¢,e,€) — (¢',¢,&'), where

¢ =(ny) (- -Qe—pr(-®(e—ne)))
is interpreted in FE?[y]. Note that the summand FE?*[y] is a left G3°-
submodule of G.
o Ly > Fly|® Fly]® F*Ely| given by (f', f,p) — (f'. f, p1), where

p=y'(p—Ef —Ef o)
is interpreted in F2E[y]. Note that the summand F*Ely] is a left G{°-

submodule of Lo.
e U S FE[y]® @ F?E?[y| given by

(P11, Por, Pio, Pz, A) = (P11, Doy, Pra, Poo, A°),
where
(3.3) A =7y (EQ + EQ1p07) — yomy1 (EPo + EPgy 0 7) + y1y2A°

determines A°, which is interpreted in F?E?[y]. Note that the summand
F2E?[y] is a left G{P-submodule of U.

Proof. The first point is obvious. The second point follows from Prop. 2.9
because (6, ¢1) may be chosen arbitrarily in A°P[y|®End (4 E)|y], determining
; while a given choice of (6, ¢) satisfying the condition determines ¢; by way
of y;'. Similar reasoning applies to G, Lo, and U, working with Defs. 3.7,
3.3, and 3.10, respectively. O

In what follows, we will frequently use the bimodule descriptions on the
right sides of the isomorphisms in Prop. 3.15. Sometimes, to avoid confusion,
we will use the shorthand expression ‘submodule form’ to refer to the left sides
of the isomorphisms (i.e. presentations as submodules cut out by conditions, as
in the definitions of these structures), and ‘bimodule form’ to refer to the right
sides of the isomorphisms. Considering the component data of an element in
one of these structures, the components in submodule form and bimodule form
differ only in the last component: in submodule form the last component gives
the full morphism on the degree 0 part of the top row of the complex, and
in bimodule form the last component gives the remainder term ‘p;’, ‘€", ‘X",
‘p1’, or ‘“A°” that is produced from the conditions by inverting some ;.

4. ADJUNCTION
Definition 4.1. Let F denote the (C, C')-bimodule YE, that is, Home (¢ E, C).

We know that ¢ F is f.g. projective. It follows that the right adjoint functor
Homc(cE ,—) of E®c — is canonically isomorphic to F®¢ —. We have already
defined 7 and 7. We define ¢ : EF — (' and n:C — FE using the duality,
and then & and p, using the formulas in §2.2 with (A, E, F, x, 7,7, ) replaced
by (C, E, F,%,7,7,). Note that sometimes we view F'E through the canonical
isomorphism Hom(E, C) ®c E = Hom(E, E).

Now we construct an isomorphism of (C, C')-bimodules

F = Hompgop) (X2 ® R, X)
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as follows:
F = HOmc(CE, C)

= HOme(C) (E, C)

— HOIIlDb(C) (%”omB(X, E/X), %”omB(X, X))

= HOme(B) (E,X, X)

= Home(B)(XQ @ R, Xl @ X2)

= HOIIle(B) (X2 @ R, Xl @ XQ)
The second arrow comes from the quasi-isomorphisms of Lemma 3.33 and
Corollary 3.41 of [McM22]. The third arrow comes from the equivalence
per B — per C. (By asimilar calculation we have F* — Homps(z)(E"X, X).
This explains the use of the derived category for G,, and L,.) The fourth ar-
row holds because R &5 E'X, (Lemma 2.13), and the fifth holds because R is
strictly perfect (Lemma 2.12).

With this description of F', we can express it as a 2 x 2 matrix of (A[y], Aly])-
bimodules whose entries we have studied:
(4 1) [F] -~ <HOH1(X2,X1) HOIH(XQ,XQ)) -~ <F[y] Ll)

' Hom(R, X;) Hom(R,X5) Fly] Lo)-

The top row of [F'] has been computed as the bottom row of [C']. We found

Hom gy (R, X1) in Prop. 3.6, and we found Hom (g (R, X») in Prop. 3.4.
We have C' = End x5y (X1 @ X3), and the right action of C' on F is given

by post-composition. The left action of C' is by pre-composition, but one must

first apply functoriality of £’ and use the quasi-isomorphism from Lemma 2.13,

which we write v : R X% E'X,:; we have:

e A generator ¢ € Z°#omp(Xy,X,)? =~ Aly] ¢ C determines E'¢ €
Hom vy (X2, X3) that acts on F (on the top row) by pre-composition.
An element ¢ = 6 € A[y] acts in the obvious way on the left on F'[y] and
Ll-

e A generator ¢ € Z°# omp(Xs, X1) = F[y] = C determines

E'¢ € Homps(p)(E' X, E'X1) —5 Hompys(p) (R, Xa).

So ¢ acts on F' by pre-composition with E'¢o~y : R — X, taking the top row
to the bottom row. Recall that we have the model Ly for Hom gz (R, X2).
An element ¢ = f € F[y| acts by pre-composition with the morphism
determined by E'¢ oy = (0, f,0) € L.

e A generator ¢ € Z°# omp(Xy, Xs) =~ y1 E[y] = C determines

E'¢ € Hompgop)(E' X1, E'Xo) <—— Hompe ) (Xa, R).
Recall that we have the models Gy for Homup) (X2, E'X5) and GY for
Hom v (p) (X2, R), and the isomorphism Gy — G given by (ey, e, &) —

(y;7'(er — e2),e1,&) (in bimodule forms). An element ¢ = yie € y; Ely]
determines E'¢ = (y1e,0,0) € Gy, so this acts on F' by pre-composition
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with the morphism determined by (e, yie,0) € G, taking the bottom row
to the top row.
e A generator
pe Z2°Homp(Xs, Xo)® =GP c C

determines ¢r € Homgu(p) (R, R) from the right action of Gi* on R. In
terms of the model U, we have ¢r = (¢, 1,0,0, E¢) (in submodule form),
determined by ¢ = (0, ¢) € GSP. This acts on F (on the bottom row) by
pre-composition.

5. ISOMORPHISMS p)

5.1. Some tensor products of (C,C)-bimodules. In this section we com-
pute three tensor products of bimodules over C, namely EE, FE, and EF,
and describe the products in each case as matrices of (A[y], A[y])-bimodules.
These calculations are used in the remaining sections to verify that p, are
isomorphisms. Note that the product EF = E? is already given a description
(Eq. 2.5) as a matrix of (A[y], A[y])-bimodules using the identification with
Hom oy (X, E”X), but in order to compute & it is also necessary to realize

E? as the tensor product over C' of the bimodule E with itself.
These tensor products are computed according to the general formulation
described in §2.4 of [McM22]. First we take the tensor product over the sub-

algebra A :— <A([]y] G%") c C. This product is given on components by matrix
multiplication and tensor product over A[y] or G{*. After this we must take
the quotient by Im(/y, gy)) +Im(Zrpy), where I, gy) and Ipp,) apply the actions
of the off-diagonal generators in C. This quotient may be taken separately on
each coefficient of the product over A.

Using the language of §2.4 of [McM22]| with some given Mpr = (M M),
RN = (), and R = (4 5), the simplest technique at our disposal for com-
puting a quotient by the image of (say) I is to identify one of its projections
as an isomorphism. (In §2.4 of [McM22], there is, for example, a projection of
Ip to M; ®4 N; and another projection to My ®p N,.) In this situation the
quotient by Im(/z) reduces to the summand of the second projection, because
every element of the first summand (in the quotient) has a unique represen-
tative in the second summand. If it also happens that Im(/o) < Im(Ip), then
the quotient by the sum Im(/g) + Im(/¢) is still isomorphic to the second
summand. Many of the components computed below are found in this way,
but a few of them require more complicated reasoning.

Let us write, in general, I}; for the projection of I to the first summand,
and —Ij for the projection to the second. Similarly write I and —I§ for the
projections of Io. Here ‘first’ and ‘second’ summand and ‘I’ and ‘I’ are
understood as in §2.4 of [McM22]. In a tensor product of (C,C')-bimodules,
each of the four coefficients will have its own set of maps I, I3, I, I3

The matrix forms of the bimodules £, E?, and F are given in Eqs. (2.4),
(2.5), and (4.1). For some of our calculations it helps to be clear about the
structures of the component bimodules, so we translate the components to the
bimodule forms on the right sides of the isomorphisms in Prop. 3.15. Note
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the consequence that the formulas for multiplication within C' and for the
actions of elements of C' on components of £ or F' are more complicated; this

is illustrated, for example, in the formula for I'15 | g2y, in the next section.

5.1.1. EE. For the product EE, we already know the structures of the coef-
ficients of the matrix presentation from Eq. (2.5) (and Prop. (3.15)). We will
need to compute the action of 7 on elements of EE in order to compute &,
and for this it will be necessary and sufficient to identify the map from the
tensor product over A to the tensor product over C| i.e. to the quotient by
Im(I — 1) + Im(I5 — I§). Write T' for this map. Let the subscript ‘G” be-
tween concatenated modules indicate the tensor product over G3°. (An empty
subscript indicates the product over Aly].) So we have:

Boui= () EW) g, (01 ED)

N <EE[y] ® E?[ylcGi EE?[y|® E2[y]GG2)
~ \GLE[y]) @ (G2)cG1 G1E?[y] @ (G2)aGa

(P ) < )

(5.1)

G Gs

and we wish to understand the map I' on each component. We find these
component maps for simple tensors using the following steps. First we interpret
a pair of elements of the left and right tensor factors E as morphisms in
Z°# omp (X, E'X) using isomorphisms such as Prop. 3.18 in [McM22]. Then
we apply E’ to the morphism of the right factor, and post-compose the result
with the morphism of the left, obtaining an element of Z°#omp(X, E?X).
That element is interpreted again in E2. (See Prop. 3.37 and Lemmas 3.44
and 3.45 of [McM22].)

To facilitate checking these steps, the reader is encouraged to write out the
complexes for X, E’X, and E?2X, and to be familiar with Prop. 3.15 and the
interpretations of elements of the structures in that proposition as homomor-
phisms of complexes. With this in mind, the calculations are mechanical, if
tedious. We demonstrate the first cases with detailed explanation, and for the
remaining cases we record the results.

e For I'y1, we have:
— Fll |E'E'[y] is given by IdEE[y]

To see this, let e; represent an element of the left factor E[y], and es an
element of the right factor E[y]. (We are suppressing the isomorphism
EE[y] = E[y]E[y].) Viewed in [E];; through Prop. 3.15, these corre-
spond to yie; and yies. As a homomorphism of complexes, yie, sends

(§) € X to <(y(106f)’)0)> € E'X; = X,. (Use Prop. 3.31, Lemma 3.34,

and Lemma 3.7 of [McM22].) Applying functoriality (with Lemma 3.8
of [McM22] in mind to notate £E'X5), we have E'(yjes) : Xo — E'X5 by
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a map that (among other things) takes the element <(y(10f5’)0)> to

((y1€1 @ yrea, () 70)> _ ((y1y2(61 ®e€3), () 70)>
(0,(8).0) (0,(8).0) ’

which is therefore the image of (}) € X; under E'(y1e2) o y1e; : X1 —

E'X5. By Lemma 3.47 of [McM22] combined with Prop. 3.15, this image

corresponds to e; ® ey in E2[y] = [E?]11, so 'y is the identity.

— 't |p2py)c, 18 given as the inverse of E%[y| = E?[y|cG, ee — ee®]1g, .

Here ee corresponds to a map X; — E’X,. The right action of g € G4
on E?*[y] is given in terms of maps of complexes by post-composing with
the induced map E’(g) : F'Xs — E’X5, but this is also the effect of
I';; on terms in E?[y]¢G1. (The apparent coincidence derives from the

definition X, = E’X; and the matrix descriptions of C' and FE )

e For I'y, we have:
— T'21 |G, gpy) is given (in bimodule forms) by

(97 901) e — (967 Hylev 801(_) ® 6) € Gz'

The map (0, ¢1) : Xo — X5 is determined (as in Prop. 3.18 of [McM22]
except in bimodule form) by:

(((%1’,10))> ) ((61-9 +(%1’<§3(61),0)) _

Further, e corresponds to the map e : X; — X, given by () — ((%7@6?) >,
which by functoriality induces a map E’(e) : E'X; — E’X, that is given

(similarly to I'ty |ggp,) above) by:

(o) = (“atsae”)

Therefore the composition is given by:

(o) e (e s )

This image is in £’ X5. The map corresponds to the element
(0y1e,0,-® Oyre + yiya(p1(—) ®e) € Gy

(written in submodule form), which translates (see the paragraph after
Prop. 3.8) to the element

(96, 9y16, ()01(_) ® 6) € G/2

(written in bimodule form) considering Def. 3.7 and Prop. 3.8 (and
Prop. 3.15 for the bimodule form); this is the formula we wished to
establish.
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— T2 |(@2)ec, s given as the inverse of Gy = (G2)aG1, g2 — G2 ® 1,
This is similar to I'1y |p2py,¢, above.

e For I'15, we have:
- Flg |EE'2[y] is given by IdES[y]

We leave this and the remaining calculations to the reader, and record
the results.

— T2 |g2py)e6, s given (in bimodule forms) by

ee® (¢, e,&) = (y1yays) " (BE) (yryaee) € E*[y].
e For I'y, we have:
— Doy |G, p2py s given by
(0, 01) ® ee — (Qyryze€,0,0, p1(—) R ee) € Gs.

A remark: in §4.2 of [McM22], the horizontal arrows of the diagrams are
based on the same type of calculations, except that submodule forms are
used. For example, the map specified just above is E’(ee) o (0, 1). In
submodule form it would be written E’(y;yzee) o (6, ) with ¢ = _.0 +
Y141, and this results from the horizontal arrow in Diagram D2(2, 1, 1).
So this composite would be written in GG3 in submodule form as

E'(y1y2e€) o (0, @) = (Oy1y9¢€,0,0, 0 ® ee).

We encourage the reader to check §4.2 of [McM22] for occasional further
hints regarding some of these calculations.

— I'ss |(Ga)ec. 1s given (in submodule forms) by

(e1,€2,§) @ (€1,€2,8) = ({ler), 2@ €1, €2 @ €, E{ 0 §) € G
(c.f. Diagram D;5(2,2,1)). We will need to have this map written for
the bimodule forms. First translate the notation from Gy to GY (cf. the
paragraph after Prop. 3.8) using ¢', e for the first factor (so ¢/ = y; ' (e; —
ey) and e = e1) and €, € for the second factor. Then expand ¢ in terms
of €, e, and & according to the condition for elements of Gy (Def. 3.7),
and likewise expand &. Now compute E€ o &:

Efol=(__@e+y7(--® (6 — 1)) + yiy2EE)
o(-@e+y7(-® (e — y1€')) + y1y28)
=_® (eé + yo7(e€ — y1eé’) + ylygf/(e))
+ y3 0 TE(_ ® (ee — y2e'é))
+ yoy3 0 ET 0 TE(_® (e —yie')(e — ylé’))
+ Y1923 (Eg’ or(_®(e—me))+ Er(f ®(E—1e)) +&® é’).
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To find x”, subtract all but the last term of y in the condition of G5 in
Prop. 2.9 and remove y3ysy;. Obtain the complete image in bimodule
form:

(¢.e.8)® (€, e)
(€€ + yot(ee — y16€) + y1y2E (€), €€ — Y2, (e — yr€’) (€ — 1 &),
Efor(®(e—ye€)) + ET({ @ (e — @) + £ ®¢).

5.1.2. FE. For the product FE, we can find the (A[y], A[y])-bimodule struc-
ture of the components of its matrix presentation using the same technique as
for I’ and E?. We have:

FE = Homc(cE, C) ®c FE
= Home(cE, E) = Home(C)(E, E) > Hom p oy (&, &)
— Hompe(cy (Homp(X, E'X), #omp(X, E'X))
= Hompyp) (E'X, E'X)
— Hompgo(p)(Xo @ R, X2 ® R).

(The last isomorphism uses the quasi-isomorphism R 2% E’X5 and the fact
that E'X; = X5 and R are strictly perfect.) So the matrix presentation is:

o2 1ra = (oG Tnlen) = (0 ).

As we did for E2, we study the map I from the components of the product
over A to those of the product over C"

N ( 52[[1/;] é;) - <EC£@1/] E;[zy])

FE[y]® (L1)cG:1  FE*y]® (L1)cGe
(5:3) = (F?E[[yg}]@<(L2))GG1 F2E2[[yy]]@((L2>)GGz)

N (FE[y]®G1 FE[y|® G, ) r (G1 G2>'

F2E[y|® Ly F2E2[y]® (Ls)cG2) — \ L, U

The bulleted claims below are justified in the paragraphs following them.

e We have I'y; : FE[y]® G — G, given by (¢, Idg, ).
Here the map ¢ : FE[y] — L; = G; is the inclusion of the second sum-
mand as written in Prop. 3.15.

— Iy FE[yleGh — F'E[y] given as the inverse of the isomorphism ( fe—
fe®1a,),

— 14 : FE[y]aGi 2% (L)6Gy = Gy,

— I; : (G1)gFEly] = FE[y] given as the inverse of the isomorphism
(fe— 1g, ® fe),

— I (G1)eFE[y] &2 (Gy)eLi = Gi.



TENSOR 2-PRODUCT FOR slz: EXTENSIONS TO THE NEGATIVE HALF 25

Using either Ijo Ié_l, or I o I;', one associates a unique representative in
(L1)eGr = Gy to each element of FE[y]. We see that [j o [’5_1 =IloIi
so the two associate the same representatives. It follows that the quotient
projection I'y; is given by (¢,1dg,) as proposed.

We have T'y; : F?E[y] ® Ly — Ly given by (¢/,1dz,).
Here the map ¢/ : F2E[y] < Lo is the inclusion of the third summand as
written in Prop. 3.15.

— I}, : F?Ely|cG1 = F?E[y] given as the inverse of (ffe— ffe®1q,),

— [g : F2E[y]GG1 Ll@i) (Lg)(;Gl = Lg,
— I : (Ls)cFEly] — F*E[y] given by

(f, e fe— (fop)®e
= (fo(EBf + Ef ot +yp)) ®eé.

Note that here f is interpreted as a map of complexes f : Xy — X
which is composed with the map (f’, f,p') : R — X, to obtain a map
R — X;. The composite f o p is a map R — X;, interpreted again in
F?[y] according to Prop. 3.6. (So, coincidentally, the notation ‘f o p’ has
two valid interpretations: one as a map R — X, and another as a map
E?[y] — Aly]| represented by an element of F[y].)

— I (Ly)aFE[y] 2285 (Ly) G = L.

Consider the first two maps. We have that [0 Ié’l =/ as maps F?E[y] —
L. Consider the last two maps. One may check that /o I§ = If. It follows
that Im(I5 — Ij) < Im(I — I7), so in the quotient every element of F*E[y]
is associated to a unique element of Lo, given by applying the map /.

We have Ty : FE?[y] ® Gy — Gy given by (/,1dg,).
Here the map " : FE?[y] — G is the inclusion of the third summand
as written in Prop. 3.15.

— Iy : FE[ylaGy — FE*[y] given by
fe® (e, e,&) — [ ® (y1y2) 'E(yre)
= [®(1(e®e) —pr(e®@e) + €' (y10)).
The map is given by considering € as a map of complexes X; — Xo,
and (¢,e,£') as a map of complexes Xy — R, and then composing,

and translating the result to bimodule form (removing y;y2). The final
expression is computed by plugging y,€ into

E=1yi(c®e) =yt (-® €') + y1y2f’
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from the condition of Def. 3.7, and we obtain:
£(yi€) = Ty (e ®e) — yaryi(y1e ®€') + Y1yt
= Ty1y2(E®e) — yary1y2(€ @ €) + Y1y’
=y (7(€®e) —pr(e®e) + ).
- fg ElyleGy — B, (L1)aGa2 = Gy,
— I} : (G1)gFE*ly] = FE®[y] given as the inverse of (fee — 1g, @ fee),
— I} (G FE?[y] 25 (L1)6Gs = G,

Consider the last two maps. We have that I o I}™! = " as maps FE*[y] —
Go. Now consider the first two maps. Observe that Iy = /" o I5. It follows
that Im(I} — I%) < Im(I5 — I), so every element of FE*[y] is associated in
the quotient to a unique element of G5 by applying the map ¢”.

We have [y : F2E2[ 1@ (L2)gGe — U given by (/" 1dy).
Here the map (" : F2E?[y] — U is the inclusion of the fifth summand as
written in Prop. 3.15.

— I : F?ElylcG2 — F?E*[y] given by ffe®(¢', e,&') — f f@(y1y2) " E(yre),
— I : F?Elyl¢Gy — VG, (Ly)aGo — U (using Lemma 3.14),

= Ij 1 (L) FE?[y] — F2E*[y] given by (f', f,p") ® fee — (f o p) ® e,

— I} (Lo) o FE2[y] 285 (Ly)oGy S U.

Consider the first two maps. Observe that
I(ffe®(epe, 8 =0)) = ff® (e®e) € FPE*[y].

It follows that I} is surjective. Now we show that /" o I} = I§ and that

V" o Iy = Ij using the bimodule forms. First apply «” to the image under

Iy of an arbitrary simple tensor ffe® (¢',e, ') € F2E[y]aGy:

/" (ﬁ@) <y1y2>71£<ylé)) = (07 07 07 07 A = ﬁ® <y1y2>71£<ylé))7
then apply [ g to the same arbitrary simple tensor, and view the result
through the isomorphism (Ly)gGe — U:

I5(ffe® (€, e,€)) = (0,0, ffe) @gw (¢ €, €)
= (0,0,0,0, fF ® (v1y2)"'¢(v1)) € U.
So " o Iy = Iy. Repeat the procedure with the second pair of maps:
"((fop)®@ee) = (0,0,0,0,(f o p) @),
L((f' f.0)® fee) = (f' f.p") ®ce (0,0, fee)
— (0,0,0,0,(fop)@%e),

so (" o If = I}. Tt follows that every element of F?FE?[y] is associated in the
quotient to a unique representative in U by applying ".
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Remark 5.1. The map " describes the inclusion of the morphisms of Homgu(g) (R, R)
that factor through X;. The maps I and I are in fact isomorphisms:

Hom () (X1, X2) ®ger Hom ko) (Xo, R) — Homge(g) (X1, R),
Hom o) (R, X2) ®qer Hom o) (X2, X1) — Homge(p) (R, X1).

They are produced by reasoning as in Lemma 3.14, using that R is a finite
direct sum of summands of X5.

5.1.3. EF:’ . We do not have a matrix presentation of the components of the
product E'F from the Rickard equivalence. Instead, in this section, we proceed
by studying the quotient directly, by components, determining the structure of
the quotient itself, as well as the quotient projection I' from the tensor product
over A to the tensor product over C.

As before, in each bulleted section we propose a component of I'. Here
the arguments following a bulleted line also must justify the structure of the
codomain of the I' component written in that bulleted line. The domains are
known, and in each case the annihilated submodule Im(Ij — I§) + Im (/5 — I§)
is defined already. Our method is to write down a map called I';; from the
appropriate domain, show that it is surjective, and show that its kernel is
Im(Ij; — I5) + Im(I5 — I§). The codomain of I' can be summarized in a matrix:

(& @) es (7 12)
(5.4) N (EF ] ® E*[y]cF2ly] E[y)G: @ E [y](;LQ)

E®aF

lle

G Flyl @ (G2)aF?ly]  G1G1 @ (Ga)aLs

g(EF[y] Ely]G, )
G\Flyl] GiGi®EF[y])"

e We have I'y; : EF[y| @ E?[y]cF?y] — EF[y] given by (Idgrp,,w).

Define a map w : E?[y| @apy F?[y] — EF[y] by:

e1e2 ® fofi = e1.fo(yie2) ® f1 = e1 @ fayre2). f1.

Let ¢ € FE[y] be given in the second summand of (the bimodule form)
GP® =~ Aly]|® FE[y]. Observe that (61 ®g01(y162)) ® fof1 and e1eo ® ((f2 o

y1p1) ® fl) are both sent by w to e1.(fs o y101)(y1€2) ® f1. This means w
is middle-linear over generators in both summands of G{°, so it descends
to a map, also called w, from the tensor product E?[y]qF?[y] taken over G7°.

— I . EE[y]cF?[y] — EF[y] given (using bimodule forms) by

e1®e® fofi — e1 @ (fio Efy o (e2,41€2,0))
= ® (frioEfao ((@uyier))
=e1 ® fi(-fa(yre2))
=1 ® fa(yre2) . f1.
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In this calculation, e, is interpreted as a map of complexes X; — X,
which induces a map X, — R (from E'X; — E’X,), precomposition
with which gives the left action of e; € E[y] c C on F?[y] ¢ F. The
induced map corresponds to (e, y1€9,0) in Gy (strictly speaking, in G%)
in bimodule form. Further, fof; € F?[y] is interpreted as a map R — X,

which is identified by E?[y] e p [v] EEN Aly] applied to E?[y] in the top
row of Ry. The composite X5 — X is identified (in the second row) by
the morphism f; o Efy o (L® yie) : Ely] — Aly], which is evaluated in
the third and fourth lines.

~ Ij: BE[ylaF?[y) = E*[yleF2ly],
— I} : E*|y]l¢FF|y] — EF[y] given (using bimodule forms) by
e1es @ fo® f1— ((0, f2,0) 0 6162) ® fi
= 41 (B f2)(n1y2(e1e2)) ® f1
= e1.f2(y1€2) ® f1.

Here fo : X5 — Xj induces (0, f5,0) : R — X, in Ly. Further,
eres : X1 — R, and the composite map X; — Xs is identified by apply-
ing Efy to the top row of Ry after putting y;yse1es in that term, and
removing the final y; to obtain the bimodule form.

— I : B[y]6FFly] *5 E*[y]aF>ly].

We see that I} = w and [j = w after identifying EE[y] = E*[y] and
FF[y] = F?[y]. It follows that the kernel of I'y; is the image of I;— I, which
is also the image of I — I§, and thus ker(I'1;) = Im ([} — I5) + Im(I5 — I§)
as desired.

Remark 5.2. The map w corresponds on the models to the map given by
composition:

Hom () (Xa, ) ®ger Homgo ) (R, X3) — Homgas) (X5, X5).
We have I'y; : G1F[y] @ (G2)aF?[y] — G1F[y] given by (Idg, ppy, ')
Let w': (G2)aF?y] — [ | be defined (using bimodule forms) by
(€,e.8)® fafi = ((0, f2,0) 0 (¢, 6,£)) ® f1
(f Y1 Efao (yar(-® (e — y1€)) + y1y2£/)) ® fi
= (hle). Bfrom(@ (e —nie)) + E(faoy) o€) © fr.
Here fo: Xy — X; again induces (0, fo,0) : R — X5 in L. The composite

X, (250 g W)y,
is a map Xy — Xj identified by the element of GG; given in the next line.
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— Iy : G1ElylaF?[y] — G1F[y] given (using bimodule form) by

ge® fofi — g® ((fl oEfy)o <€7y1€70))
= g ® fa(yre). fi.

The map E[y]cF?[y] — F[y] used here is the same as the one in I} of
I'y; above.

— I : G1ElylaF?ly] — (G2)aF?[y] given (using bimodule forms) by

(0,01)®e® fofr — ((6,y16,0) o (6, <P1)) ® faf1
= (96’ eylej 901(_) & 6) & f2fl-

The map G1E[y] — G2 used here is the same as the one in T'y; for FE.

— I5: (Gy)aFFly] — G1F[y] given by the map w’ (after identifying F'F[y]
with F7[y]),

— I (Ga)6FFly] 5 (G2)a F2[y].
We show that w’olg = I’:

W' ((fe, Byre, o1 @ €) ® fof1) = (f2(0y1€), E(f20m1) 0 (p1 ®¢€)) ® fi

(9 (y1€), 1. fz(y1€)) ® fi

= (0, 1) f2(y16) ® f1

=14((0,01) ®eQ fofr).
In the first line, note that (0yie) — y1(fe) = 0 so the term ‘Efyo7(-® (e —
y1€'))’ in the image under w’ disappears. Then f5 0y, applied to e produces
fa(y1e) € Aly], which acts on the right on ¢; for the second line. For the
third line, the element f5(yi€e) € A[y] acts on G on the right diagonally. It
follows that I — I§ = (' —1d)Ij, and therefore Im(Ij — I5) < Im([5 — If).
Thus ker(I'y;) = Im(I — I) + Im(I5 — I§), as desired.

We have Ty : E[y|G1 ® E?[y|lgL. — E[y]G; given by (Idgpa,,w").
Let w” : F?[y]¢Ls — E[y]G1 be defined (using bimodule forms) by

€162 & (flv f7 p,) = e ® ((flu fv p/) © (627 Y1€2, O))
=1 ® (f(yre2) + f'(e2), Ef oT(_Qe2) + p' (L@ y1€2)).
— I : EE[ylaL, — Ely]Gy given by the map w” (after identifying FE|[y]
Wlth E?[y]),

— Iz : EE[y]gLy 1, g2 [y]cLo,
- I5 E?[ylcFy]G1 — E[y]G given (borrowing from I} of T'y;) by

e1e2® fo® g — e1 ® foyre2).9,
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— I} : E*[ylcF|y]G1 — E?[y]cLs given (using bimodule forms) by
€162 ® f ® (‘97 ()01) = e16 @ ((97 901) © (07 f7 0))
= €1€2 ® (Oa fea f ® S01>
Here f: X5 — X induces (0, f,0) : R — X5, and the reader may check
the composition with (6, p1) : Xy — Xo.

We show that w” o I§ = I§:

w'(e1e2 ® (0, .0, 010 Ef)) = e1® (f(y1€2)-0, (p10 Ef) (- ® y1e2))
=1 ® (f(y1€2).0, o1(f(11€2)))
=e1® (f(y1€2)-9, f(y1€2)-<P1)

e1 ® f(yie2).(6, p1)

= 15(6162 ® f® (6, <p1)).

Thus I — Ij = (w" — 1d)I§, and therefore Im(Iy — Ij) = Im(I; — I5). Tt
follows that ker(I'12) = Im([j; — I§) + Im(I3 — I), as desired.

m
We have Iy GlGl @ <G2>GL2 — GlGl ) EF[y] given by (IdCSGl u,; )

Below we describe the maps I, I, Iy, Ij, and define a map w” :
(G2)aLy — GGy, and we show that w” o I§ = I and w” o I = I5. Then
we describe a decomposition of (Ga)gLe into (Aly], Aly])-sub-bimodules
(Go)aLe = H® EF[y] where H = Im(I3) + Im(I§). The projection onto
EF|y] is called k. (This copy of EF[y] lies in the kernel of w”.) From all
this it follows that ker(I'yz) = Im (/5 — I3) + Im(I5 — I§) and T'y; describes
the projection to the quotient.

— Iy : GiEly]aLs — G1G) given (borrowing from Ij; of T'y5) by
9@e®(f', f,0) —
9® (f'(e) + fye), Ef om(-®¢) + p'(-®yre)),
— I3 : GiElyleLe — (G2)aLa given (borrowing from If of T'y;) by
(0, 01) ®e® L (fe, Oyre,01(—) ®e) @ L,
— I§: (Gy)aFly]|G1 — G1G4 given (borrowing from I§ of I'y;) by
(c,e,)®f®g—
(fle),Ef or(c® (e —i€)) + E(foy) o) ®g,
— If : (G2)aFy]Gy — (G2)gLs given (borrowing from If of I'5) by
9 f®(0,01) = g®(0, 1.0, f Q).
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Now we define a morphism of (A[y], A[y])-bimodules w” : G2 ®ay) L2 —
(G1G1, and in a subsequent lemma we show that w” descends to a morphism
Ww”" o Ge R Ly — G1Gy by showing that it is also middle-linear over
generators of GI* in FE[y]. (Since G; =~ Aly|® FE[y] as a bimodule, this
ensures linearity over all of GI*.) Let (¢/,e,&") ® (f', f,p') € G2 ®apy) L2 be
an arbitrary simple tensor. We define:

S (e ) (f.£,0) = (<€ @ ) +2(e® ), FE(e oy F)(€' ® )
FFEE® ) + 0(e® )~ o1 ® /) @ (1,0)

+(1,0) ® <O,5FE(e®p') + U(d@f’)) +ocFE(e®/p)
—oFE(y1€ ®p)+ FEo('® ')+ FE(e oy F)FE(£ ® p').

The last four terms, beginning with o FE(e®p'), are elements of FEF E[y].
They should be interpreted in the last summand of GG that appears in
the following decomposition of bimodules:

G1 ®apy G1 — Aly] @ FE[y] ® FE[y] ® FEFE[y],
(0,01) @ (0, ) — (80',0.0), 01.0', 01 @ ).

At this point w” has been defined as a map Gy ®ap Lo — G1Gy. It is
useful to go further and record the data of w” as a matrix. We can give a
decomposition of G's @apy) Lo into a direct sum of (A[y], A[y])-bimodules:

(5.5)

Go ®apy) Le — EF[y|*" © FE*F[y|®* ® EF?E[y]** @ FE*F*Ely],
(€, e,8)Rf f,0) > (€ Rf, R f e® [ e®f)
DR, e®@p)OERf,ERf)@(E®).
Each of the terms in the formula for w” is a morphism of (A[y], Aly])-

bimodules.

Definition 5.3. Using the ordered decompositions of Gy ®apy,) L2 and of
GGy above, the map w” : Gy ®apy) L2 — G1G) is given by the following
matrix:

€ 0 0 € 0 0 0 0 0
o 0 0 0 0 eFE 0 0 0
0 —coytFF 0 o 0 0 FE: FE(sowyF) 0
0 0 0 0 —(comF)FE oFE FEo 0 FE(c oy F)FE

Lemma 5.4. The map w"” is middle-linear over the action of generators of
the summand FE[y] < G*.

Proof. We first compute the middle actions (€', e, &)1 and ¢1.(f', f, p') for
p1 € FE[y] < G, (¢/,e,&) € Gy, and (f', f,p) € La, both in bimodule
form. These are:
(¢ e, &)1 = (pr(e), yapi(e), Egr o T(c® (e — y1€)) + E(pry1) o &)
901-(f,7 [y Pl) = (07 foyor+ flop, EfforoEp; +p o E(?Jl@l))-
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Using the formulas above, one easily computes the images under w” of
(€,e,8). o1 ® (f', f,p) and (¢,e,&) ® @1.(f', f,p') and checks that they
agree. 0

Corollary 5.5. It follows from Lemma 5.4 that w” determines a morphism
of (Aly], Aly])-bimodules " : (Gy)gLy — G1G1.

We show next that w” o Iy = I and w" o I = I;. The formula for w” is
determined by these conditions and may be derived from them. Evaluating
the left side of the first equation:

W o I5((0, 1) @e® (f', f.0))
= w"((0e,0y1e, 01 @) @ (f', f. 1))
= (f"(0e) + f(Oyre), 1.f (y1e) + ¢1.f'(e)) ® (1,0)
+(1,0) ® (O,p’(_® Oyre) + Ef o1(_® 96))
+(0,01)® (0, Ef oT(_®e) + p' (@ y1€))
= (0.(f'(e) + f(yre)), 1.(f'(e) + flyre))) ® (1,0)
+(0,01)® (0, Ef o7(-®e€) + p'(-®y1¢))
= (0,01) ® (f'(e) + f(yre), Ef o7(-®¢) + p'(-®@yie))
= I5((0, 1) @e® (f', f.1)).
Now evaluating the left side of the second equation:
o I ((¢he, €)@ F® (0, 01))
=w"((¢/,e,€) ® (0, f.0, f ® 1))
= (f(e).0,E(fhoy) ol + E(f0)oT(c®(e—1:€'))) ®(1,0)
(1,0)® (0, f(e)-01) + (0, Ef o 7(-® (e — y1€)) ® (0,¢01)
( S E(fown) Of/) ® (0, 1)
fle), E(foy) o + Efor(-® (e —pie)) ®(6,0)
+ (f( ), Ef or(L® (6—?/16/))+E(f0y1)05/)®(0a¢1)
= (f(e), Efor(-® (e —wne')) + E(foyr) o) @ (6, 1)
= I((¢,e,) @ f ® (0,41)).

Now the product (G2)aLy is the quotient of the product (Ga2)ap L2 by
the image of +' —+”, where:

N
= (

e

— 7 (G2 ®apy FE[y]) ®apy) L2 — (G2) apy) Lo given by
(¢,,)@p1 @ —
(¢1(e),y1p1(e), E1oT(c® (e —y1€)) + E(pr1oy1) o &) @,
=" Gy Qayy] ( Ely] ®ary) ) (G2) apy) L2 given by
91 ®(f' f.0) —
g® (0, f o1+ foyipr, Ef o0 Epi + o o E(y1¢1)).



TENSOR 2-PRODUCT FOR slz: EXTENSIONS TO THE NEGATIVE HALF 33

There is a copy of EF[y] in (G2)ap)Ls generated by terms of the form
(0,e,0)® (f',0,0). Let H be its dlrect complement. The images of 4" and
7" lie in H, so (Go)gLe =~ H@® EF[y], where H is the quotient of H by the
image of v — ~".

The image of I7 includes every term of the form (e, yie, 1 ® €) ® £, and
the image of I includes every term of the form g® (0, f, f®¢1). By adding
appropriate linear combinations of terms of the first form, one obtains any
element (e,y1e,¢') ® ¢, and similarly from terms of the second form one

obtains any g ® (0, f, p). It follows that Tm(I5 + Ij) = H.

5.2. Maps py: formulas. In this section we derive formulas by matrix com-
ponents for the maps ¢ = FEE o F7F o iEF, € o #F, and F#' o 7j that are
used to define the maps py. We will be using the matrix components for E,
F, EE, FE, and EF that were found and studied in previous sections. (See
Egs. (2.4), (4.1), (2.5), (5.2), and (5.4), respectively.) The unit and counit 7
and € are given by the duality pairing and thus are easily interpreted in terms
of maps between complexes where that is convenient. The morphisms z and
7 were given on components in Eqgs. (2.6) and (2.7).

5.2.1. Map 6 : EF — FE. We begin by computing the map ¢ : EF — FE.
Recall that & is defined by ¢ = FE&o F7F o EF, and 7], £, and 7 are
determined already. We will need formulas for each component of & in its
matrix presentation.

We use the following technique to derive the formulas. We start with an
appropriate matrix coefficient of the element [7(1)] € [FE], together with an
arbitrary generator of a component of the matrix [EF]. Then we write the
latter as a sum of simple tensor products of elements of [E] with elements of
[F]. As a point of notation, this will be said to lie in [E]-[F] (and similarly for
other matrix products). Then we write [7(1)] in [F]- [E], and taking another
tensor product we have an element we can write in [F]-[E]-[E]-[F]. Upon this
we apply [F]-[7]-[F] using (2.7). We view the result in [F]-[E]-[EF], apply
[F]-[E]-[€] to obtain an element of [F]-[E]-[C], view this in [FE]-[C], and
allow the coefficient in [C] to act on the right on the coefficient in [FE]. The
result is the image under [§] of the arbitrary generator in [EF] with which
we began.

The following bulleted lines state the results of this procedure, and the
procedure itself is carried out in detail in the paragraphs below those lines.

e We have [7];; : [EF]y, — [FE]y; given by (2) using the decompositions:
— [EF]u = EFly],
— [FE]1 = (G1)gG1 = Gy =~ Aly]® FE[y]. o

We take [~(1)]11 = (1 0) ®( ) <G1>GG1 = [F’~

form), and an arbitrary generator e® f € EF[y| = [E

these in [FE] - [EF] can be represented in [F] - [

12
(54) () 8)-(58)-(49) € (1 1) (el =2 ).

11 (using bimodule
F]ll The product of

] [F] by

[E y:
( Ely] EZ[y]).( Fly] L1>
Gi1 G2 F2ly] Ly )~
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The middle factors give (1,0) ® e € Gy ®ap,) Ely]. Passing through I'y

of Eq. (5.1), this represents (e, y1e,0) € Gy = [E?]s1. To apply [7]a1 from
Eq. (2.7) we translate that formula from the terms of Gy to those of G in
bimodule form. Using e; — e; = y1€/, we have:

£=_®er+17(-®e) + 11y2f
= _®(e1 —er) + Ty (- ®e2) + yyat’s
Tol=7(_®(e1 —eg)) + 72y1(_® e2) + Ty1y2E’
=Ty (-®€) +yyer ol
= _ Q€ +y1(c®€) +yya(rof).
So instead of (eq, e, (e’ ¢/, 7 0¢&) in the terms of Gy, the formula is

§) =
(¢',e,&) ¥ (0, €, 70¢') in the terms of G%. Application of [7 |21 to (e, y1€,0)
therefore yields (0, e,0), which may be represented in [E] - [E] by:

),
(0 ©e0) - (o) 0) € [E]-[E].
Then:
(e 0) - (55) — (%6) elc]

(3%7) - (Boco) = (557) € (%) = [FE]

using I'13 in Eq. (5.3). Finally letting f € C' act on the right, we have:
.e, 00y _ e ot (_®e nl
(667) - (38) = ((Uerermten) 0) e [FE]

e(e@f) o(e®f)).

using the decomposi-

and

The nonzero coefficient may be interpreted as

We have [5’]21 . [EF]21 - [FE]21 glven b
tions:

~ [EF]s = G\Fly] = Fly] ® FEF[y],

— [FE]n = Ly = Fly] ® F[y] ® F?E[y].
Considering the isomorphism FE = Homa(4F, E), we can choose an ex-
pression for n(1) € FE < FE[y]| corresponding to Idg € Homa(4E, E) as a
sum of simple tensors:

OO N

F

=Y fa®e,€ FE C FE[y],
aeqR

where () is some finite index set. Using f,, e, for a € @, we find an
expression for [7(1)]eg in (Lg)gGa:
Lemma 5.6. The element

Z (fav 07 O) ® (ea7 07 O) + Z(07 fb7 O) ® (07 €y, O) € (L2>GG2

aeQ beQ
(written using bimodule forms) is sent to Idg € U under the composition
morphism (Ly)gGa2 — Uof Lemma 3.14. We write [1)(1)]a2 for this element.

Proof. We first take composition of the first sum, and then of the second.
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Claim 5.7. Under the map (Ls)cGy — U, we have:

> 1(£4:0,0) ® (€4,0,0) — (0,0,0, Idg,, 0).
aeQ

Proof of Claim. The matrix [®] giving the degree 1 bottom row part of the
image, which is a morphism in Hom g (g (R, R) written in U, is ZaeQ (8 fa(_()]®ea ) =
(39). To compute the fifth coefficient A° of the image, we find the degree

0 part A of the map on the top row, given by taking the composition
E?[y] — Aly] — E*[y]:

2 —1oT(-®@y1€q) 0 (Efa0T)

aeqR

- 2 ~4oy1 (T(- )y ® fa(T(- ) (2a)) -€a)
aeQ,deP

= —Y2TU1T = —Y2T

(in the second line we introduce notation for a decomposition 7(ee) =
Daep T(ee)aa) @ T(ee)q) for some choices of 7(ee)qq), ¢ = 1,2 and finite
index set P, and in the third line we use that >}, fa(€*).c, = €* for any
e* € Ely]). Then A° = 0 is determined by Eq. (3.3) with this A and ®. O

Claim 5.8. Under the map (Ly)G2 — U, we have:

2(07 fb> 0) ® (07 €p, O) — (IdE[y]a 07 07 07 0)
be@

Proof of Claim. Computing as above, the matrix [®] is given by ({9), and
we have:

Z(_®eb+y27(_®6b oEf, = ZT% _®ep) o Efy

be@ be@
= Tyl(z fo(2)-en) = Ty
be@
Again, A° = 0 is determined by Eq. (3.3) with this A and ®. O
So [77(1)]2e is sent to (1,0,0,1,0) € U, which indeed corresponds to Idg.

U
Then we take an arbitrary generator (0,¢1) ® [ € G1F[y| = [EF]s.

LY .
Expressing the product 7(1) ® (6, 1) ® f in [F] - [E] - [E] - [F], we have:

)

0

D70 o) (8 eavmy) - (o 0) - (59)
ae@

+Z 00.5.0) (00ea0n) (@eo) (59)
be@

e ( EWl Lo\ (Bl E°[y] ) . ( Ely] E*[y] | . ( Elv] L
F2[y] Lo G1 G2 Gi G2 F2[y] Ly | °

Now we interpret (8 (ea,OO,O)) . ((9,?01) 8) and (8 (0,27,0)) ' ((9,?01) 8) in [£7]
using I'y; from Eq. (5.1); this requires the right action of G3* on R from
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Lemma 3.2. Then we apply [7].

[o1 2 (€4,0,0) ® (6, p1) — (€4,0,0).(0, 1)
= (6a.9, 0,—Fypo0 7‘(_®y16a)) e Gy = [E?]n
> (O, €q.0,—T 0 Epj o T(_®y1€a)) € [F*)a1,
— (0, ¢ep,0).(0, 1)
= (p1len), pler), BproT(-®ep)) € [E* o
5 (0, 01(ep), 70 Bpr o T(_®ep)) € [Eanr.

1—‘21 . (07 €p, O) ® (99 Spl)

We can represent these in [E] - [E] using the isomorphism Gy — (G2)cGh,

g — g® (1,0). So, after applying [F] - [7] - [F] to the middle terms, we
have:

0 0
> (8 050) * (o (oenorommorcomen) ) - (a8) - (59)

ae@

0 0 0 0 0 0
+ Z (0 (O,fb,O)) ’ (0 (07301(eb),roE<p1or(_®eb)) > ) ((170) 0) ’ (g 8) :
be@
Then &: ((f)0) - ({0) = f € Fly] = [C]ar, so by applying [F] - [E] - [¢]
and viewing the first two factors in (Ls)gGy < [F E]ey we obtain:
0 0 0 0
e (008 (0.c0.0,~roBpr07(Sy1ea)) | - ( F 0) e [FE]-[C].
+ ZbeQ (vab70)® (0,<P1 (eb)vTOEwloT(—®eb))
Now we express this element in Ly, = [FE]s; by applying the composition
map (Ls)gGy — U and then evaluating the action of f € [C]s on the
right. The latter may be computed by embedding f in L as (0, f,0) and

post-composing with this element.
Passing first through the composition map (Ls)cGo — U, we have:

Z (O, eg.0,—ToEpioT(_® ylea)) 0 (f4,0,0) — (0,0,0,0,—7 0 Epy oT).
aeQ
In the first components of this calculation, we have used:

D fa(=)(ea ) : Ely] — E[y]

aeqQ

and for the last component we have used:

Z ((®e€a.0 + 1om(-®€q.0) — y1yaT 0 Ep1 0 T(L® y1€,)) © (Efa 0 7T)
ae@®
=70 —y1yeTo EpioT

=71y (E0oT) +y1y2(—T7 0 Epro7).
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The fact that A° = —70 F¢; o7 can be deduced by comparing with Eq. (3.3)
where [®] = (J £7). Similarly, we have:

Z(Oa 901(61))?7_ © E‘Pl © T(—®6b)) © (07 fbao) — (()017()’070’7_ © ESDl © T)a
be@

where again we have used:

Z (_® v1(ep) + yam(C @ pi(ey)) + 12T o Epr o 7(L® €b)) oEfy
be@
=Ty10 Epr +ypyaTto EproT

= T1y1(Ep1) + yiye(T7 o Epy o 7),

so A° = 7o Ep; o7. For the sum of the images, we have (¢1,0,6,0,0) € U.
Next we compute the right action of f € [C']o; on this element:

(0, f,0) o (¢1,0,6,0,0) = (0.f, f o1, Ef o 70 Epy),
where we have used:
Efo (Tyl(Egpl +FEfo 7‘))
=FEfo (Ty1 o FEp) +T1y7 0 E@)
= Efo(ty10 Epy + 70 Ef)
zEfo(y2ToEg01+Eg01+EHOT)
=E(0.f)or+ E(fop1) +yr1o(EforoEp).

Our final expression for the image of (0 o, sm)@ ;) under [6]y is therefore:

0 0 Gi G2\ pr
((H.f,foapl,EfOToEgol) 0) © <L2 U) = [FPE]
The bulleted statement follows from the fact that fop; = Fe(p1 ® f) and
EforoEp =Fo(p® f).
We have [5]15 : [EF]12 — [FE]12 given by (1 ylogE) using the decomposi-

tions:

~ [EF]12 = E[y)G: = Ely]® EFE[y),
~ [FEL; = G2 = E[y| ® Ely] ® FE*[y). .
We take [7(1)]1n = (1,0) ® (1,0) € GiGy = [FE]y;, and an arbitrary

generator e ® (0, ) ElylGi = [EF]IQ The product of these in [FE]-
[EF] can be expressed in [F]-[E] - [E]-[F] by:

I-
(6“7) - Cayn) - (68) - (5 %¢7)
and application of [F| - [7] - [F] gives:

(6%7) - (0 0ew) - (aoo) - (5%5).
This is sent by [F] - [ <] - [€] to

(6©5”) - (Cwipn) € [FE] - [C]
which, after computing the action using Lemma 3.2, gives

(pi(e), we), BproT(-®¢)) € Gy = [FE.



TENSOR 2-PRODUCT FOR sly: EXTENSIONS TO THE NEGATIVE HALF 38
For the last term, set £ = _® e+ y7(_®e). Then Fp o is:
Epof=_®p(e)+ Efoyr(-®e€) + E(yip1) o tor(-®e)
= _®ple)+yr(_®eld) +yiyeEproT(_®e).

Subtracting -® ¢(e) + ya7(-® (¢(€) — y1p1(e))) to isolate y1y2€’, we obtain
y1y2Er o 7( ® €) and the last component follows. For the final result
observe that Ep;o7(_®e) = cFE(e® p1).
We have [5’]22 : [EF]QQ - [FE]QQ given by

0O 01 0 O
0 0 0 FeE O
n y1 0 0 o
0 1.0 0 O
0 0 0 FoE O

using the ordered decompositions from Eq. 5.5 and Prop. 3.15:

~ [EFl = G1Gy ® EF[y] = Aly)® FE|y|® FE[y)® FEFE[y)® EFly].
— [FEls = U =~ FE[y|® @ F?E*[y].

We compute [7]a first on G1G1, and afterwards on EF[y]. We can use the
same presentation for [77(1)]22 as in the calculations for [&]s;. Let (0, p1) ®
(0',¢}) € G1G; be an arbitrary generator. Then the presentation for the
product in [F]-[E]- [E] - [F] is:

% o) (o) (3 8) - (050)
+ 2, B 0ho) (Coan) (po) (5757)

e ( Flvl Lo\ (El] B2y ) . ( El] E*l] ) . ( Fl¥] L
F2[y] Le G G Gi Gz Fly] Ly )
Using again the calculations for [G]s;, we see that application of [FEZ] o
[FTF] yields:

(8 (gpl,o,oe,o,())) ‘ (8 (9/,0% )> e [FE]-[C).

Now compute the action of (¢, ¢!) on the right on U using Lemma 3.2. For
the matrix part [®], we have:

(w/ 0) . (wl 9) B (@’0901 9-30’)
o 0 0 0) \growr 0.9)°
The submodule form of (¢1,0,6,0,0) is (¢1,0,0,0,7 o Ep) using:
A =71y (Fpy + Efor)
=710 E(y11) + 70 Ef
=710 FEop.

Then after taking the action, the last coefficient of the submodule form is
given by post-composing with E¢’ to obtain A = E¢’ o 7 o E¢p, which we
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expand using ¢ = _.6 + y;¢; and similarly for ¢’
A=FEyo otoEyp
=FE0 oTroFE0+ FE6' o1o E(y101)
+ E(y)) om0 EO + E(y191) o 7 © Ey1ip1).
To compute the bimodule form, evaluate Eq. (3.3) using [®]:
A=

Y1 (E((p' opy)+ E(0.¢) o 7') — YaTY1 (E((p’l op1) + E(0.4)) 0 7') + 12 A°
=Ty, 0 By o (Egpl + Efo 7‘) — yo7 0 E(y1¢}) © (Egpl + Efo 7‘) + y1yaA°
=Ty 0 Ef o (Epy + EfoT) + E(y1¢)) o (Epr + E§ o T) + y1y2A°.

(For the last equality we expand ¢’ = _.0" + y1¢] and use the relation
Ty1 — Yo7 = Id.) By identifying the two expressions we can solve to find
AN° = E¢| o1 o Ep;. So the image is given using the bimodule form of U
by:

0 0 G1 G g
(O (go’ o1, 01, 0.9, 0.0, EpjoTo E(pl)) c (L2 U> = [FE].
Using the fact that F¢|oToFEp; = FoE(p1®¢]) and ¢jop; = FeE(p1®
©}), one recovers the first four columns of the matrix of [5]as.
For the fifth column of [&]s0, we start with an arbitrary generator e® f’ €
EF[y] c [EF]s. The element (0,e,0)® (f’,0,0) € (Ga)gLs is sent by T
of [EF] to e® f'. So we consider the element:

2 (6.00) (B e00) (6 020) - (6700
aeq@

+ Z (6 0.50) (6 0an) (60a0) (0¢on)
be@

e ( ElWl Lo (Bl E°[y] ) . ( El] E*[y] | . ( Elv] L
F2[y] L2 G1 G Gi  Go F2[y] Ly ) °
and we compute its image under FEéo F7F. First apply I'ao of [EE] to
(€4,0,0)®(0,¢,0) and (0, e,0)® (0, e,0), using the rule for bimodule forms

on p. 23:
Tag

(em Oa O) ® (O> €, O) — (07 _y2(6a ® 6)7 _y2(ea ® 6)7 0) € G3>
(0,¢e5,0) ® (0,¢,0) L2 (Ty1(er®e),ep®e,e,®e,0) € Gs.
Next we apply [7]22 to these elements:
(0, —ya(ea ® €), —y(ea @), 0) 2 (e @ .0 @ e, ~Tya(eq @), 0),

(Tyi(er®e), e, Re, e e, 0) T (T(es®e),T(en ®€), T(er ®e),0).

Note that formula (2.7) is given for the submodule form of Gj. Using
Prop. 3.21 of [McM22], one defines a bimodule form in the usual way, where
the last coefficient is x” instead of y. By studying the proof of Lemma 4.3
of [McM22], one observes that the action of 7 on the last coefficient in this
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bimodule form is (also) given by post-composition with 7FE, whence the
final zeros above.

The next step is to express (eae eqe, —TY2(€qe), 0) and (7(epe), T(epe), 7(ere), 0)
back in (G2)cGa (i.e. find a prelmage under Iy (ay)qa,) in order to view
them in [E]-[E]. We will need the notation 7(ee) = 3, 7(e€)10)®T(e€) 2a)
introduced to compute [F91] above.

Claim. We have:

Z (077'(60,6)(1(1):0)®(T(eae)(2d)’le(eae)(Zd)’O) L2z,

—(0.71.(c0€)(10),0) ® (0,791 (€a€) (2).0) (eq€, €ae, —TY2(€q€),0),

deP
Z (0, 7(epe) 10y, 0) @ (0, T(epe) (24, 0) 222, (T(eve), T(epe), T(er€), 0).
deP

Proof. The proof is a direct calculation using the bimodules formulation of
F22|(G2)GG2 on p. 23. O

Thus, after applying F7F, we have the element:

0 0 0 0 0 0 0 0
2 (000) (0 (o,r(eae><1d>,0)) ' (0 (r(eae><2d>,ylr(eae)(zd)vo)) (o (r00)

ae@,deP
0 0 0 0 0 0 0 0
+ Z (o (fa,o,o)) : (0 7(0,Ty1(eae)(1d),0)) . (0 (O,Tyl(eae)(zd),0)> . (0 (f/70,0))
aeQ,deP
0 0 0 0 0 0
+ Z o (0, fb <0 (O,T(ebe)(ld),(])) : (0 (o,r(ebe)(zd),o)> ‘ (0 (f’,o,o)) )
beQ,deP

and we need to apply [F E] -€ and then realize the result in [F E] Observe
that:

(0, 71 (eae) oy, 0) ® (f',0,0) = 0,
(0,7(ep€) 2y, 0) ® (f',0,0) 5 0
Therefore only the top row will remain. We have in submodule form:
(T(6a6)(2d), Y17 (€a€) (24)» ) (f',0,0)
E (/(7(eat) o)), EF 0 70 (L@ y17(€at) 2a)) ) € Gh.
We convert to bimodule form and give this a name:
(0, 01)aa = (f’(T(eae)(2d)), Ef or(L® T(€a6)(2d))) e Gy.
Observe that under the composition isomorphism (Ls)Ge — U we have:
(£2,0,0) ® (0, 7(ea) 14y, 0) — (0,0, fu(2).7(€a€)(1a), 0,0) € U.
We are therefore left with:

2 (8 (070,fa(-)f?eaemd),o,o))‘(8 (9,21)%‘1)6[@]-[0]-

aeQ),de P
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It remains to use the right action of G on R (Lemma 3.2) to compute
the action of (6, ¢1)sq. The new matrix is given for each term of the sum
by:

(E Fromy (L@ T(eal)2a)) 0 ) _ (0 fa(_>-r<eae><1d>>
Ef or(-®T(ese)ea) [(7(€at)2a))) \O 0

0 Ef oty (fa(—)~7_(eae)(1d) ® T(eae)(zd)>
0 Ef'o T(fa(_).r(eae)(ld) ® T(eae)(gd)>

After summing over a and d this becomes:

Yaa (0 Ef'otoyt(_®e) 0 Effor(_®e)
M (0 Ef or(r(_®c¢)) ) - <0 0 )

This matrix gives the first four components of the final element of U.
To find the fifth in submodule form, we compute the submodule form of
(0, 0, fo(2)-7(€q€)ay, 0, 0) and post-compose with E:

Epo (Ty1 0 E(fa(2).T(€q€)(1a)) © 7')
= Bpo (ry (Bfa o r(L) @ T(ene)an))

= (EQf/ oEToy(--® T(eae)@d))) o (Tyl (Bfaor(c)® T(eae)(ld))>
— E*foEtoy (Ty1 (Efa oT(L)® T(eae)(ld)) ® T(eae)(gd))
= Ezf/ o EToTE oy (Efa or(-)® T(eae)(m) ® 7'(6a‘3)(2d))-

(The last equality is, schematically, y; ((TylAA)®B) = TEoyy (AA®B).)
Summing over d and a we obtain:

2
N X i oEToTEoyy (EToTE(._®¢)).

Now observe the following calculation in the nil affine Hecke algebra:

T (T2y) i TiTe = TL(Y3T2)Y1TiTe + TIYITITY
= (mys)(Tey1) 172 + (1Y) T2
= (y371) (Y1 72) 172 + (YoT1)T1T2 + TiTo
= ys(my1) e + 0+ 17
= Y3(YaT1)ToT1To + Y3ToTiTo + T1To

=0+ y3mom T2 + T1T2.
(Here 7; = E" "7 E*~! for whatever n.) Therefore we have:

E*f'o EToTE oyoys (EToTE(--®¢))
=y B?f oTEoEToTE(._®e)+ E*f' o EToTE(__®e).
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Now to find the bimodule form of the fifth component we consider:

Ty o (E*f o ET(._®e€)oT)
=y B?f oTEoEToTE(._®e¢)+ E*f'o EToTE(__®e),

and since this agrees with the expression before it, Eq. (3.3) implies that the
fiftth component in bimodule form is zero. The final expression is (0, 0,Efo
7(_®e€),0,0) e U = [FE]s. Observe that Ef' o 7(_®e) = o(e® f'). This
gives the fifth column of the matrix of [F]s2, and we have now justified all
components of that matrix.

5.2.2. Maps éo F'F and F#'o7. We continue by computing the maps & o PF
and F'7' o7 on the various components of the matrices [FF], [FE], and [C].
As before, we propose these maps in the bulleted lines and justify them in the
paragraphs following.

e We have [0 & F]y; : [EF]1 — [Cu given by e o 2y, F using the decom-
positions:
— [EF]n = EF[y],
— [Clu = Aly]. X
The endomorphism # € End(F) (see (2.6)) determines an endomorphism
of [EF]y; given by zF on EF[y]. The morphism é composes elements of
E with those of F when they are interpreted in Hom py () (X, £'X) and
Hom () (E'X, X). In particular, e € E[y] = [E]i; represents the mor-
phism X; — E’X; given by 1 — ye in degree 0 of the top row, and
f € F[y] = [F]11 represents the morphism given by e — f(e) in degree 0 of
the top row.

e We have [F7 o]y : [Cliu — [FE]u given by (Fhiily(;,y)oﬁ using the
decompositions:
— [Clu = Aly],

Here h;(z1,...,2,) is the complete homogeneous symmetric polynomial of
degree 7 in the variables zq, ..., z,. Note the small case interpretations:
hz—l(x> y) = v =

Observe that [77];; is given by 1 — Idy, € G?° = Endgup)(X2), and
Idx, = (1,0) (in bimodule form). More generally 6 — _.0 € Homa(4E, E)[y]
FE[y] € G*. From (2.6) we have the action of [Z];; on GI* in submodule
form: 7°.(0, ) = (y'0,2" o ). Now convert this expression to bimodule

lle
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form:
tiop=21"0_0+ 2y
=y 0+ (' —y'") o0+ ya'e
=40+ (hi_l(z, y)o _.0+ xto gpl),

so 7.0, 1) = (0, hi_1(x,y) o .0 + ' o ¢1). In particular, 7.(1,0) =
(v, hi—1(x,y)), which gives the proposed formula by viewing z,y as endo-
functors of F instead of as elements of F'E[y].

We have [£0 ' Fy; : [EF]a — [Ca given by (2%, F(e 0 2y, F)) using the
decompositions:

— [EF]a = G\ Fly] = Fly]® FEF[y],

— [Cla1 = Fly].

(Here x € End(F)[y] is given by z(f) = fox.) The map [é]s : G1Fy] —
Fly] is given (using submodule form) by (¢, »)® f — fo¢. The endomor-
phism [Z]y; acts on Gy as described under the previous bullet: 2%.(0, ¢,) =
(y'0, hi_1(z,y) o _.0 + % 0 ;). Then [0 #F]y : G1F[y] — F[y] is given
using bimodule form by:

.(0,01)® fr> foa'op
= fox'o 0+ forlyip,

and the component data follows from this formula.
- - 0
We have [FZ' o 7j]o; @ [Clo1 — [F'E]21 given by ( Y’ > using the
F(Fhi—1(z,y)on)

decompositions:
- [0]21 ~ Fly],
[FE]zl = L2 F [yl ® Fly] & F*Ely].
Let ($0 ( ) = [C], and observe that:

7((76)) =a((56)-(68)) = (#6) 7 ((58)
= (#6)- (%) = (wjo0) e (0 F) = [FE]
Here (0, f,0) is written in the bimodule form of Ly. (The action of f €
F[y] © [C]a1 on generators in Gy — [FE] is given by F[y]Gy — Ls,
f®(6,0) — (0, fo_0,poEf) (written in submodule form), and this image
is (0, f o_.0,p1 0 Ef) in bimodule form.)

Now we apply [F'#]s;. From Eq. (5.3):
[F]-[E] > (L2)6G1 2 (0. £,0) @ (1,0) = (0, /,0) € Ly < [FE].
We have already seen that :Ei.(l 0) = (y', hi_1(z,y)) € Gy, so we have:

(0, £,0)® (1,0) FE" (0, £,0) ® (', b (.9)).
Then ‘ ' ‘
Loy - (07 f7 O) ® (ylv hi,1($, y)) - (07 ny’ z'o Ef)

written in submodule form. In bimodule form the image is:

(anifa hi—l(zay) © Ef)>
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which we compute using;:
o Ef = (y' +yihi_1(z,y)) o Ef
= E(y'f) + y1(hia(z,y) 0 Ef).
Note that F2E[y] 5 hi-1(z,y) o Ef = F(hi1(z,y) o) (f).
o We have [£0 7 F]yy : [EF |12 — [Cli2 given by (2%, (¢ 0 2%y, F)E) using the
decompositions:
— [EF]i2 = Ely|Gy = Ely] ® EFE[y],
— [Cliz = Ely]. 3
The endomorphism [Z];» acts as x on Efy] = [E]1;, and thus as Gy on
Ely]G1 = [EF]12. The map [¢]12 : E[y]G1 — E[y] is given (using submod-
ule form) by e ® (0, ¢) — y; 'o(y1e). (Recall that e € E[y] indicates the
map X; — X, given on the top row by A[y] — E[y], 1 — yie.) So we have:

7€) ® (6, 01) By p(a'yre) = 2(e).0 + pu(a'e),
and the component data follows from this formula. _
o We have [F#' o]y : [Clia — [FE]12 given by ( y?yl > using the
(Fhi—1(z,y)on)E
decompositions:

— [Cli2 = Ely],
— [FEL2 = G2 = E[y] @ E[y] @ FE?[y].
By reasoning as in the [FZ' o 7] case, we find:
e [~] e e nin
[C12(§8) = (5 “u”) e (4 7) = [FE.
using the bimodule form of Gy. Now we apply [Fi']1,. From Eq. (5.3):

[F]-[E] o (L1)6Ga 2 (1,0) @ (e, yre, 0) =23 (e, yre, 0) € Go < [FE].

In (2.6) we have a formula for the action of [#/]s on Gy © [FE] written in
terms of the data ey, ey, . The data (e,yie,0) corresponds to e; = ye,
ez =0, =_Que (see the paragraph after Prop. 3.8). Applying [7']s2
gives ey = y'yie, ez = 0, £ = _®@y'yie + yiy2hi1(72,y)(- ® e), where to
compute £ we have used:
zho (C@uyie) = (¥ + yohi_1(z2,y)) o (@ yr€)
= _Qy'yie + yiy2hio1(z2,y)(-®e).

This corresponds to the data (y'e,y'yie, hi—1(22,y)(-® €)) € G in the
bimodule form. So we have:

Fi'y i i

(1,0)® (e, y1e,0) '8 (1,0) @ (y'e, y'yne, hi-1(w2,9) (@ €))
2 (yieayiyﬁ, hi71<x2ay)(—®e)) €Gy [FE]

Note that FEf[y] 5 ffitl(xg, Y)(®e) = ((Fhi—i(z,y) on)E)(e).
e We have [E0 Z'Fyy : [EF ]9y — [Claz given by:

( y' 0 0 0 —c0hy_y(z,y)F )
) ) ) —FFEeoF (toh;—1(x1,x2))FonEF
hii(z,y)on o'E Fi' Fleoa'yiF)E —FEi-oF((hi,g(;g,922,;))))F02EF
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using the ordered decompositions (recall Eq. (5.5)):

— [EF]as = GIGI® EF[y] = Aly]@ FE[y]® FE|y|® FEFE[y|® EF[y],
— [Clae = G = Aly] @ FE[y].

Consider the first four columns first, i.e. the restriction of the map to GG;.
Take an arbitrary generator (6, p1)® (¢, ¢!). Borrowing a calculation from
the case [€ 0 ' F]y we find:

[} F]22

(0,01)® (0, 0)) " (¥'0, hi_i(z,y) 0 0+ 2" 0 1) ® (¢, ).

Now [£]s2 : G1G1 — G is given by composition, so we have:

(y'0, hi1(z,y) 0 -0 + 2" 0 p1) ® (0, 97)
E (400", _0 o hi_y(z,y) 0 0+ (LO') o 2 0 o1 + &) o (Lyi0)
+@io(@ —y')o b+ ¢ oy’ o)
= (y'00', hi_1(z,y) 0 00" + Qi oa’ o .0+ a' o .0 o o1 + ¢ oyra’ o py).

The first four columns of the matrix of [ o ' F]y can be read off this
formula. .

The last column gives the restriction of [0 Z'F ]y to a map EF[y] —
Aly]® FEly]. Its computation is more involved. We start with a generator
e® f, and note that:

[E]-[F] 5 (G2)aLs 2 (0,6,0)® (£,0,0) *2 e ® f € EF[y] c [EF]a

using 'y |(Gy)or,= K from Eq. (5.4). Now we must apply [Z]s to the first
factor, and then compose the factors, thereby applying [£]s2 and giving an
element of Gy = End(5)(X2).

The data (0,e,0) corresponds to e; = €3 = e, £ = Ty1(-® €) (see the
paragraph after Prop. 3.8). The action of [#]y on Gy < [E] then gives
e1 = yle, ey = x'e, £ = xb oty (_®e). We can compute the composite with
(f,0,0) directly using this information. It is given in submodule form by:

(foy'(Ye—a'e), Ef oroahory(-®e))
= (f(—hi,l(x,y)e), Eforoxbo Tyl(_®e)) € Gy.

It remains to convert this to bimodule form. In the calculation we will
use three facts, easily checked by the reader:

- Ié oOT =T O.Z(,’Zi — hi,1($1,x2>,
- ,’L’% = y] + y?hifl<x27y>7
- Zj+k=i—l Ijlhk_l(IQ,y) = hi—2(x1>$2ay>‘
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Then we have for the main calculation:
Eforozhory((®e)
=—Eforyohi_1(z1,22)(_®e)
=—Efohii(z1,22)(-®¢) —y1 Ef oT0ohi—i(x1,22)(-®e)

=—Ffo Z 2] (" + yohi-1(22,9))C®e€) —yro Ef o7 0 hi_y(z1,22) (- Re)

jtk=i—1
= —Efohi1(r1,y)(-®e) = Ef o (hia(a1,22,y)(-®€) + 70 hi(21,2)(-®e)).
Then observe that:
—Efohii(z1,y)(-®e€) = -® f(—hi—1(z,y)e)
= (—eohin(z,y)F)(eQ f),
and that:

—FEfo <hi—2(171,$2,y)(—®6) + 70 hi—l(ﬂ?1>il?2)(—®6)>
= (—Ef o F (70 hi—1 (w1, 2) + hi—a(21,22,y)) © nE) (e)
= (—FE&‘ o F(T o h;_1(xq,x9) + hi,g(:cl,@,y))F o nEF) (e® f).

(We are using that - ® e considered in Homy(4E, E?)[y] corresponds to
( )( ) in FE?[y]; also note that e(e® f) = f(e) € Aly] induces E f(.®e) =
.f(e) considered in Hom (4 E, E)[y].) The formulas in the last column of

gox’ ]22 follow. o
e We have [Fi' 0 7]y : [Claz — [FE]s given by:

Fy on Y
—Fhiy(x,y)on Y’
0 0
Faion 0

hi1(w1,03) 07 — hz’—z(l"l,ffz,y)) on® F?hi_i(x2,y) 0 FnE

using the ordered decompositions:

= [Cla = G1 = Aly| ® FE[y],

— [FElyw =U =~ FE[y]® @ F?E*[y].

Observe first that 7] : Gy — U is determined by (1,0) — Idg =
(1,0,0,1,0) € U (using bimodule forms). Recall (Lemma 5.6 used for [7]s1)
that:

(L2)aGa 3 [((1)] = D (fa,0,0) @ (€4,0,0) + (0, f,0) @ (0, 5, 0)
ae@® be@
224 (1,0,0,1,0) € U.
The map Ly |(1,)a, of Eq. (5.3) is given by composition and hence right
G{P-equivariant, so we can compute any [7]22((6, 1)) as [7(1)].(6,¢1) €
(L2)aGs. The action of [F#] is applied to elements of (Ly)eGs, and after
that we pass through I'y; again to obtain the final image in U.
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We treat the first column of [Fi# o 7]y, first, and consider the second
column afterwards. For the first column it is enough to consider the case
(0,01) = (1,0). Starting with the first term, the data (e,,0,0) corresponds
toer =0, e2 = —yie,, and § = y27(-®(—y1¢,)). Application of the formula
for [7']s2 gives e; = 0, ea = —2'y1e4, and € = 7 0 yo7(- ® (—y1€,)). Then
we convert this to bimodule form, using:

LL’Z2 © y27—(—® <_y1€a))

=y 0 257(_® (—y1€4))

=45 072} (- ® (—y1€4)) + Yryahi1 (21, T2) (- ® €4)
= 1o7(-® (—ra'eq)) + yryahioi (21, 12) (- @ €q),

where in the third line we have used the first fact given under the previous
bullet. So in bimodule form we have:

[fi]m . (€4,0,0) — ($i€a707 hi71($17$2)(-®€a))-
Now applying I'y; we obtain:
Z (xietu 07 h’i*l(xlv x2)(— & ea)) % (fa7 07 0) = (07 07 07 xiv h’i*l(xla x2) o T) € U7
aeQ

where the last component is computed using:

(sz(_ ® (—yi2'eq)) + yiy2hi1 (21, 22) (- ® ea)> oEf,or
= — YT T + Yryahia (1, 3)T,
together with the facts that ®; = @15 = ®y; = 0 and Py = 2° so:
A=7y1(040) —ya7y; 0 (0 + EDgy 0 T) + y172A°
= —yoTy1 0 Tt o T + Y1y \°.

Continuing with the second term, the data (0, e;,0) corresponds to e; =
ep, €2 = €y, and § = 7y1 (- ® ). Application of the formula for [Z']2; gives
er = y'ey, €2 = z'ep, and & = xh o Ty1(- ® €). Then we convert this to
bimodule form, using;:

zh oty (L® ep)
=1y (c®x'ep) — yrhioi(z1,22) (@ €p)
= (- @ 'es) — y1hia (1, y) (@ )
— y1y2hiz (1, 22,y) (- ® )
= _®z'e, + pr(-Q2'e) — - (2" — y')es
— y1y2hiz(z1, 22, y) (- ® )
=_®y'e+pr(c®@'e) — yiyphia(11, 12, y) (- @ e),

where we have made use of the fact, easily checked by the reader, that:
— y2hi_o(w1, 22, y) = hi_1(x1, 22) — hi—1(21,y).
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So in bimodule form we have:
['22 : (0, €3,0) <—hi—1(551,y)6b,yi€b> —hi—z(ifl,ifz,y)(—@eb))-

Now applying I's; we obtain:

> (—hi—l(ﬂfl, y)ev, y'ey, —hia(w1, T2, y)(-® €b)> © (0, /1, 0)
be@

= (yla _hi—l(xb y)7 Oa 07 _hi—Q(zla L2, y)) € Ua
where the last component is computed using:
zh oty (-®ep) o Efy = ahryy = 7aiys — yrhi1 (21, 72)

together with the facts that ®; = y*, ®o; = —h;_1(71,y), P1a = Py = 0,
SO:

A=7yi0(y +007) —yorys o (—him1(z1,y) + 00 7) + y1yoA°
= 71y’ + yaryrhia (21, ) + yryaA°
= Ty1y’ + yor (2] — y') + y1ypl°
=y’ + Yoty + Y1y
= 12y — yrhic (1, y) + y1yeA°,
so, using again the fact above:
Yo \° = —hi_1 (21, 22) + hio1 (21, y),
A = —hi (21, 19,y).

Finally taking the sum of the two terms, we conclude that [FZ o ]
Aly] — U is determined by:

1 (v, —hici(21,9),0,2", i1 (21, 22) © T — hi_a(21, T2, Y)).

By describing these coefficients in F'E[y] and F?E?|y] instead of in End(E[y])
and End(E?[y]), we obtain the formulas in the first column of the matrix
of [FE o ]]ss.

Now we consider the second column of [F# o]y, a map FE[y] — U. It
is found using the same method but with (0, ¢;) = (0, ¢;) for a generator
1 € FE[y]. We have in bimodule form:

(€4,0,0).(0,¢1) = (0,0, Ep1 0 T(_® —y1€4))
(0, e5,0).(0, 01) = (p1(en), yrepi(es), BEpr o T(® €3)),
where we have used the calculations:
E(y1¢1) 0 927(-® —y1€a) = 1921 0 T(L® —y1€,)
and
E(er) o (-®@er + 1p7(-® ) = -Qurpi(es) + yiyaEBp1 o 7(- @ €p).

Starting with the first term, the data (0, 0, Ep107(_® —ylea)) corresponds
toe; = ey =0 and £ = y1y2Fp; o T(_® —y1e,). Application of the formula
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for [7']92 gives €1 = eo = 0 and € = b oy1y2 By o T(L® —y1€,). Converting
this data to bimodule form is trivial. So we have:

[#]22 : (0,0, By o T(-®@ —y1€4)) = (0,0,25 0 Epy o T(L® —y1€4)).
Now applying I's; we obtain:

Z (O, 0, 1'22 o EQOl o '7'(_@ _y16a>) © (faa 07 0) = (07 Oa 07 Oa —E(Pl © 1'22’7') € U’
aeq@

where the last component is computed using:
1Yty 0 By o T(L@ —yreqa) o EfgoT
= —xé oyyeEproTy 0T
= —y1y2 By 0 LL’éT.

Continuing with the second term, the data (gol(eb), y1e1(es), Epr OT(_®6b))
corresponds to €1 = yip1(€y), e2 = 0, and § = _@yip1(ep) +y1y2Lp1 o07(-®

A1

ep). Application of the formula for [Z']s gives e = y1y'v1(ep), €2 = 0,
and £ = 74 o (_@ y1e1(ep) + 1y B o 7(L® eb)). Then we convert this to
bimodule form, using:

zho (@ urpi(es) + y1y2Ep1 0 T(CQ €s))
= _®y'ypi(er) + y2hi1 (22, 9) @ yipi(er)) + yiyaEor 0 257(- @ ep)
= _Qy'yei(es) + y1ys <hz‘71($27 y) o Eo1(-®ep) + Epy o 2ym(-® €b)>
= _Qy'yip1(es) + y1yaEpy o (IST + i1 (2, y))(_® ep)
= _®@uy'pi(es) + y1ye (—Ewl o ythi—a(1,22,y)(- @ ey) + Epro 7027 (-® 6b))-
So in bimodule form we have:
(722 ¢ (1(en), a1 (en), Epr o T(-® ep)) =
(yi%(eb), y1y'pi(es), By o (257 + hizi(22,9)) (C® 6b))-

Now applying I's; we obtain:

> (y’ipl(eb), yiy'p1(es), Bor o (257 + hio1(22,9)) (- ® 6b)> ° (0, f»,0)
be@

= <yiy1301, yi@h 0,0, Epr 0 (xéT + hi—l(l’%y))) eU,
where the last component is computed using:
(-®@v () + ymeBer o (5 + hia(azy) (@) o By
= y'y1Bor + y1yo By o (2h7 + hisi(22,9)) (- @ €),
together with the facts that ®1; = yiy101, a1 = ylp1, P = Py = 0, s0:
A =1y Epr +007) —yamir (Y By + 00 7) + y1y2A°
= Y'Yy Eor + g1y
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Taking the sum of the two terms, we conclude that [F# o]y, : FE[y] — U
is given by:

$1 = (yiyum, yi%, 0,0, By 0 hy_1(xs, y))

The last component, an element of End 4 (4 E?)[y], is the same as (F?h;_1 (2, y)o
F nE)(gol). This gives the formulas in the second column of the matrix of
[Fi’l (©] 17]]22.

5.3. Maps p,: isomorphisms. Now we have formulas by components for the
maps &, £o #F, and Fi' o7 that are used to define the maps jy. It remains
to make use of the isomorphisms py determined by o, € o 2'F, and Fx’ o7,
together with these formulas, to show that p, are isomorphisms. Note that
px are already known to give morphisms of (C, C')-bimodules, so it suffices to
show that p, are isomorphisms of sets. We will work again by components and
show that [p,];; is an isomorphism of (A[y], A[y])-bimodules for i, j € {1, 2}.

We remind the reader of our notational convention that E) = FEe, for the
idempotents ey € A, of a weight decomposition. Recall that the bimodule E
satisfies ejFe; = ;12 - €;42F¢;, and similarly for F' but with ¢ — 2 instead of
i+ 2. Finally, recall Prop. 4.26 of [McM22] that gives the weight idempotents
for the algebra C.

e We have for [py]i1, A = 0:

[x]11 1 EFvt1[y] = Axi1[y] @ FEri1[y] @ Axia[y]®

given by:
A1

[\ =e@®o@Peoa'y F.
i=0
e We have for [py]11, A < 0:

[5a]11 : EFv1[y] @ Axia[y]® = Avia[y] ® FE Y]

given by:
A1 _
[,5/\]11 = <(§>> Z <Fhi1y(xvy)o77)> )

=0

Proposition 5.9. The morphism of (Aly], Aly])-bimodules [px]11 is an iso-
morphism for all \.

Proof. When A > 0 and therefore A + 1 > 0, the map:

A
c®@Peoa'F: EF\ly] > FE\aly]® Ay
i=0

is just par1 ®k k[y]. It is an isomorphism because py 1 is an isomorphism.

Claim 5.10. When A > 0, the map
A-1

c®e®Peoa’y F: EFyily] = FE [y] @ Ay [y]2M!

i=0
is also an isomorphism.
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Proof. Let M_, € Enday, ,,[y] (A,\H[ ]@“1) be the endomorphism with ma-
trix coefficients [M_, | € Mat Or1)x(A+1) (Ax1[y]°P) given by 1 on the diago-
nal and —y on the subdlagonal and 0 elsewhere. This matrix is invertible,
and M_, is an isomorphism. Observe that:

co(—a"'yF) = —y-coa"'F
Using this we write the map in question as a composition of isomorphisms:

A-1 ‘ 1 0 A '
a@a@@aoﬁylF:(O M )o a@@aoxlF .
-y

=0

By reordering the first two summands in the codomain, we obtain the map
[Pl U

When A = 0, the two formulas for [p,]1; agree. Now assume A < 0, so
A+ 1 <0 and the map:

—(A+1)—
(56) ( Z FLL’ o) T]) . EF)\+1 @ A)\+1[y]®_(>\+l) = FE)\+1|:y:|

is par1 ®k kly], an isomorphism.

Claim 5.11. When A < 0, the map:

-1
<<7> Z Fhi_y(z,y) o 77) t EFy iyl @Aﬂl[y]@_(Ml) — FE\1ly]

is also an isomorphism.

Proof. This time we define an isomorphism M), € End 4, , ] (A,\H [y]@)_(”l))
with components [Mp]; = 1, [My];; = v/~ for j > i, and [M,];; = 0 for
7 < 4. This is an upper-triangular invertible matrix:

2y OF-1

1 yy )
o 01 vy y~ +1)—2
[Mh] - 00 1 ..y O+D)-3
000

;
Now observe that Fz'y’ on = (Fa'on)-y’. We use this and write:

—2—1 —A—2

ZFhi,1($,y>On: Z Z ijoﬁ'yk

i=1 i=0 j+k=i

—(A+1)—1
= ( Z F:L’ion) o My,
=0

and it follows from this and the isomorphism above the claim that the map
of the claim is an isomorphism. O

By writing out terms, we have:

At . A1
() Z ( y ) _ (€ 1y ... Y
o o Fhi—1(a,y)on o 0 n ... Fh_oyo(z,y)on)’
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Interchanging the first two summands of the domain, we obtain the form:

1 (67y7y27"'7y_)\_1)
a1
0 (07 >, Fhiy(z,y) 077) ’
=1

(3

which (by the claim) is manifestly an isomorphism. O

e We have for [py]o1, A = 0:

[a]21 : Fas[y] ® FEF(1[y] — Fag1[y] @ Fasily] @ F?Exii[y] @ Fua[y]®

given by:

1 0
0 Fe
[Pr]or = 0 Fo
A=l Al .
@D ' Feoa'nF)
i=0 i=0

e We have for [py]a1, A < 0:

[Pr]21 : Fasi[y] ® FEF 1[y] @ Faia[y]® ™ = Faaly] @ Faialy] @ F2Ey [y

given by:
1 0 0
Ry
[x]o1 = 0 e Eo Y
0 Fo _il F(Fhi_1(z,y)on)

Proposition 5.12. The morphism of (Aly], Aly])-bimodules [px]21 is an
isomorphism for all \.

Proof. When A > 0, we have that

A—1
Fe®@Fo® @ F(eoa'yF): FEF\;1[y]

i=0
— Fyii[y] @ F2Exi1[y]) @ Fia[y]®

is an isomorphism, using Claim 5.10 and the fact that (horizontal) composi-
tion of the identity functor on F' with an isomorphism gives an isomorphism.
Then [py]21 may be compressed to a lower-triangular 2 x 2 matrix with an
isomorphism in position (2,2), so it is an isomorphism.

When A = 0, the two formulas for [p,]21 agree. Assume now that A <0,
so the map

a1
(FU’ Y, F(Fhisi(ay)o n)> : FEF [yl © Fau[y]® Y — FPEy 1 [y]

7

—_
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is an isomorphism using Claim 5.11. Now expand the notation of the map
[pa]21 in the third column:

1 0 0 0
A1

0 Fe 1 >y
e

0 Fo 0 Y F(Fhii(z,y)on)

=1

After switching the second and third summands of the domain, we obtain
an upper-triangular matrix with isomorphisms on the diagonal, so [fx]o1 is
an isomorphism. O

e We have for [py]i2, A = 0:
[Pa]i2 : Exci1ly] ®@ EFE\_1[y] — Ex-ay] @ Exci[y] ® FE;_[y] @ Ex_1[y]®
given by:

0 el
1 yroekl
[oAJiz=1] O ok
A—1

A1
' @(eoa'yF)E
0 =0

%

e We have for [py]i2, A < 0:
[Aali2 : Exci[y] ® EFE[y] @ Ex 1 [y]® ™ — Exi[y] @ Exoa[y] @ FEZ 4[]
given by:

a1
0 eF Syt
~ &
[Prliz=|1 y10eFE > Y
i=0
a1
0 oF > (Fhisi(z,y)on)E
i=0

Proposition 5.13. The morphism of (Aly], Aly])-bimodules [px]12 is an
isomorphism for all \.

Proof. When A > 0, we have that
A1
cE@oE®P(eoa'yiF)E: EFExAly] — Exaly] @ FE [y] ® Ex[y]®
i=0
is an isomorphism, using Claim 5.10 with F applied on the right. Note that
E applied on the right here is equivalent to y,1F,_1 applied on the right,
and this raises the weight by 2, so we still invoke the isomorphism py,; for
weight \ + 1.
We perform some row operations on the matrix of [py]i2. Subtract y;
times the first row from the second to eliminate the coefficient y; o ¢F.
Then exchange the first and second rows, then exchange the second and
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third rows, then collapse the second and third into the notation of the
fourth. Obtain:

1 0
A1 A1 ,
000 P 1" cE@cED® P(eox'y F)E |’
i=0 i=0

which is upper-triangular with isomorphisms on the diagonal, so the original
matrix for [py]i2 is an isomorphism.

When A = 0, the two formulas for [p,]12 agree. Assume now that A <0,
so the map

—A—1
(“E, N (Fhioa(w,y) o) E) : EFEy 1 [y] @ Exa[y]® ) — FE},[y]

i=1

is an isomorphism using Claim 5.11. Now expand the notation of the map
[pa]12 in the third column:

A1
0 ¢eF 1 >y
i=1
A1
[Paliz=|1 pocE y > Yy
i-1

A-1
0 oFE 0 % (Fhi(z,y)on)E

i=1

Exchange the first and second rows, then the second and third columns,
then collapse the third and fourth columns into the notation of the third,
and obtain:

a1
Iy <y105E, > ylyl)

o
0 1 <d@2y0
=1

(Fhifl(l', y) o T])E)

—-A—1

i=1

0 O <0E,

Since this is upper-triangular with isomorphisms on the diagonal, the orig-
inal matrix [py]i2 is an isomorphism. O

e We have for [py]a2, A = 0:

(5.7) [palae s Axalyl @ FEA[y]®* @ FEFE\ 1[y] @ EFy[y]
— FE  1[y]®' @ FPE}_\[y] @ Axa[y]®* @ FE, [y
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given by: [pa]ae =

0 0 1 0 0
0 0 0 FeFE 0
n Y1 0 0 o
0 1 0 0 0
0 0 0 FoE 0 ,
A-1 A-1
y' 0 0 0 @ —cohi—i(z,y)F
NETR A—1 A=l A-l ‘ =0
@ hici(z,y)on D'E @ Fi' @ Fleoa'nF)E ©
1=0 1=0 1=0 1=0
where
A—1
O = @ —FFEeo F(T o hi_q1 (@1, 22) — hi—a(z1, $2ay))F onkF.
i=0

e We have for [py]a2, A < 0:
(5.8) [palae s Axaly]l @ FEA[y]®* @ FEFE\ 1[y] @ EFy[y]
O [y @ FE L[y — FEA A [y]® ® FPEL_,[y]
given by: [px]a2 =

—A—1 ) s
001 0 0 > Fy'on > Y
i=0 i=0
—A-1 A1
0 0 0 FeE 0 > —Fhi_1(xz,y)on >y
i=0 i=0
n y1 0 0 o 0 0 ,
A1
0 1.0 0 O > Fx'on 0
i=0 \
—A-1
0 0 0 FoE 0 e > F?(hi-i(z2,y)) o FnE
i=0
where
—A-1
@/ = Z F2(hi_1(ll§'1,l’2) oT — hi—Z(xlaany)) 0772'
i=0

Proposition 5.14. The morphism of (Aly], Aly])-bimodules [px]22 is an
1somorphism for all \.

Proof. When A > 0 and therefore A — 1 > 0, the map
A—2
c®@ —coa'F: EF\_1[y] > FE\.1[y]® Ay [y]® !

i=0
is an isomorphism. (The minus sign does not interfere.)

Claim 5.15. When A > 0, the map
A-1
c®@ —cohii(z,y)F: ERaly] — FEx [yl @ Ay [y]®

1=1

is an isomorphism.
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Proof. Define an isomorphism M; € Enda, |,y (A,\,l[y]@_l) with compo-

nents [M}]; = 1, [M}];; = y* 7 for i > j, and [M}];; = 0 for i < j. This is
a lower-triangular invertible matrix:

1 0 .. 0

, Y 1 0 .0
[Mh] = y? Y 1 ... 0 .

T T B S |

Now observe that € o 'y’ F = 7 - ¢ o ' F. Using this, we can write:

A1 A—2
D -cohia(ry)F =P D, vf-(—c02’F)
i=1 i=0 j+k=i

A2
= M; o (@—5oij) ,
i=0

and it follows from this and the isomorphism above the claim that the map
of the claim is an isomorphism. O

Now assume A > 0 and reorder the summands of the domain and codomain
to permute the rows and columns of the matrix of [py]s2. Let the domain
be given in the order:

FE\ 1 [y]® @ Ax_1[y] ® EF\_1[y] ® FEFE\_1[y],

where the first two identical summands appear in the same order as before.
Let the codomain be given in the order:

FE\ 1[y]®? @ Ay_1[y] ® FEA_1[y] @ Ax_1[y]®}!
@ F?E;_ [yl ® FE\_1[y] ® FEA1[y]®* ",

where the new summand number (numbered left to right) and corresponding
old summand number are given precisely in the following chart:

new: 1 2
1

345 6 7 ... A+3 A+4 A+5 A+6 ... 2)\+5
old: 4 6 3789 A+5 2 5 A+6 ... 2\+5.
Writing the matrix of [py]2e for A > 0, with columns and rows changed by
the above permutations, we obtain:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
Y 0 n o 0
A—1 A1
0 0 Y @ —cohi_i(z,y)F 0
i=1 i=1
0 0 0 0 FeFE
0 0 0 0 FoFE
-1 A—1 -1 A1 )
D HE @ F @ hia(ny)on o B Fleo sy F)E

=0 i=0 i=0 =0
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After compressing the notation of rows 4-5 and 6-8 of this matrix, we obtain
a lower-triangular matrix. The last two diagonal entries are:

o
A—1

@ —€0 hi—1($>y)F ’

i=1

which is an isomorphism by the claim, and:

FoFE

FeFE
( ) . FEFE\_\[y] — FE\1[y] ® F*E2_,[y] ® FE_1[y]®

A—1
@ F(eozxiy1 FE
i=0

which is an isomorphism for A > 0, and therefore for A+1 > 0, using Claim
5.10 with F' applied on the left and E on the right.

When A\ = 0 the matrix of [py]s2 is given by removing rows 3, 5—(\ + 3),
and (A4 6)—(2A + 5):

1 00 0 O
0100 O
1 0 p o O

0 0 0 0 FeE
0 000 FobE

When A = 0 we also have isomorphisms:

(n,0) : EFx1[y] © Aly]a1 — FEx1[y]
and
(153%) : F(FEAH)E[?J] — i1 Ely] @F(EFAH)E[?JL

so we see that again the matrix can be written as a lower-triangular matrix
with invertible diagonal entries.
Finally, assume A < 0. We have an isomorphism:

Y
(“’ D Fato n) L ER [y ® Ay [y]® 070 S FE A [y),

which is the isomorphism py_1 ®y k[y]. There is a final claim to check:
Claim 5.16. When A < 0, the map

1=0

a1
(0'7 n, Z —Fa'y; o 77) EFR [yl ® A,\fl[y](ﬁf(/\fl) — FE\4|y]

is an isomorphism.

Proof. Define an isomorphism M’ € Endg,_,y (Ax_1[y]®~ A=) with com-
ponents [ M;];; given by 1 along the diagonal and —y along the subdiagonal.
This is a lower-triangular invertible matrix. We write the map in question
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as a composition of isomorphisms:

=1 -2
(a,n, Z —inylon> = (a,n,Zinon>

=0 i=1

IdEFxfl[y] 0 0
o 0 IdAA,l[y] 0 o (IdE%\l[y] ]WQI ) .
0 0 e ’y

U

Now let W be the endomorphism of the codomain of [gy]22 given by the
invertible matrix:

We show that [W] - [pa]2z is equivalent to a lower-triangular matrix after
giving a suitable permutation of the domain and codomain summands. Let
the domain be given in the order:

EF\ 1 [yl@Asi[y]” Y VOFE\ 1 [y|OF EFEy\_[y]®F Es_i[y]" " VOFE\_[y]*,

where the change of summand numbers is given by the following chart:

new: 1 2 3 4 “A+2 —-A+3 -A+4
old: 5 1 6 7 —-A+5 2 4
new: —A+5 —A+6 ... —22+4 -22+5 —-2\+6

old: —A+7 —A+8 ... =2X+5 —=A+6 3.

Let the codomain be given in the order:
FE\[y]* @ FPEX_ [y),

where the change of summand numbers is given by the following chart:

The matrix of [W] - [pa]az for A < 0 agrees with that for [py]2e except in
the third row, where it is:

-2—1
(77 000 o —Fa'y,on 0 O).
i=0

Writing now the matrix of [W] - [px]e2 with columns and rows changed by
the above permutations, and compressing the notation for some columns,
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we obtain:
a1 _
<a,77, > —Fzly on) 0 (0,0) 0 0
=
(0,0, Z].szon) 1 (0,0) 0 0
i=0
a1
(0,0,@/) 0 (FO’E, Z F2hi1(I2,y)OFT]E> 0 0
—A-1 = —A-1
(0,0, > —Fhi_1(x,y) 077) 0 (FEE, > yl) 1 0
=0 “A-1 7>\711:1‘
(0,0, > Py 077) 0 (0, > ylyl) yo 1
i=0 i=1

The upper left map is an isomorphism by the Claim proved above. The
middle diagonal map is an isomorphism because it is the isomorphism of
Claim 5.11 with F' applied on the left and E on the right. So the matrix is

lower-triangular with isomorphisms along the diagonal. U
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