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A TENSOR 2-PRODUCT OF 2-REPRESENTATIONS OF sl`2

MATTHEW MCMILLAN

Abstract. We construct an explicit abelian model for the operation of
tensor 2-product of 2-representations of sl`

2
, specifically the product of a

simple 2-representation Lp1q with a given abelian 2-representation V taken
from the 2-category of algebras. We study the case V “ Lp1q in detail, and
we show that the 2-product in this case recovers the expected structure.
Our construction partially verifies a conjecture of Rouquier from 2008.
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1. Introduction

1.1. Background and motivation. The operation of tensor product is ubiq-
uitous in representation theory and its applications. It is a primary means of
generating new representations from old ones. In classical Lie theory this
operation arises from the Hopf structure of the enveloping algebra.

In [CF94], Crane and Frenkel outlined a program to build topological in-
variants using a higher representation theory. The program was conceived as a
way to formulate invariants algebraically in 4d that upgrade known invariants
in 3d such as the TQFT of Witten-Reshetikhin-Turaev [Wit89, RT91]. The
idea was to implement categorical versions of classical algebraic structures.
Crane and Frenkel proposed a concept of ‘Hopf category’ to upgrade the Hopf
structure of quantum groups that was central to the WRT invariant.

A fully developed Hopf categorical representation theory will have good
definitions of categorical algebra, categorical representation, and categorical
Hopf structure. The notion of 2-representation was provided with a good
definition for sl2 in work of Chuang-Rouquier [CR08], and the graded case
descending to quantized structures in work of Lauda [Lau10]. The definitions
were generalized to all Kac-Moody algebras in [Rou08a] and [KL09, KL11].

A tensor 2-product operation would give the higher analog of an aspect of
Hopf structure, or at least of the expression of Hopf structure on the category
of representations of the algebra. A 2-product is defined in an A8 setting by
Rouquier [Rou], but no explicit formulas are known for the product action in
that setting, and the setting itself brings significant technical complications.
Rouquier has conjectured [Rou08b] that a subcategory affording an abelian
2-representation should exist. The main construction of this paper partially
verifies his conjecture by identifying an abelian 2-product when one factor
is Lp1q and the other factor V is taken from the 2-category of algebras. In
addition, our construction takes a step toward defining a practicable 2-product
by providing explicit formulas for the 2-representation component structures.

In early work of Bernstein-Frenkel-Khovanov [BFK99], the authors consider
a category whose Grothendieck group is the tensor product of fundamental
representations. Their methods were extended by Stroppel [Str05] and oth-
ers (cf. [FKS07, MS09, SS15, Sus07]) to find a category with Grothendieck
group isomorphic to any given tensor product of finite dimensional simples
in type A. Graphical methods were developed by Webster [Web17, Web16]
to produce categories for tensor products of simples for general Kac-Moody
algebras. We expect these categories to be equivalent to tensor 2-products of
simple 2-representations.

The Crane-Frenkel program for building TQFTs gives perhaps the most
compelling motivation to find a categorical product. In the case of sl2, a
2-product will play a central role in a prospective 4d TQFT that extends
Khovanov homology. Glimmers of this 4d theory have been seen by physicists
[GPV17], and some aspects are defined rigorously in some cases [GM21]. Along
these lines, recent work of Manion-Rouquier [MR20] on the case of the super
Lie algebra glp1|1q` shows that a 2-product can be used to describe Bordered
Heegaard-Floer theory for surfaces [LOT18].
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1.2. Result. Let U` denote the monoidal category associated to the positive
half of the enveloping algebra of sl2. Let us be given a field k and the data of
a k-algebra A and a triple pE, x, τq as follows. Let E be an pA,Aq-bimodule,
let x P EndpEq and τ P EndpE2q be bimodule endomorphisms, and suppose
that x and τ generate an action of the nil affine Hecke algebra, that is, that
they satisfy the following relations:

τ 2 “ 0,

τE ˝Eτ ˝ τE “ Eτ ˝ τE ˝ Eτ,

τ ˝ Ex “ xE ˝ τ ` 1, Ex ˝ τ “ τ ˝ xE ` 1.

(Here we write xE for the endomorphism x b IdE in EndpE2q, and similarly
for the others.) This data determines a 2-representation V of U`.

We can give such data for a simple 2-representation Lp1q of U` that categori-
fies the fundamental representation Lp1q of sl2. The k-algebra is krys`1ˆkrys´1

(decomposed into weight algebras), and the triple is pkrys, y, 0q. Here y P
krys´1 acts on krys on the right by multiplication, and y P krys`1 acts by
zero. These roles are reversed for the left action. The endomorphism x acts
by multiplication by y.

Let Pn “ krx1, . . . , xns be the polynomial algebra. Then Pn acts on En with
xi P Pn acting by the endomorphism En´ixEi´1.

This paper is organized around a proof of the following theorem.

Theorem (Main result). Suppose x and τ satisfy the nil affine Hecke relations,
so pE, x, τq gives a 2-representation of U` for the algebra A, denoted V, and
suppose the bimodule E has the following additional properties:

‚ AE is finitely generated and projective,
‚ En is free as a Pn-module.

Then we define explicitly:

‚ a k-algebra C (Def. 3.32),

‚ a bimodule Ẽ (Def. 3.38),
‚ endomorphisms x̃ and τ̃ (Def. 4.4),

such that x̃ and τ̃ satisfy the nil affine Hecke relations, so pẼ, x̃, τ̃ q gives the
data of a 2-representation of U` for C that we denote Lp1q b V.

We have two reasons to interpret the new 2-representation as an abelian
model for the 2-product Lp1q b V: it is derived from an approach to cate-
gorifying the Hopf coproduct formula, and in a class of cases it recovers the
expected result. In this document we study the case Lp1q b Lp1q in detail. In
forthcoming work with Laurent Vera we show that Lp1q b Lpnq recovers the
expected structure for every n P Z

ą0.
In another paper [McM23] we consider the extension of the construction

given in this paper to actions of the full 2-category U associated to the en-
veloping algebra of sl2, and not only its positive half. When the functor EbA´
has a right adjoint given by tensor product with a bimodule F , and the pair of
them satisfies some additional relations that categorify the commutator iden-
tities, the action is said to give a 2-representation of U . We show that if the
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original bimodule E has such an F giving an action of the full U on V, then
there is also a bimodule F̃ , given as the right-dual of Ẽ, which together with
Ẽ provides an action of the full U on Lp1q b V.

In a third paper (forthcoming) we consider several questions about the 2-
product construction that are motivated by the search for a 4d TQFT. For
example, one would like to iterate the construction:

Lp1qbn “ Lp1q b
´

Lp1q b
`

Lp1q b . . .
˘

¯

.

To define this product, we need to establish that our Ẽn construction is free as
a krx̃1, . . . , x̃ns-module. We also want a product in the reverse order, V b Lp1q,
to determine an iterated product with arbitrary parenthesization. Questions
about associativity make sense at that point. We would like to establish func-
toriality in the argument V. A further step would be to produce a braid group
action on iterates Lp1qbn, as well as ‘cup and cap’ morphisms.

1.3. Technique. Let us be given V as described above. Write Ey for the

pArys, Arysq-bimodule Erys
M

px ´ yqErys. We begin with a ‘naive’ algebra B

formed from the underlying data of Lp1q and V:

B “

ˆ

Arys Ey

0 Arys

˙

.

There is a natural candidate E 1 for the diagonal action of U`, but it is a
complex of pB,Bq-bimodules, not a bimodule. It is given as a complex in
degrees 0 and 1 by

E 1 “

ˆ

Erys ErysEy

0 Erys

˙

d
Ñ

ˆ

Ey EyEy

Arys Ey

˙

.

(The differential and action data are described in Definition 3.2.) There is also
a natural candidate for x P EndpE 1q arising from the data of Lp1q and V, but
that x is not equivariant over the action of generators in Ey in B.

Let e1 “
ˆ

1 0
0 0

˙

P B. Our technique in this paper is to define a new algebra

C “ EndKbpBqpBe1 ‘ E 1e1q

that is derived-equivalent to B. The bimodule complex E 1 may be transported
through the equivalence, and the result is quasi-isomorphic to a complex Ẽ

of pC,Cq-bimodules that is concentrated in degree 0 and projective on the
left. We consider Ẽ to be a pC,Cq-bimodule, and we construct explicit bi-

module endomorphisms x̃ P EndpẼq (compatible with x) and τ̃ P EndpẼ2q
that satisfy the nil affine Hecke relations. The data pC, Ẽ, x̃, τ̃ q determines a
2-representation that we call Lp1q b V.

In order to define x̃ and τ̃ and verify the relations, we study the tensor
powers Ẽn. These powers can be parametrized by explicit models containing
HomKbpBqpE

1e1, E
1ne1q. We give presentations of these modules by generators

and relations for n “ 1, 2, 3, 4.
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1.4. Explanation. Suppose HM and HN are two representations of a Hopf
k-algebra H with coproduct ∆ : H Ñ H2 and antipode S : H Ñ H . There
is a large outer product M bk N with two commuting actions of H on the
two factors, and a third, diagonal, action given by first applying ∆. There is a
smaller productMbHN using S to viewM as a right H-module. The smaller
product is related to the larger one as follows: M bH N is the largest quotient
of M bk N on which ∆pHq acts by 0. This can be seen using the formulas
∆phq “ hb 1 ` 1 b h and Sphq “ ´h for enveloping algebras of Lie algebras,
with which the condition ∆phq.pmbnq “ 0 may be written m.hbn “ mbh.n.

Now let Vi be an abelian category of Ai-modules for i “ 1, 2, where Vi is
a 2-representation of U` with data pEi, x

i, τ iq. We can easily define a large
outer product category V1 bk V2 that has two commuting actions of U`. We
seek a kind of diagonal action of U` on V1 bk V2. One can also describe a
smaller product without diagonal U`-symmetry. Objects should be generated
by pairs of modules M P V1, N P V2 together with functorial isomorphisms
E1pMq bk N

„
ÝÑ M bk E2pNq that are equivariant over the actions of xi on Ei

and τ i on E2
i . These isomorphisms categorify the conditions ∆peq.pmbnq “ 0.

At this point we make three conceptual moves. First, we expand the larger
product category by including with each pair M P V1, N P V2 a morphism
αN
M : E1pMq bk N Ñ M bk E2pNq, functorial in M and N , that is x- and
τ -equivariant. So we define objects of V1 b V2 to be triples of the form
pM,N ;αN

Mq. Second, we consider morphisms αN
M as two-term chain complexes,

in particular mapping cones, and move to a derived context. Third, for the new
diagonal action of E on pM,N ;αN

Mq we take the cone complex C “ ConepαN
Mq

itself. In the derived category, this complex is zero precisely when αN
M is an

isomorphism, which is the correspondence we sought.
To complete the idea, it is necessary to supply natural x- and τ -equivariant

morphisms α
pIdbE2qC
pE1bIdqC in order to make C an object in V1 b V2, and to supply

endomorphisms x and τ of ConepαN
Mq and ConepConepαN

Mqq satisfying Hecke-
type relations in order to make a 2-representation of U using ConepαN

M q for
the image of E. Here one encounters further technical difficulties. In [Rou],
Rouquier is expected to give a general definition of tensor 2-product by working
in an A8 setting that encodes the technical difficulties as higher homotopies.
For example, the failure of equivariance of the natural x P EndpE 1q mentioned
in §1.3 can be expressed as a homotopy.

In our setting for Lp1q b V, we have Lp1q given by the data pA˝, krys, y, 0q
with A˝ “ krys`1 ˆ krys´1, and V given by the data pA,E, x, τq. One can
define a tensor algebra B1:

B1 “ TA˝bkA

`

_krys bk E
˘

.

There is a canonical isomorphism _krysbkE
„
ÝÑ Erys, and another A˝ bkA

„
ÝÑ

Arys ˆ Arys. The data of a B1-module is equivalent to the data of a triple
pM,N, αN

Mq whereM,N P Arys-mod and αN
M : ErysbArysM Ñ N . Since τ 1 “ 0

in this case, α is automatically τ -equivariant. We can enforce x-equivariance
of α by taking a quotient by I “ Impx ´ yq, where x ´ y is understood in
EndAryspErysq. Then the algebra B1{I is isomorphic to the algebra B in §1.3.
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1.5. Outline summary. The paper is organized as follows:

‚ In §2 we describe some conventions and background theory. We are working
in the setting of monoidal categories of the form BimkpAq for a k-algebra
A: objects are pA,Aq-bimodules, morphisms are bimodule maps. The data
of a 2-representation of U` consists of an algebra A, a bimodule AEA, and
endomorphisms x P EndpEq and τ P EndpE2q satisfying nil affine Hecke
relations.

‚ In §3 we begin with a naive product algebra B and complex of bimodules

BE
1
B. We construct a derived-equivalent algebra C. We define a pC,Cq-

bimodule Ẽ and study a new class of bimodules we call Gn that arise inside
the tensor powers of Ẽ. This study has a technical and computational
flavor.

‚ In §4 we construct the new nil affine Hecke action, with generators x̃ and
τ̃ , on powers of the new bimodule Ẽ. More computations are required to
establish the properties we need. They rely on results about Gn proved in
§3.

‚ In §5 we give explicit details for the most basic example of our construction:
Lp1q b Lp1q. This product agrees with a well-known categorification of
Lp1q b Lp1q, where Lp1q is the fundamental representation of sl2.

1.6. Acknowledgments. I thank Raphaël Rouquier for sharing his ideas,
and for advice along the way with many aspects of this project. I am indebted
for his time and attention. I thank Laurent Vera for working with me in
early stages of the project. I thank You Qi and Weiqiang Wang for helpful
comments on the manuscript. I thank David Reutter for opening my interest
in categorical mathematics while at Cambridge some years ago.

This work was supported by an NDSEG Research Fellowship from the US
Department of Defense and by the NSF through grant DMS-1702305.

2. Background structures

Let k be a field.

2.1. Nil affine Hecke algebras. The nil affine Hecke algebra 0Hn is the
k-algebra with generators x1, . . . , xn, τ1, . . . , τn´1 and relations:

xixj “ xjxi, τ
2
i “ 0,

τiτi`1τi “ τi`1τiτi`1,

τiτj “ τjτi if |i´ j| ą 1,

τixj “ xjτi if j ´ i R t0, 1u,

τixi “ xi`1τi ` 1, xiτi “ τixi`1 ` 1.

Define si “ τipxi ´ xi`1q ´ 1. Observe that s2i “ 1 and si ˝ τi “ τi.

2.2. U`psl2q and its 2-representations.
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2.2.1. Monoidal category U`.

Definition 2.1. Let U`psl2q (hereafter ‘U`’) be the strict monoidal k-linear
category generated by an object E and maps x : E Ñ E and τ : E2 Ñ E2

subject to the relations:

τ 2 “ 0,(2.1)

τE ˝Eτ ˝ τE “ Eτ ˝ τE ˝ Eτ,(2.2)

τ ˝ Ex “ xE ˝ τ ` 1, Ex ˝ τ “ τ ˝ xE ` 1.(2.3)

We write s “ τ ˝ pEx´ xEq ´ 1. Observe that s2 “ 1 and s ˝ τ “ τ .
One easily checks that non-trivial Hom spaces of U` are Hecke algebras:

Proposition 2.2. The objects of U` are the En for n P Z
ě0, and

HompEn, Emq –

#

0Hn n “ m

0 n ‰ m

with the isomorphism from 0Hn given by xi ÞÑ En´ixEi´1, τi ÞÑ En´i´1τEi´1.
Using the obvious morphism 0Hn b 0Hm Ñ 0Hn`m, the diagram commutes:

0Hn b 0Hm
0Hn`m

EndpEnq b EndpEmq EndpEn`mq.

– –

b

2.2.2. 2-representations of U`.

Definition 2.3. A 2-representation of U` on a category V is a strict monoidal
functor U` Ñ EndpVq. The data of such a functor consists of an endofunctor
E of V and natural transformations x P EndpEq, τ P EndpE2q satisfying (2.1)–
(2.3). A morphism of 2-representations pV, E, x, τq Ñ pV 1, E 1, x1, τ 1q consists
of a functor Φ : V Ñ V 1 and an isomorphism of functors ϕ : ΦE

„
ÝÑ E 1Φ such

that:

ϕ ˝ Φx “ x1Φ ˝ ϕ : ΦE Ñ E 1Φ,

E 1ϕ ˝ ϕE ˝ Φτ “ τ 1Φ ˝ E 1ϕ ˝ ϕE : ΦE2 Ñ E 12Φ.

Note that EndpVq is the full sub-2-category of the 2-category of categories
Cat generated by the object V. One can define U` as a 2-category with a
single object, so that the data of 2-representation is the data of 2-functor from
U` to Cat. This justifies our ‘2’ prefixes.

In this paper we study monoidal functors from U` to monoidal categories
of the form BimkpAq which are defined for k-algebras A as follows: the objects
of BimkpAq are pA,A)-bimodules, and the morphisms of BimkpAq are bimod-
ule maps. The monoidal structure on BimkpAq is given by tensor product of
bimodules over A.
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Note that there is a 2-category Algk with k-algebras, bimodules, and bimod-
ule maps as the objects, 1-morphisms, and 2-morphisms. Then BimkpAq is the
full sub-2-category of Algk generated by the object A.

Proposition 2.4. The data of a 2-representation U` Ñ BimkpAq for a k-
algebra A consists of a bimodule AEA and bimodule maps x P EndpEq, τ P
EndpE2q that satisfy (strictly) the relations of U`.

We will use ‘xi’ and ‘τi’ to denote the generators in any 0Hn (where i ď n

for xi and i ă n for τi are assumed). Given a 2-representation for a k-algebra
A with bimodule E, these symbols are also used to denote the corresponding
elements in each EndpEnq.

2.2.3. The 2-representation Lp1q. A simple 2-representation of U` is given
for the algebra A “ A`1 ˆ A´1, Ai “ krys, by the bimodule E “ krys, where
y P A´1 acts on the left by 0 and on the right by multiplication by y, and
y P A`1 acts on the right by 0 and the left by y. The Hecke actions are
generated by x P EndpEq acting by multiplication by y, and τ P EndpE2q
satisfies τ “ 0 because E2 “ 0.

2.3. Further conventions. Assume we are given data pA,E, x, τq determin-
ing a 2-representation, and fix these through §4. Assume that AE is f.g. pro-
jective and that En is free as a Pn-module.

Consider the endomorphism x´y of the pArys, Arysq-bimodule Erys. Its im-
age px´yqErys is a sub-bimodule of Erys. Write Ey for the quotient Erys

L

px´
yqErys. (Alternatively: Ey is E extended to an pArys, Arysq-bimodule by spec-
ifying that y acts on both sides by x.) The projection

π : Erys Ñ Ey

eyn ÞÑ xnpeq

is a surjection of bimodules.
We simplify notation for tensor products by adopting a convention that

concatenation indicates the tensor product over an algebra that is clear from
the context. Sometimes it will be unclear whether a tensor product is meant
over A or over Arys, so we further stipulate that if the expression for a module
contains ‘y’, it will be understood as an Arys-module, and if the expression
lacks ‘y’, it will be understood as an A-module. Concatenation will indicate
tensor product over Arys if both are Arys-modules, otherwise it will indicate
tensor product over A.

We will tacitly use canonical isomorphisms such as

Mrys bArys Nrys
„
ÝÑ Mrys bA N

„
ÝÑ pMNqrys

for M a right A-module and N a left A-module. For example, EEy denotes
E bA Ey according to our convention, but this is canonically isomorphic to
Erys bArys Ey, and the latter may be written ErysEy. So we may write either
EEy or ErysEy with equivalent meanings.

Extend x to EndpErysq by x : eyn ÞÑ xpeqyn and τ to EndpE2rysq by τ :
eeyn ÞÑ τpeeqyn. The map s defined above in terms of x and τ extends in
the same manner to a map in EndpE2rysq. Note that we denote an arbitrary
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element of Erys by the single letter ‘e’. Similarly an arbitrary element of E2rys
is denoted by the doubled symbol ‘ee’, which may well not be a simple tensor
of the form e b e. Later we will use ‘eee’ or ‘eeei’ as suggestive notation for
elements of E3rys, and so on.

Define δ “ τ ˝ pEx´ yq P EndpE2rysq. We also consider the extensions of xi
and τi to E

nrys, and then si and δi defined by their same formulas but replacing
x with xi and τ with τi. Some important identities are quickly verified:

Lemma 2.5. We have

‚ s2 “ 1, so s is an isomorphism
‚ δ2 “ δ, so δ is an idempotent,

and we also have s2i “ 1 and δ2i “ δi.

We adopt a flexible notation yi “ xi´y until §5. Here yi indicates
`

EjxEi´1´

y
˘

for some j, and context will determine the value of j. Note that δi “ τiyi.
One may check that s ˝ x2 “ x1 ˝ s and s ˝ x1 “ x2 ˝ s. It follows that s

exchanges y2 and y1 and descends to a map:

s : Ey bArys Erys Ñ Erys bArys Ey.

So we have s : E2 Ñ E2 a map of pA,Aq-bimodules, and this induces s :
E2rys Ñ E2rys as well as s : EyE Ñ EEy, maps of pArys, Arysq-bimodules.
Context will determine the domain and codomain for the symbol s.

Lemma 2.6. We also have:

‚ π1 ˝ δ “ s ˝ π2 : E
2rys Ñ EEy.

We define projections πi : Enrys Ñ En´iEyE
i´1 “ Enrys

L

pyi) by πi “
En´iπEi´1. The same names may be used for maps between products with
Ey factors, for example π2 : EEy Ñ EyEy.

Given a module AM , its algebra of endomorphisms EndApAMq will use the
traditional order of composition for multiplication: pf ˝ gqpmq “ fpgpmqq.
Typically, but not always, ‘˝’ is written to emphasize this convention. A
consequence is that for a ring A, the algebra EndApAAq is identified with Aop.

Given two complexes M , N of A-modules, we will write H omApM,Nq for
the complex generated by homogeneous A-module homomorphisms from M

to N . In degree n it is given by homogeneous maps of degree n, and the
differential is dpfq “ d ˝ f ´ p´1q|f |f ˝ d for f a homogeneous map of degree
|f |. The notation Z iM refers to the degree i part of the kernel of d.

Given an algebra R, we write DbpRq for the derived category of bounded
complexes of left R-modules. A strictly perfect complex of left R-modules
is a bounded complex of finitely generated projective R-modules. The cate-
gory per R Ă DbpRq is the full subcategory of complexes quasi-isomorphic to
strictly perfect complexes. Given M P DbpRq, we write xMy∆ for the smallest
triangulated strictly full subcategory of DbpRq closed under direct summands
and containing M .

Lemma 2.7. We have xRy∆ “ per R.
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2.4. Generalized matrix algebras and tensor product. Suppose we are
given k-algebras A and D, bimodules ABD and DCA, and bimodule maps

AB bD CA
γ1ÝÑ A

DC bA BD
γ2ÝÑ D.

With this data we can define a new k-algebra R:

R “

ˆ

A B

C D

˙

,

where multiplication of matrices is defined with the customary formulas using
the above bimodule structures and maps.

A right R-module consists of the data ofM1 a right A-module,M2 a right D-

module, a mapM1bAB
α
ÝÑ M2 of right D-modules, and a mapM2bDC

β
ÝÑ M1

of right A-modules, such that the latter two maps are compatible with γ1
and γ2. Here compatibility with γ1, for example, means that the following
compositions agree:

M1 bA pB bD Cq
IdM1

bγ1
ÝÝÝÝÝÑ M1 bA A

„
ÝÑ M1

pM1 bA Bq bD C
αbIdCÝÝÝÝÑ M2 bD C

β
ÝÑ M1.

The data of a left R-module may be given in a similar form.
Let

M “
`

M1 M2

˘

be a right R-module, and

N “

ˆ

N1

N2

˙

a left R-module. Their tensor product M bR N may be formed as follows.
Consider the pair of maps given by the R action data:

M1 bA B bD N2
IBÝÑ M1 bA N1 ‘ M2 bD N2

M2 bD C bA N1
ICÝÑ M1 bA N1 ‘ M2 bD N2

by IBpm b b b nq “ m b b.n ´ m.b b n and likewise for IC . Then we have an
isomorphism:

pM1 bA N1 ‘ M2 bD N2q
L

pIB ` ICq
„
ÝÑ M bR N.

Now let F P EndRpNq be an endomorphism of left R-modules. It determines
an endomorphism IdM bRF P EndkpM bRNq which will be denoted MF . We
can study this on components as follows. There are induced endomorphisms
F1 P EndApN1q and F2 P EndDpN2q given by restriction of F . These determine
endomorphisms M1F1 P EndkpM1 bA N1q and M2F2 P EndkpM2 bD N2q, and

these in turn provide together an endomorphism

ˆ

M1F1 0
0 M2F2

˙

of M1 bA

N1‘M2bDN2. The property of fullR-linearity of F implies that this morphism
preserves the submodules IB and IC , and descends to the quotient M bR N

where it agrees with MF .
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Lemma 2.8. In the notations used above, an element of EndkpM bR Nq of
the form MF for F P EndRpNq is uniquely determined by the induced maps
M1F1 and M2F2.

3. Product category

Given a 2-representation V for A with U`-action data pE, x, τq, we seek

a 2-representation for C with data pẼ, x̃, τ̃q to serve as the tensor 2-product
Lp1q b V. In this section we describe our proposal for the algebra C and data

pẼ, x̃, τ̃q, and in the next section we study this data and verify that the nil
affine Hecke relations hold for x̃ and τ̃ .

3.1. Naive product category.

3.1.1. Naive product algebra B.

Definition 3.1. Let B be the k-algebra:

B “

ˆ

Arys Ey

0 Arys

˙

.

Here the algebra structure of B is given by matrix multiplication, with the
pArys, Arysq-bimodule structure of Ey contributing for products with genera-
tors in B12.

A left B-module consists of a pair
`

M1

M2

˘

of left Arys-modules, together with
a morphism α : Ey bArys M2 Ñ M1 of left Arys-modules. A right B-module
is the data of a pair p N1 N2 q of right Arys-modules, together with a morphism
β : N1 bArysEy Ñ N2 of right Arys-modules. It follows that a pB,Bq-bimodule
can be written as a matrix of pArys, Arysq-bimodules with accompanying maps
α and β giving left and right actions of Ey. Such a matrix with α, β determines
a pB,Bq-bimodule only if the actions commute. Usually this commutativity
is obvious and we do not bother to check it.

A complex of left B-modules is the same data as a pair of complexes of Arys-
modules together with a morphism α of complexes; note that the differential
of Ey bM2 for a complex pM2, dq is just Ey b d. Similarly for right B-module
complexes.

3.1.2. Endofunctor E 1 of B-cplx.

Definition 3.2. Let E 1 be the following bounded complex of pB,Bq-bimodules
concentrated in degrees 0 and 1:

E 1 “

ˆ

Erys ErysEy

0 Erys

˙

d
Ñ

ˆ

Ey EyEy

Arys Ey

˙

.

Here the left action data ‘α’ for B generators in Ey is given on the degree 0 part
as a matrix using the decompositions 0‘EyErys and Erys ‘ErysEy by p 0 0

0 s q,

and on the degree 1 part by
´

IdEy 0

0 IdEyEy

¯

. The right action on the degree 0

part is given by
´

IdErysEy 0

0 0

¯

and on degree 1 it is given by
´

IdEyEy 0

0 IdEy

¯

. The

differential d is given componentwise by
`

π πbIdEy

0 π

˘

.
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Tensoring by E 1 on the left gives an endofunctor BE
1 bB ´ of the category

of complexes of B-modules. It is convenient to have a formula for the action
of this endofunctor on an arbitrary complex of modules:

Lemma 3.3. Let M “
``

M1

M2

˘

, α
˘

be a complex of B-modules. The action of
the functor E 1 bB ´ on M is given by:

ˆˆ

M1

M2

˙

, α

˙

E1

ÞÝÑ

¨

˚

˝

¨

˚

˝

ErysM1

πM1
ñ

‘ EyM1r´1s

ErysM2

α˝πM2
ñ

‘ M1r´1s

˛

‹

‚
,

ˆ

Erysα ˝ sM2 0
0 IdEyM1

˙

˛

‹

‚
.

Here the top and bottom rows express cocones of the maps πM1 and α ˝ πM2.

Remark 3.4. It may help motivation to consider the effect of E 1 at the level
of the Grothendieck group when M1 and M2 are just modules, not complexes.
The following discussion is not intended to be precise or complete.

Suppose M 1
1 and M 1

2 are projective left A-modules, and R1 and R2 are
projective left krys-modules. Consider the projective left Arys-modules M1 “
R1 bk M

1
1 and M2 “ R2 bk M

1
2. These are elements of the outer product of

categories pkrys-projq bk pA-projq. Suppose α : EyM2 Ñ M1 is given. Apply
E 1 to

``

M1

M2

˘

, α
˘

. The upper row is quasi-isomorphic to:

ker
`

ErysM1
πM1ÝÝÑ EyM1

˘ „
ÝÑ py1ErysqM1

„
ÝÑ ErysM1

„
ÝÑ R1 bk pE bA M

1
1q,

where the first isomorphism follows by flatness of M1. Letting e denote the
action of E on the Grothendieck group, we have p1b eq

`

rR1s bk rM 1
1s

˘

for the
upper row in the Grothendieck group. The lower row is the cocone of α, which
contributes rErysM2s ` rM1s in the Grothendieck group. Now recall that the
raising functor for Lp1q is just krys. So:

M1
„
ÝÑ pkrys b 1q

`

R1 bk M
1
1

˘

, rM1s “ peb 1q
`

rR1s bk rM 1
1s

˘

,

and we should interpret the copy ofM1 coming from the lower row in this way,
since the factor of krys in the Arys – krys bk A of the lower left corner of B
is the higher weight copy. We also have rErysM2s “ pe b 1q

`

rR2s bk rM 1
2s

˘

.

Finally, it is a fact that pe b 1q
`

rR2s bk rM 1
2s

˘

“ 0 because Lp1q has only
two weight categories. It follows from these calculations that the action of
e1 “ rE 1s on the Grothendieck group of the derived category has the form:

e1r
``

M1

M2

˘

, α
˘

s :“ rE 1
``

M1

M2

˘

, α
˘

s

“ peb 1 ` 1 b eq
`

rM 1
1s bk rR1s ` rM 1

2s bk rR2s
˘

.

This agrees with the Hopf coproduct formula ∆peq “ eb 1 ` 1 b e.

Proof of the lemma. We first check that the matrix specifying the new Ey ac-
tion gives a morphism of complexes. The diagonal coefficients of the matrix
give morphisms of the separate summands, and these commute with the differ-
entials on the separate summands. It remains to see that πM1 ˝Erysα˝sM2 “
IdEy

M1 ˝ Eypα ˝ πM2q, and these agree because πEy ˝ s “ Eyπ.
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Now we compute the tensor product following the recipe of §2.4. We have:

E 1bBM “

¨

˚

˚

˚

˝

´

ErysM1 ‘ ErysEyM2

¯

L

I1

πM1
ñ

‘

ˆ

´

EyM1 ‘ EyEyM2

¯

L

I 1
1

˙

r´1s

´

0 ‘ ErysM2

¯

L

I2

α˝πM2
ñ

‘

ˆ

´

ArysM1 ‘ EyM2

¯

L

I 1
2

˙

r´1s

˛

‹

‹

‹

‚

.

Here the submodule I1 is generated by all terms of the form e b αpe1, m2q ´
e b e1 b m2 for e P Erys, e1 P Ey, m2 P M2. So every element of the quotient
has a canonical representative in ErysM1, and the quotient is isomorphic to
ErysM1. With analogous reasoning we see that the quotient by I 1

1 is isomorphic
to EyM1, that by I2 is isomorphic to ErysM2, and that by I 1

2 is isomorphic to
M1. The differential may be written before taking quotients as dM1 on the
top and dM2 on the bottom. The images of dM2 in EyM2 represent elements
in M1 by way of α, and this determines the differential component α ˝ πM2

between summands of the bottom row.
Now we calculate the new Ey action in order to view this as a complex of

B-modules. Using the description of the left B-action on E 1, one sees that
the action on the left summand is by sM2, which is represented in ErysM1

through α, so the action written on the quotients as described above is given
by Erysα ˝ sM2. The action is obvious on the right summand. �

3.1.3. Category per B and generator X.

Definition 3.5. Let X be the following complex of B-modules:

X “ X1 ‘ X2

X1 “

ˆ

Arys
0

˙

X2 “ E 1pX1q “

ˆ

Erys
π

ÝÑ Ey

0 ÝÑ Arys

˙

where X1 lies in degree 0 and X2 in degrees 0 and 1. The Ey action on X2 is
given by Ey bArys Arys

„
ÝÑ Ey, eb 1 ÞÑ e.

One can see that X1 “ Be1 and X2 “ E 1e1, with ei P B the standard matrix
idempotent. Observe that there is a canonical right Arys action on Bei and
on Xi given componentwise.

Proposition 3.6. The complex X is strictly perfect and generates per B.

Proof. We can write X in terms of B:

X1 “ Be1

X2 “ Be1 bA E Ñ Be2,

where the differential is by π on the upper row. This is a complex of finitely
generated projective B-modules because AE is finitely generated and projec-
tive. So X is strictly perfect. To see that X generates per B, first note that
Be1 “ X1 P xXy∆. Now consider Be1 bA E as a complex in degree 0. There
is a map of complexes X2 Ñ Be1 bA E given by the identity in degree 0 and
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by 0 in degree 1. Then Be2r´1s (a complex in degree 1) is quasi-isomorphic
to the cocone of this map. So Be2 P xXy∆. �

Recall our notation πi “ En´iπEi´1 : Enrys Ñ En´iEyE
i´1.

Lemma 3.7. The kernel of ϕ : Enrys
pπiqi
ÝÝÑ

Àn

i“1E
n´iEyE

i´1 is py1 . . . ynqEnrys.

Proof. We have assumed that En is free as a Pn-module. It follows that Enrys
is free as a Pnrys-module. Let e P kerϕ. So πipeq “ 0 and therefore e P yiE

nrys
for each i P t1, . . . , nu. Let B be a basis of Enrys over Pnrys. Write

e “ yi

ℓ
ÿ

j“1

f i
jpx1, . . . , xn, yq ¨ bj

for bj P B distinct and f i
j P Pnrys. It follows that yif

i
j “ ykf

k
j in Pnrys for

each pi, kq P t1, . . . , nuˆ2 and j P t1, . . . , ℓu. Then e “ y1 . . . yne
˝ for some

e˝ P Enrys because Pnrys is a unique factorization domain and each yi is
irreducible. �

Lemma 3.8. The complex E 1X2 is concentrated in degrees 0, 1, and 2:

E 1X2 “

˜˜

E2rys
pπ2,π1q
ÝÝÝÝÑ EyE ‘ EEy

p´π1,π2q
ÝÝÝÝÝÑ EyEy

0 ÝÑ Erys ‘ Erys
p´π,πq
ÝÝÝÝÑ Ey

¸

, α

¸

,

where

α0 “ 0

α1 “
`

IdEyE 0

0 s

˘

α2 “ IdEyEy
.

Proof. Computation. The minus signs arise from shifting differentials. �

Proposition 3.9. The complex E 1X is quasi-isomorphic to a finite direct sum
of summands of X.

We define two complexes of B-modules before proving the proposition.

Definition 3.10. Let R,X 1
2 P B-cplx be given by

R “

˜

E2rys
p π2

π2˝τ q
ÝÝÝÝÑ EyE ‘ EyE

0 Ñ Erys ‘ Erys

¸

,

X 1
2 “

ˆ

τy1E
2rys

π2ÝÑ EyE

0 ÝÑ Erys

˙

,

both lying in degrees 0 and 1, and the Ey action on R is by the canonical map

Ey b pErys ‘ Erysq Ñ EyE ‘ EyE,

and on X 1
2 by the canonical map Ey b Erys Ñ EyE.

Lemma 3.11. We have that X 1
2 is a finite direct sum of summands of X2,

and hence of X.
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Proof. Observe first that X2 bA E is a finite direct sum of summands of X
because AE is finitely generated projective. (Here we use the componentwise
right A-action on X2.) Using the formulas

π2 ˝ δ “ π2,

π2 ˝ p1 ´ δq “ 0,

and δ ¨ p1 ´ δq “ 0, one has the decomposition of X2 bA E:

X2 bA E “

ˆ

E2rys
π2ÝÑ EyE

0 ÝÑ Erys

˙

“

ˆ

δ ¨ E2rys
π2ÝÑ EyE

0 ÝÑ Erys

˙

‘

ˆ

p1 ´ δq ¨ E2rys
0

˙

.

�

The matrix algebra structure of the nil-affine Hecke algebra gives the fol-
lowing isomorphism of left Arys-modules:

E2rys
„

ÝÝÝÝÑ
p τy1

τ q
τy1E

2rys ‘ τy1E
2rys.

Lemma 3.12. There is an isomorphism R
„
ÝÑ X 1

2 ‘X 1
2 in B-cplx given by the

above isomorphism on the degree 0 term of the upper row, and the identity on
all other terms. So R is a finite direct sum of summands of X2, and hence of
X. In particular, R is strictly perfect.

Lemma 3.13. There is a quasi-isomorphism R
q.i.
ÝÝÑ E 1X2 determined by

IdE2rys on the degree 0 term of the upper row and
`

1 0
1 ´y1

˘

on the degree 1
term of the lower row.

Proof. We first check that the map is a morphism in B-cplx. The matrix
of the morphism on the degree 1 part of the upper row, as determined by
equivariance over generators of B in Ey, is given by

`

Id 0
s s˝px2´x1q

˘

. Observe
that:

Id ˝ π2 ` 0 ˝ π2 ˝ τ “ π2;

s ˝ π2 ` s ˝ px2 ´ x1q ˝ π2 ˝ τ

“ π1 ˝ s ` px1 ´ x2q ˝ s ˝ π2 ˝ τ

“ π1 ˝ s ` π1 ˝ px1 ´ x2q ˝ s ˝ τ

“ π1 ˝
´

px2 ´ x1q ˝ τ ` Id

` px1 ´ x2q ˝
`

px2 ´ x1q ˝ τ ` Id
˘

˝ τ
¯

“ π1.

This shows compatibility with the differential from degree 0 in the upper row.
The other compatibility checks are easier.

Now we show that the map is a quasi-isomorphism. The lower row of E 1X2

has H1 given by:

tpe1, e2q P Erys‘2 | e1 ´ e2 “ y1e for some e P Erysu.
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This is also the image of the (injective) map from R in degree 1 of the lower
row. The upper row of E 1X2 has H0 “ kerpd0q “ y1y2E

2rys by Lemma 3.7.
The cohomology of the upper row of R is computed as follows. We have an
isomorphism:

E2rys
„
ÝÑ τy1E

2rys ‘ ´y2τE
2rys.

Notice that π2 ˝ τ vanishes on the first summand, and π2 vanishes on the
second. Then one may compute:

ker
`

τy1E
2rys

π2ÝÑ EyE
˘

“ τy1y2E
2rys Ă y1y2E

2rys

and

ker
`

´y2τE
2rys

τ
ÝÑ
„
τy1E

2rys
π2ÝÑ EyE

˘

“ ´y2τy1y2E
2rys Ă y1y2E

2rys.

So

ker
`

p π2

π2˝τ q
˘

Ă y1y2E
2rys.

The reverse inclusion is obvious, so H0 of the upper row is y1y2E
2rys. This

shows that IdE2rys induces an isomorphism on homology in degree 0 of the
upper row. Using the decomposition and inspecting the maps above, we also
see that d0 on the upper row of R is surjective. Finally we consider H1 of
the upper row of E 1X2 and show it is zero. (Clearly the H2 is zero.) Let
pee1, ee2q P EyE ‘ EEy be in kerpd1q, i.e. such that π1pee1q “ π2pee2q. Then
ee1 “ ee2`pEx´xEqee˝ for some ee˝ P E2. (Note that EyEy – E2

L

pEx´xEq
where y acts by Ex or xE.) Then consider ee2 ` pEx ´ yqee˝ P E2rys. The
differential d0 sends this to ee1 in EyE and to ee2 in EEy. �

Proof of Proposition 3.9. The proposition follows from the preceding three
lemmas. �

Corollary 3.14. Tensoring with BE
1
B gives an endofunctor E 1 bB ´ of per B.

Proof. We know that X P per B, and it follows from Prop. 3.9 that E 1 bBX P
per B. The corollary follows because X generates per B. �

Remark 3.15. We do not know that E 1 bB ´ on KbpBq is exact, so we do not
know that it descends to an endofunctor defined on all of DbpBq.

3.2. Bimodules Gn. The constructions of this paper make use of certain
bimodules that we describe next.

Definition 3.16. Let Gn denote HomKbpBqpX2, E
1nX1q.

EveryGn has the structure of pGop

1 , Arysq-bimodule by pre- and post-composition.
Here we understand Arys – EndKbpBqpX1qop and use functoriality of E 1 for the
action. Note that G1 “ HomKbpBqpX2, X2q has an algebra structure, and the
right regular action of Gop

1 on G1 extends the right Arys action.
In this section we gather some facts regarding these bimodules and give

concrete presentations in small cases that are easier to handle. Given n P
t1, 2, 3, 4u, we define Ḡn as an pArys, Arysq-sub-bimodule of

En´1rys‘n ‘ HomApAE,E
nqrys.
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(By E0rys we mean Arys.) We give isomorphisms Ḡn
„
ÝÑ Gn for such n. These

isomorphisms induce left Gop

1 -actions on Ḡn that extend the left Arys-actions.
In future sections we do not distinguish Gn from Ḡn and write only the former.

Definition 3.17. Define the following pArys, Arysq-sub-bimodule of Aoprys ‘
EndApAEqrys:

Ḡ1 “

B

pθ, ϕq P Aoprys ‘ EndApAEqrys

ˇ

ˇ

ˇ

ˇ

ϕ “ .θ ` y1ϕ1

for some ϕ1 P EndApAEqrys

F

.

This bimodule also has a k-algebra structure with componentwise multiplica-
tion (using the opposite multiplication on generators in Arys).

Note that Ḡ1 contains a copy of Aoprys, namely the subspace with ϕ “ .θ.

Proposition 3.18. There is an isomorphism of pArys, Arysq-bimodules Ḡ1
„
ÝÑ

G1 determined by:

pθ, ϕq ÞÑ

ˆˆ

pe, 0q
p0, 1q

˙

ÞÑ

ˆ

pϕpeq, 0q
p0, θq

˙˙

.

Here pe, 0q P Erys‘Ey is an element of the upper row of X2, with e in degree 0
and 0 in degree 1. Analogously with the lower row. This isomorphism respects
the k-algebra structure.

Proof. The condition ϕ “ .θ ` y1ϕ1 in the definition of Ḡ1 is equivalent to
the statement that the morphism given as the image of pθ, ϕq defined in the
proposition has zero differential. �

Definition 3.19. Define the following pArys, Arysq-sub-bimodule of Erys‘2 ‘
HomApAE,E

2qrys:

Ḡ2 “

B

pe1, e2, ξq P Erys‘2 ‘ HomApAE,E
2qrys

ˇ

ˇ

ˇ

ˇ

e1 ´ e2 “ y1e
1

ξ “ b e1 ` y2ξ1

“ δp b e2q ` y1ξ2

for some e1 P Erys and ξℓ P HomApAE,E
2qrys

F

.

Proposition 3.20. There is an isomorphism of pArys, Arysq-bimodules Ḡ2
„
ÝÑ

G2 determined by:

pe1, e2, ξq ÞÑ

ˆˆ

pe, 0q
p0, 1q

˙

ÞÑ

ˆ

pξpeq, 0, 0q
p0, p e1

e2 q , 0q

˙˙

.

Proof. Use the description of E 1X2 in Lemma 3.8. As in Prop. 3.18, the
condition of the definition of Ḡ2 is equivalent to the statement that the image
of pe1, e2, ξq has zero differential. �
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In order to parametrize G3, we compute the components of E 12X2 “ E 13X1

in degrees 0, 1, and 2:

ˆ

E3rys Ñ EyEE ‘ EEyE ‘ EEEy Ñ EyEyE ‘ EyEEy ‘ EEyEy Ñ . . .

0 Ñ E2rys ‘ E2rys ‘ E2rys Ñ EyE ‘ EEy ‘ EEy Ñ . . .

˙

.

The upper left differential map is pπ3, π2, π1q. We don’t make use of the upper
right. The bottom right differential map is given by the matrix:

¨

˝

´π2 π2 0
´π1 0 π1 ˝ δ
0 ´π1 π1

˛

‚.

Definition 3.21. Define the following pArys, Arysq-sub-bimodule of E2rys‘3‘
HomApAE,E

3qrys:

Ḡ3 “

B

pee1, ee2, ee3, χq P E2rys‘3 ‘ HomApAE,E
3qrys

ˇ

ˇ

ˇ

ˇ

ee1 ´ ee2 “ y2ee
1

ee3 ´ ee2 “ y1ee
2

δpee3q ´ ee1 “ y1ee
3,

χ “ b ee1 ` y3χ1

“ δEp b ee2q ` y2χ2

“ Eδ ˝ δEp b ee3q ` y1χ3

for some eek P E2rys and χℓ P HomApAE,E
3qrys

F

.

Proposition 3.22. There is an isomorphism of pArys, Arysq-bimodules Ḡ3
„
ÝÑ

G3 determined by:

pee1, ee2, ee3, χq ÞÑ

˜

ˆ

pe, 0q
p0, 1q

˙

ÞÑ

˜

pχpeq, 0, . . . q

p0,
´

ee1
ee2
ee3

¯

, . . . q

¸¸

.

Proof. The condition of the definition of Ḡ3 is equivalent to the statement that
the image of pee1, ee2, ee3, χq has zero differential. �
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Definition 3.23. Define the following pArys, Arysq-sub-bimodule of E3rys‘4‘
HomApAE,E

4qrys:

Ḡ4 “

B

peee1, eee2, eee3, eee4, ψq P E3rys‘4 ‘ HomApAE,E
4qrys

ˇ

ˇ

ˇ

ˇ

eee3 ´ eee4 “ y1eee
p1q

eee2 ´ eee3 “ y2eee
p2q

Eδpeee4q ´ eee2 “ y1eee
p3q

eee1 ´ eee2 “ y3eee
p4q

eee1 ´ δEpeee3q “ y2eee
p5q

eee1 ´ δE ˝ Eδpeee1q “ y1eee
p6q

ψ “ b eee1 ` y4ψ1

“ δE2p b eee2q ` y3ψ2

“ EδE ˝ δE2p b eee3q ` y2χ3

“ E2δ ˝ EδE ˝ δE2p b eee4q ` y1χ4

for some eeek P E3rys and ψℓ P HomApAE,E
4qrys

F

.

Lemma 3.24. Under the conditions on eeei in the definition, there is a unique
eee P E3rys such that:

eeep5q ´ eeep2q “ y3eee,

eeep4q ´ τEpeee3q “ y2eee.

Proof. Subtracting two equations from those conditions:

y2
`

eeep5q ´ eeep2q
˘

“ eee1 ´ eee2 ´ y3τEpeee3q

“ y3
`

eeep4q ´ τEpeee3q
˘

By Lemma 3.7 we know there is some eee satisfying the claim. It is unique
because the yi are injective. �

Proposition 3.25. There is an isomorphism of pArys, Arysq-bimodules Ḡ4
„
ÝÑ

G4 determined by:

peee1, eee2, eee3, eee4, ψq ÞÑ

¨

˝

ˆ

pe, 0q
p0, 1q

˙

ÞÑ

¨

˝

pψpeq, 0, . . . q

p0,

ˆ

eee1
eee2
eee3
eee4

˙

, . . . q

˛

‚

˛

‚.

Proof. The reader may compute the first terms of E 14X1 and show that the
condition of the definition of Ḡ4 is equivalent to the statement that the image
of pee1, ee2, ee3, ee4, ψq defined in the proposition has zero differential. There
is some ambiguity in the order of summands in degree 1 of the lower row.
The convention we have used is that the first summand arises from the latest
application of E 1 which moves a term from degree 0 of the upper row to degree
1 of the lower (and increments the exponents on existing terms in the lower
row). �
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It will be useful to describe alternative, equivalent, conditions defining Ḡ2

and Ḡ3. It is sometimes easier to work with them.

Proposition 3.26. Given pe1, e2, ξq P Erys‘2 ‘ HomApAE,E
2qrys with e1 ´

e2 “ y1e
1, the following conditions are equivalent:

ξ “ b e1 ` y2ξ1

“ δp b e2q ` y1ξ2

for some ξℓ P HomApAE,E
2qrys

and

ξ “ b e1 ` y2ξ1

ξ1 “ τp b e2q ` y1ξ
1

for some ξ1 P HomApAE,E
2qrys.

When these conditions hold, the ξℓ and ξ
1 are uniquely determined by the data

pe1, e2, ξq, and ξ2 “ b e1 ` y2ξ
1.

Proof. Suppose the first condition holds. Using δ “ y2τ ` Id and e1 ´ e2 “
px ´ yqe1, we can rearrange the first equality:

b e1 ` y2ξ1 “ y1ξ2 ` y2τp b e2q ` b e2,

from which

y2

´

ξ1 ´ τp b e2q
¯

“ y1

´

ξ2 ´ b e1
¯

.

By Lemma 3.7, the image of ξ1 ´ τp b e2q is in y1y2E
2rys. We can then make

the following definition:

ξ1 “ y´1
1 pξ1 ´ τp b e2qq.

The second condition and the final claim follow from this.
Starting now with the second condition, plugging the second equation into

the first, we find:

ξ “ b e1 ` y2
`

τp b e2q ` y1ξ
1
˘

“ δp b e2q ` b pe1 ´ e2q ` y2y1ξ
1

“ δp b e2q ` y1
`

b e1 ` y2ξ
1
˘

.

This is the second line of the first condition, and it establishes the final claim.
The uniqueness claims are clear. �

Proposition 3.27. Given pee1, ee2, ee3, χq P E2rys‘3‘HomApAE,E
3qrys with

ee1 ´ ee2 “ y2ee
1(3.1)

ee3 ´ ee2 “ y1ee
2(3.2)

δpee3q ´ ee1 “ y1ee
3,(3.3)
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the following conditions are equivalent:

χ “ b ee1 ` y3χ1

“ δEp b ee2q ` y2χ2

“ Eδ ˝ δEp b ee3q ` y1χ3

for some χℓ P HomApAE,E
3qrys

and

χ “ b ee1 ` y3χ1

χ1 “ τEp b ee2q ` y2χ
1
1

χ1
1 “ Eτ ˝ τEp b ee3q ` y1χ

2

for some χ2 P HomApAE,E
3qrys.

When the conditions hold, the χℓ and χ
2 are uniquely determined by the data

pee1, ee2, ee3, χq, and there is a unique ee P E2rys such that

τpee3q ´ ee1 “ y1ee

ee3 ´ ee2 “ y2ee.

Define a map χ1
2 “ ´ b ee ` y3χ

2. Then we also have

χ2 “ Eτ ˝ δEp b ee3q ` y1χ
1
2

and

χ3 “ ´δEp b ee2q ` y2χ
1
2.

Assuming χ “ b ee1 ` y3χ1, the other two conditions together are equivalent
to a single condition on χ1:

χ1 “ ´τEy1p b ee2q ` Eδ ˝ τEp b ee3q ` y2y1χ
2.

Proof. Suppose the first condition holds. Equating the first two formulas for
χ in the first condition and using δE “ y3τE ` Id gives:

b ee1 ` y3χ1 “ y3τEp b ee2q ` b ee2 ` y2χ2

thus

y3
`

χ1 ´ τEp b ee2q
˘

“ y2
`

χ2 ´ b ee1
˘

.

By Lemma 3.7 again, the image of this function lies in y2y3E
3rys, and since

each yi is injective, we can define a new function χ1
1 such that:

χ1 “ τEp b ee2q ` y2χ
1
1

χ2 “ b ee1 ` y3χ
1
1.

Equating now the second and third formulas, we have:

y2Eτ ˝ δEp b ee3q ` δEp b ee3q ` y1χ3 “ δEp b ee2q ` y2χ2

so

y2
`

χ2 ´ Eτ ˝ δEp b ee3q
˘

“ y1
`

χ3 ` δEp b ee2q
˘

,
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so for some χ1
2 we can write:

χ2 “ Eτ ˝ δEp b ee3q ` y1χ
1
2

χ3 “ ´δEp b ee2q ` y2χ
1
2.

We will need a fact derived from the relations (3.1)–(3.3) of the eek. Adding
the first and third relations and subtracting the second yields

y1
`

ee3 ´ ee2
˘

“ y2
`

τpee3q ´ ee1
˘

,

from which we see there must be a (unique) ee with

τpee3q ´ ee1 “ y1ee

ee3 ´ ee2 “ y2ee.

This gives the third claim of the proposition.
Equating now the two formulas we derived for χ2:

y3Eτ ˝ τEp b ee3q ` Eτp b ee3q ` y1χ
1
2 “ b ee1 ` y3χ

1
1

so
y3

`

χ1
1 ´ Eτ ˝ τEp b ee3q

˘

“ y1
`

χ1
2 ` b ee

˘

.

Therefore

χ1
1 “ Eτ ˝ τEp b ee3q ` y1χ

2

χ1
2 “ ´ b ee ` y3χ

2

for some χ2, as desired.
In the reverse direction, starting with the second condition, plugging the χ1

and χ1
1 formulas into the first χ formula gives:

χ “ b ee1 ` y3

´

τEp b ee2q ` y2
`

Eτ ˝ τEp b ee3q ` y1χ
2
˘

¯

,

so

χ´ δEp b ee2q “ b pee1 ´ ee2q

` y2
`

Eτ ˝ τEp b ee3q ` y1χ
2
˘

“ y2

´

b ee1 ` Eτ ˝ τEp b ee3q ` y1χ
2
¯

,

as desired. Similarly:

χ´ Eδ ˝ δEp b ee3q “ χ ´ y3y2Eτ ˝ τEp b ee3q

´ y3τEp b ee3q ´ Eδp b ee3q

“ b ee1 ` y3
`

τEp b ee2q ` y1y2χ
2
˘

´ y3τEp b ee3q ´ Eδp b ee3q

“ b
`

ee1 ´ δpee3q
˘

` y1

´

´y3τEp b ee2q ` y2y3χ
2
¯

“ y1

´

´ b ee3 ´ y3τEp b ee2q ` y2y3χ
2
¯

.

The final statement of the proposition is a rearrangement of the second and
third equalities of the second condition. �

Remark 3.28. We will not need to use alternative conditions for Gn for n ě 4.
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3.3. Product category C-mod. Let C “ Endper BpXqop. We ‘change basis’
from Be1‘Be2 to X1‘X2, i.e. from complexes of modules over B to complexes
of modules over C. This is performed by H omBpX,´q:

per B
„

ÝÝÝÝÝÝÝÝÑ
H omBpX,´q

per C,

which is a restricted Rickard (derived Morita) equivalence. It has an inverse
given by X bC ´. Under this equivalence, the action of BE

1 bB ´ on per B
translates to CẼ bC ´ on per C, where Ẽ is a pC,Cq-bimodule that is finitely
generated and projective on the left. Our main theorem says that BimkpCq has
the structure of 2-representation of U` using Ẽ. In this section we describe C
and the derived equivalence in more detail.

3.3.1. New algebra C. Let C “ E ndBpX1 ‘ X2q
op be the dg-algebra of endo-

morphisms of X (with left-to-right composition).

Definition 3.29. Define two pArys, Arysq-bimodules:

G1
1 “ Arys ‘ HomAryspArysErys, Erysq

and

G2
1 “ HomAryspArysErys, Eyq.

The complex E ndBpX2q is given in degrees 0 and 1 by

G1
1

d0
Ñ G2

1

where

d0
`

pθpyq, ϕq
˘

“ π ˝ ϕ ´ πp´q.θpxq.

The direct sum decomposition X1 ‘ X2 provides a matrix presentation for
C with Cij “ H omBpXi, Xjq.

Definition 3.30. Let F denote the pA,Aq-bimodule

F “ HomApAE,Aq.

Note the canonical isomorphism

HomApAE,Aqrys
„
ÝÑ HomAryspArysErys, Arysq

that exists because AE is finitely generated. Since AE and ArysErys are both
finitely generated projective, we also have canonical isomorphisms of functors:

HomApAE,´q
„
ÝÑ HomApAE,Aq bA ´

HomAryspArysErys,´q
„
ÝÑ HomAryspArysErys, Arysq bArys ´.

Proposition 3.31. The algebra C is isomorphic to a generalized matrix al-
gebra of complexes concentrated in degrees 0 and 1:

˜

Arys Erys
π
ÝÑ Ey

F rys G
1op
1

d0

ÝÑ G
2op
1

¸

„
ÝÑ

ˆ

C11 C12

C21 C22

˙

.

The map is given on components by:
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‚ for C11:

Arys Q a ÞÑ

ˆˆ

1
0

˙

ÞÑ

ˆ

a

0

˙˙

‚ for C12:

pErys Ñ Eyq Q pe, e1q ÞÑ

ˆˆ

1
0

˙

ÞÑ

ˆ

pe, e1q
0

˙˙

‚ for C21:

F rys Q f ÞÑ

ˆˆ

pe, 0q
1

˙

ÞÑ

ˆ

fpeq
0

˙˙

‚ for C22:

`

G
1op
1 Ñ G

2op
1

˘

Q
`

pθ, ϕ1q, ϕ2
˘

ÞÑ

ˆˆ

pe, 0q
1

˙

ÞÑ

ˆ`

ϕ1peq, pπ ˝ ϕ2qpeq
˘

θ

˙˙

.

Proof. Computation. �

Definition 3.32. Let C denote the k-algebra EndKbpBqpXqop.

Sometimes we consider C to be a dg-algebra concentrated in degree 0.

Lemma 3.33. The projection Z0pC q Ñ H0pC q “ C is an isomorphism. Its
inverse gives an injection C ãÑ C which is a quasi-isomorphism of dg-algebras.

Proof. The first claim follows because C lies in degrees 0 and 1. For the second
claim we just need that H1pC q “ 0. It is clear that the map π : Erys Ñ Ey is
surjective. We can see that d0 is surjective as well: since ArysErys is projective,
HomAryspArysErys,´q is exact, so

HomAryspArysErys, πq : HomAryspArysErys, Erysq Ñ HomAryspArysErys, Eyq

is surjective. �

The injection of the lemma gives a right action of C on X .

Lemma 3.34. The algebra C is isomorphic to a generalized matrix algebra:
ˆ

Arys y1Erys
F rys G

op

1

˙

„
ÝÑ

ˆ

C11 C12

C21 C22

˙

,

with component maps given by (restrictions of) those in Proposition 3.31.

Proof. We have d0
`

pθ, ϕq
˘

“ 0 exactly when ϕ “ .θ ` y1ϕ
1 for some ϕ1 P

HomAryspArysErys, Erysq, and it follows that the map to C22 is an isomorphism.
�

3.3.2. Derived equivalence. SinceX is strictly perfect, the triangulated functor

H omBpX,´q : KbpBq Ñ KbpCq

descends to the derived categories and resolutions are not needed:

H omBpX,´q : DbpBq Ñ DbpCq.

Since X generates per B, it is perfect as a right C -dg-module, and then also as
a complex of C-modules because the inclusion C ãÑ C is a quasi-isomorphism.
It follows that the functor restricts to a functor

H omBpX,´q : per B Ñ per C,
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and this is essentially surjective because C is in the essential image. To show
that the functor is fully faithful, it is enough to check endomorphisms of X
and its translates, since X generates per B. The induced map:

HomDbpBqpX,Xrisq Ñ HomDbpCqpE ndBpXq, E ndBpXqrisq

is an isomorphism for all i: with i “ 0 both sides are canonically isomorphic
to C, and the map induces the identity on C; with i ‰ 0 both sides are 0.

The endofunctor E 1 bB ´ on per B induces an endofunctor on per C using
this equivalence: first apply X bC ´, then E 1 bB ´, then H omBpX,´q.
Since X is finitely generated and strictly perfect, this induced endofunctor is
isomorphic to H omBpX,E 1Xq bC ´.

Remark 3.35. In the above context a theorem of Rickard shows that H omBpX,´q :
DbpBq Ñ DbpCq is also an equivalence of categories. We do not know E 1 bB ´
to be exact, however, so we use the restricted equivalence of perfect complexes,
and the full version of Rickard’s theorem is not needed.

Definition 3.36. In §3, let E denote the pC,Cq-bimodule complex H omBpX,E 1Xq.

Then we have the following:

Proposition 3.37. For each n, the morphism of pC,Cq bimodule complexes

n-times
hkkkkkkkikkkkkkkj

E bC ¨ ¨ ¨ bC E Ñ H omBpX,E 1nXq

given by
f1 b ¨ ¨ ¨ b fn ÞÑ E 1n´1pfnq ˝E 1n´2pfn´1q ˝ ¨ ¨ ¨ ˝ f1

is a quasi-isomorphism. These maps give the vertical maps in diagrams of the
following form, which commute:

H omBpX,E 1Xqbn bC H omBpX,E 1Xqbm H omBpX,E 1Xqbn`m

H omBpX,E 1nXq bC H omBpX,E 1mXq H omBpX,E 1n`mXq.
fbg ÞÑE1npgq˝f

Proof. All diagrams contained in the following diagram commute, up to canon-
ical isomorphisms in per B and per C:

per B per C

per B per C

per B per C.

H omBpX,´q

H omBpX,´q

H omBpX,´q

E1bB´

E1bB´

E bC´

E bC´

XbC´

XbC´

XbC´

This gives the first statement of the proposition. The diagrams commute
by functoriality of E 1. �
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3.4. New bimodule Ẽ.

3.4.1. Definition of Ẽ. Now we define the lead actor of this paper.

Definition 3.38. Define a pC,Cq-bimodule:

Ẽ “ HomKbpBqpX,E
1Xq,

with left C action given by precomposition with ϕ P C, and right C action
given by post-composition with E 1pϕq for ϕ P C.

Lemma 3.39. For each n, the complex H omBpX,E 1nXq of pC,Cq-bimodules
is concentrated in nonnegative degree.

Proof. The lower row of E 1nX has components in degrees at least 1, and the
upper row has components in degrees at least 0. This is shown by a simple
inductive argument using the formulas for X and E 1 in §3.1.2. It follows that
there are no nonzero morphisms in H omBpX,E 1nXq of negative degree. �

Proposition 3.40. The complex E “ H omBpX,E 1Xq of pC,Cq-bimodules
has cohomology concentrated in degree 0.

Proof. We consider separately the matrix components H omBpXi, E
1Xjq :

‚ H omBpX1, E
1X1q: since X1 “ Be1 this is isomorphic to e1E

1X1 which is

Erys
π
ÝÑ Ey, and π is surjective.

‚ H omBpX1, E
1X2q: this is isomorphic to e1E

12X1, which is

E2rys
pπ2

π1
q

ÝÝÝÑ EyE ‘ EEy
p ´π1 π2 q
ÝÝÝÝÝÝÑ EyEy.

The second map is clearly surjective. Its kernel consists of pairs pee1, ee2q P
E2 such that ee1 ´ ee2 “ pEx ´ xEqee˝ for some ee˝ P E2. Such a pair is
the image of ee2 ` pEx ´ yqee˝ in E2rys.

‚ H omBpX2, E
1X1q: this is isomorphic to C22, and we saw that d0 is surjec-

tive.

‚ H omBpX2, E
1X2q: this is isomorphic to G1

2

d0
ÝÑ G2

2

d1
ÝÑ G3

2 , where

G1
2 “ Erys‘2 ‘ HomAryspArysErys, E2rysq

G2
2 “ Ey ‘ HomAryspArysErys, EyE ‘ EEyq

G3
2 “ HomAryspArysErys, EyEyq,

with

d0 : pe1, e2, ξq ÞÑ
`

πpe2 ´ e1q, pπ2 ˝ ξ; π1 ˝ ξq
˘

d1 :
`

e, pξ1; ξ2q
˘

ÞÑ ´π1 ˝ ξ1 ` π2 ˝ ξ2.

It is easy to see that H1 “ 0 and H2 “ 0 by applying the exact functor
HomAryspArysErys,´q to the sequence considered in the second bullet.

�

Corollary 3.41. The surjection

Z0
H omBpX,E 1Xq Ñ H0

H omBpX,E 1Xq “ Ẽ
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is an isomorphism. Its inverse gives an injection

Ẽ ãÑ E

which is a quasi-isomorphism of complexes of pC,Cq-bimodules.

Remark 3.42. Whereas E 1 is a complex of bimodules, Ẽ is just a bimodule.
This observation is the starting point for our construction. The basis X1 ‘X2

is designed to be more compatible with the U` action in this sense.

Lemma 3.43. As a left C-module, Ẽ is finitely generated and projective.

Proof. In Prop. 3.9 we saw that E 1X is quasi-isomorphic to a finite direct sum
of summands of X , so CẼ is a finite direct sum of summands of C. �

Lemma 3.44. The map Ẽn Ñ H omBpX,E 1nXq of complexes of pC,Cq-
bimodules given by

f1 b ¨ ¨ ¨ b fn ÞÑ E 1n´1pfnq ˝E 1n´2pfn´1q ˝ ¨ ¨ ¨ ˝ f1

is a quasi-isomorphism.

Proof. Use a copy of the morphism

Ẽ
q.i.
ãÑ E

from Corollary 3.41 onto each factor of the product on the left in Proposition
3.37, and the fact that Ẽ is finitely generated and projective on the left. �

Lemma 3.45. The maps of Lemma 3.44 induce isomorphisms of pC,Cq-
bimodules

Ẽn „
ÝÑ HomKbpBqpX,E

1nXq

making the following diagrams commute:

Ẽn bC Ẽ
m Ẽn`m

HomKpBqpX,E
1npXqq bC HomKpBqpX,E

1mpXqq HomKpBqpX,E
1n`mpXqq.

„ „

„

„

Proof. By Lemma 3.44, the cohomology of H omBpX,E 1nXq is concentrated
in degree 0. By Lemma 3.39,

Z0
H omBpX,E 1nXq “ H0

H omBpX,E 1nXq.

So the degree 0 part of the map of Lemma 3.44 is an isomorphism from Ẽn to
Z0H omBpX,E 1nXq, which is HomKbpBqpX,E

1nXq. The diagrams commute
because the morphisms are restrictions of the morphisms of Proposition 3.37.

�

Definition 3.46. We let Ẽn
ij denote HomKbpBqpXi, E

1nXjq.

Defined in this way, Ẽn
ij lies in HomKbpBqpX,E

1nXq, not in Ẽn, but we
consider it also in the latter through the isomorphism of Lemma 3.45.
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3.4.2. Some low powers of Ẽ. The bimodule Ẽ can be presented as a ma-
trix with ij-component Ẽij given by HomKbpBqpXi, E

1Xjq. This component
is an pEndpXiq

op,EndpXjq
opq-bimodule. Recall that EndpX1qop – Arys and

EndpX2q
op – G

op

1 .

Lemma 3.47. We have

py1 . . . ynqEnrys
„
ÝÑ HomKbpBqpX1, E

1nX1q,

where y1 . . . yne is sent to the map in KbpBq determined by:
ˆ

1
0

˙

ÞÑ

ˆ

py1 . . . yne, 0, . . . , 0q
0

˙

.

Proof. Computation. Note that E 1nX1 has just one term in degree 0, which is
Enrys in the upper row. The differential of E 1nX1 out of this term is the map
whose kernel is computed in Lemma 3.7. �

Proposition 3.48. We have:
ˆ

y1 . . . ynE
nrys y1 . . . yn`1E

n`1rys
Gn Gn`1

˙

„
ÝÑ

ˆ

Ẽn
11 Ẽn

12

Ẽn
21 Ẽn

22

˙

,

where the maps on the upper row are from Lemma 3.47, and on the lower they
are from the definition of Gn.

Together with Lemma 3.45, this gives a parametrization of Ẽn. We may
record the matrix presentations for the first few powers:

ˆ

y1Erys y1y2E
2rys

G1 G2

˙

„
ÝÑ Ẽ,

ˆ

y1y2E
2rys y1y2y3E

3rys
G2 G3

˙

„
ÝÑ Ẽ2,

ˆ

y1y2y3E
3rys y1y2y3y4E

4rys
G3 G4

˙

„
ÝÑ Ẽ3.

4. Hecke action

In this section we introduce pC,Cq-bimodule endomorphisms x̃ of Ẽ and τ̃
of Ẽ2, and show that they satisfy the relations of U`.

4.1. Definition of the action. In §4.1.1 we give formulas for endomorphisms
of the separate components of Ẽ and Ẽ2. A few lemmas are needed first in
order to show that the formulas are well-defined on components of the form
Gn, n “ 1, 2, 3. Then in §4.1.2 we argue that these componentwise definitions
jointly determine a morphism of pC,Cq-bimodules.
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4.1.1. Formulas for x̃ and τ̃ .

Lemma 4.1. Let pθ, ϕq P G1 Ă Aoprys ‘ HomApAE,Eqrys. Then pyθ, x ˝ ϕq P
G1.

Proof. Compute:

x ˝ ϕ ´ yθ “ xp .θ ` y1ϕ1q ´ yθ

“ y1p .θ ` xϕ1q.

�

Lemma 4.2. Let pe1, e2, ξq P G2 Ă Erys‘2‘HomApAE,E
2qrys. Then pye1, xe2, xE˝

ξq P G2 and pe1, e1, τ ˝ ξq P G2.

Proof. For the first claim, compute:

xE ˝ ξ ´ b ye1 “ xE ˝ p b e1 ` y2ξ1q ´ b ye1

“ y2p b e1 ` xE ˝ ξ1q,

and

xE ˝ ξ ´ δp b xe2q “ xE ˝
`

δp b e2q ` y1ξ2
˘

´ δp b xe2q

“ δ ˝ Exp b e2q ´ y1p b e2q

` y1xE ˝ ξ2 ´ δp b xe2q

“ y1p´ b e2 ` xE ˝ ξ2q.

For the second claim, use the alternative characterization of G2 as given in
Prop. 3.26, and compute:

τ ˝ ξ “ τp b e1q ` τy2ξ1

“ τp b e1q ` y1τξ1 ´ ξ1

“ τp b e1q ` y1τy1ξ
1 ´ ξ1

“ τ
`

b pe1 ´ e2q
˘

` y1y2τξ
1

“ τy1p b e1q ` y1y2τξ
1

“ b e1 ` y2
`

τp b e1q ` y1τξ
1
˘

.

The last line has the form of an element of G2. �

Lemma 4.3. Let pee1, ee2, ee3, χq P G3 Ă E2rys‘3 ‘ HomApAE,E
3qrys. Then

pee1, ee1, τpee3q, τE ˝ χq P G3.
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Proof. We use the alternative characterization of G3 as given in Prop. 3.27,
and compute:

τE ˝ χ “ τEp b ee1q ` τEy3χ1

“ τEp b ee1q ´ χ1 ` y2τE ˝ χ1

“ τEp b ee1q ´ χ1 ` y2τEy2
`

Eτ ˝ τEp b ee3q ` y1χ
2
˘

“ τEp b ee1q ´ χ1

`
`

y2y3τE ` y2
˘

¨
`

Eτ ˝ τEp b ee3q ` y1χ
2
˘

“ τEp b pee1 ´ ee2qq

` y2y3
`

τE ˝ Eτ ˝ τEp b ee3q ` y1τE ˝ χ2
˘

“ τEy2p b ee1q

` y2y3

´

Eτ ˝ τEp b ee1q ` Eδ ˝ τEp b eeq ` y1τE ˝ χ2
¯

“ b ee1 ` y3¨
´

Eδ ˝ τEp b ee1q ` y2
`

Eδ ˝ τEp b eeq ` y1y2τE ˝ χ2
˘

¯

“ b ee1 ` y3¨
´

´τEy1p b eeq ` Eδ ˝ τEp b τpee3qq ` y1y2τE ˝ χ2
¯

.

The last line has the form of an element of G3, namely pee1, ee1, τpee3q, τE ˝
χq. �

The element pee1, ee2, ee3, χq P G3 is associated (by Prop. 3.27) with further
data that has been notated eeℓ, ee, χℓ, χ

1
1, and χ

2. We record the corresponding
data associated with pee1, ee1, τpee3q, τE ˝ χq using the notation ē and χ̄ for
the new versions:

ēē1 “ 0

ēē2 “ ee

ēē3 “ ee

ēē “ 0,

and

χ̄ “ pee1, ee1, τpee3q, τE ˝ χq

χ̄1 “ ´τEy1p b eeq ` Eδ ˝ τE ˝ Eτp b ee3q ` y1y2τE ˝ χ2

χ̄2 “ Eτ ˝ δE ˝ Eτp b ee3q ` y1y3τE ˝ χ2

χ̄3 “ ´δEp b eeq ` y2y3τE ˝ χ2

χ̄1
1 “ Eτ ˝ τE ˝ Eτp b ee3q ` y1τE ˝ χ2

χ̄2 “ τE ˝ χ2.

Now we give componentwise formulas for x̃ and τ̃ . These formulas are well-
defined on Ẽ21, Ẽ22, Ẽ

2
21, and Ẽ

2
22 by the lemmas above.

Definition 4.4. We define the action of x̃ on Ẽ as follows:
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‚ on Ẽ11: x̃ acts by x
‚ on Ẽ12: x̃ acts by xE
‚ on Ẽ21: x̃ acts by pθ, ϕq ÞÑ pyθ, x ˝ ϕq
‚ on Ẽ22: x̃ acts by pe1, e2, ξq ÞÑ pye1, xe2, xE ˝ ξq.

We define the action of τ̃ on Ẽ2 as follows:

‚ on Ẽ2
11: τ̃ acts by τ

‚ on Ẽ2
12: τ̃ acts by τE

‚ on Ẽ2
21: τ̃ acts by pe1, e2, ξq ÞÑ pe1, e1, τ ˝ ξq

‚ on Ẽ2
22: τ̃ acts by pee1, ee2, ee3, χq ÞÑ pee1, ee1, τpee3q, τE ˝ χq.

Lemma 4.5. The formulas for x̃ give a pC,Cq-bimodule endomorphism of Ẽ.

Proof. Recall the definition of the complex E 1 of pB,Bq-bimodules in §3.1.2.

There is an p
´

Arys 0

0 Arys

¯

,
´

Arys 0

0 Arys

¯

q-bimodule endomorphism x1 of E 1 given

componentwise in degrees 0 and 1 by pArys, Arysq-bimodule endomorphisms:

x1
0 “

ˆ

x xEy

0 x

˙

, x1
1 “

ˆ

x xEy

y x

˙

.

The relation s˝Eyx “ xEy˝smay be used to check that x1
0 and x

1
1 together give

a morphism of complexes of pB,Bq-bimodules. This map induces a pC,Cq-
bimodule endomorphism of HomKbpBqpX,E

1Xq that agrees with the definition
of x̃. �

It follows that x̃ induces endomorphisms x̃Ẽ and Ẽx̃. For future reference
we write the formulas for those:

Proposition 4.6. The formulas for x̃ determine the following formulas for
x̃Ẽ and Ẽx̃ on Ẽ2:

‚ on Ẽ2
11: x̃Ẽ acts by xE and Ẽx̃ acts by Ex

‚ on Ẽ2
12: x̃Ẽ acts by xE2 and Ẽx̃ by ExE

‚ on Ẽ2
21: x̃Ẽ acts by

pe1, e2, ξq ÞÑ pye1, xe2, xE ˝ ξq

and Ẽx̃ by

pe1, e2, ξq ÞÑ pxe1, ye2, Ex ˝ ξq

‚ on Ẽ2
22: x̃Ẽ acts by

pee1, ee2, ee3, χq ÞÑ pyee1, xEpee2q, xEpee3q, xE2 ˝ χq

and Ẽx̃ by

pee1, ee2, ee3, χq ÞÑ pxEpee1q, yee2, Expee3q, ExE ˝ χq.

Proof. Use Lemma 3.45, in particular the diagram in the case n “ m “ 1. �
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4.1.2. Bimodule structure of Ẽ2 and equivariance of τ̃ .

Lemma 4.7. The formulas for τ̃ give a pC,Cq-bimodule endomorphism of Ẽ2.

For the maps we defined on components of Ẽ2 to determine jointly a pC,Cq-
bimodule endomorphism τ̃ , they must be equivariant with respect to the left
and right C-actions. In order to check equivariance, we write formulas for the
actions of the generators in C in the following four lemmas. The reader may
verify these formulas from the various definitions.

Lemma 4.8. Generators in Arys Ă C act on the right on Ẽ2, in terms of the

separate bimodule structures of Ẽ2
ij, as follows:

‚ Ẽ2
11 b Arys Ñ Ẽ2

11 by

y1y2E
2rys bArys Arys ÝÑ y1y2E

2rys

y1y2ee b θ ÞÑ y1y2ee.θ.

‚ Ẽ2
21 b Arys Ñ Ẽ2

21 by

G2 bArys Arys ÝÑ G2

pe1, e2, ξq b θ ÞÑ pe1.θ, e2.θ, ξp´q.θq .

They act on the left as follows:

‚ Arys b Ẽ2
11 Ñ Ẽ2

11 by

Arys bArys y1y2E
2rys ÝÑ y1y2E

2rys

θ b y1y2ee ÞÑ y1y2θ.ee.

‚ Arys b Ẽ2
12 Ñ Ẽ2

12 by

Arys bArys y1y2y3E
3rys ÝÑ y1y2y3E

3rys

θ b y1y2y3eee ÞÑ y1y2y3θ.eee.

Remark. We may confirm that the image of the action map Ẽ2
21 Ñ Ẽ2

21 pre-
serves the conditions for G2:

ξ.θ ´ b e1.θ “ y2ξ1.θ,

ξ1.θ “ δp b e2q.θ ` py1ξ2q.θ

“ δp b e2.θq ` y1pξ2.θq,

and the eℓ relation:

e1.θ ´ e2.θ “ y1e
1.θ.

Lemma 4.9. Generators in Gop

1 Ă C act on the right on Ẽ2 as follows:

‚ Ẽ2
12 b G

op

1 Ñ Ẽ2
12 by

y1y2y3E
3rys bG

op

1
G

op

1 ÝÑ y1y2y3E
3rys

y1y2y3eeeb pθ, ϕq ÞÑ E2ϕpy1y2y3eeeq
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‚ Ẽ2
22 b G

op

1 Ñ Ẽ2
22 by

G3 bG
op

1
G

op

1 ÝÑ G3

pee1, ee2, ee3, χq b pθ, ϕq ÞÑ
`

Eϕpee1q, Eϕpee2q, ee3.θ, E
2ϕ ˝ χ

˘

.

They act on the left as follows:

‚ G
op

1 b Ẽ2
21 Ñ Ẽ2

21 by

G
op

1 bG
op

1
G2 ÝÑ G2

pθ, ϕq b pe1, e2, ξq ÞÑ pθ.e1, θ.e2, ξ ˝ ϕq

‚ G
op

1 b Ẽ2
22 Ñ Ẽ2

22 by

G
op

1 bG
op

1
G3 ÝÑ G3

pθ, ϕq b pee1, ee2, ee3, χq ÞÑ pθ.ee1, θ.ee2, θ.ee3, χ ˝ ϕq .

Remark 4.10. We may confirm that the image of the right action map Ẽ2
22 b

G
op

1 Ñ Ẽ2
22 preserves the conditions for G3:

E2ϕ ˝ χ “ b Eϕpee1q ` E2ϕpχ´ b ee1q

“ b Eϕpee1q ` y3
`

E2ϕ ˝ χ1

˘

,

E2ϕ ˝ χ1 “ τEp bEϕpee2qq ` y2E
2ϕ ˝ χ1

1

“ τE ˝ E2p .θ ` y1ϕ1q ˝ p b ee2q ` y2E
2ϕ ˝ χ1

1,

E2ϕ ˝ χ1
1 “ E2p .θq ˝ Eτ ˝ τEp b ee3q ` y1E

2ϕ1 ˝ χ1
1 ` y1χ

2.θ

“ Eτ ˝ τEp b ee3.θq ` y1
`

χ2.θ ` E2ϕ1 ˝ χ1
1

˘

.

And the eeℓ relations:

Eϕpee1q ´ Eϕpee2q “ y2Eϕpee1q,

ee3.θ ´ Eϕpee2q “ pee3 ´ ee2q.θ ´ y1Eϕ1pee2q

“ y1 pee2.θ ´ Eϕ1pee2qq ,

δpee3.θq ´ Eϕpee1q “ y2τpee3q.θ ` pee3 ´ ee1q.θ ´ y1Eϕ1pee1q

“ y2τpee3q.θ ` y1ee
2.θ ´ y2ee

1.θ ´ y1Eϕ1pee1q

“ y1 py2ee.θ ` ee2.θ ´ Eϕ1pee1qq .

Similarly we may confirm that the image of the left action mapGop

1 bẼ2
21 Ñ Ẽ2

21

lies in G2:

ξ ˝ ϕ “ ϕp´q b e1 ` y2ξ1 ˝ ϕ

“ b θ.e1 ` y2
`

ϕ1p´q b e1 ` ξ1 ˝ ϕ
˘

,

ξ1 ˝ ϕ ` ϕ1p´q b e1 “ τp b e2q ˝ ϕ ` y1ξ
1 ˝ ϕ ` ϕ1p´q b e1

“ τp b θ.e2q ` τy2pϕ1p´q b e2q ` y1ξ
1 ˝ ϕ ` ϕ1p´q b e1

“ τp b θ.e2q ` y1 pτpϕ1p´q b e2q ` ϕ1p´q b e1 ` ξ1 ˝ ϕq .

And the eℓ relation:

θ.e1 ´ θ.e2 “ y1θ.e
1.
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And the image of the left action map Gop

1 b Ẽ2
22 Ñ Ẽ2

22 lies in G3:

χ ˝ ϕ “ ϕp´q b ee1 ` y3χ1 ˝ ϕ

“ b θ.ee1 ` y3
`

ϕ1 b ee1 ` χ1 ˝ ϕ
˘

,

χ1 ˝ ϕ “ τEp b θ.ee2q ` τEy3pϕ1 b ee2q ` y2χ
1
1 ˝ ϕ,

ϕ1 b ee1 ` χ1 ˝ ϕ “ τEp b θ.ee2q ` y2

´

τEpϕ1 b ee2q ` ϕ1 b ee1 ` χ1
1 ˝ ϕ

¯

,

χ1
1 ˝ ϕ “ Eτ ˝ τEp b θ.ee3q ` Eτ ˝ τE ˝ y3pϕ1 b ee3q ` y1χ

2 ˝ ϕ

“ Eτ ˝ τEp b θ.ee3q ` y1pEτ ˝ τEqpϕ1 b ee3q

´ τEpϕ1 b ee3q ´ Eτpϕ1 b ee3q ` y1χ
2 ˝ ϕ,

τEpϕ1 b ee2q ` ϕ1 b ee1 ` χ1
1 ˝ ϕ “

Eτ ˝τEp bθ.ee3q`y1

´

pEτ ˝τEqpϕ1bee3q´τEpϕ1bee2q´ϕ1bee`χ2 ˝ϕ
¯

.

And the eeℓ relations:

θ.ee1 ´ θ.ee2 “ y2θ.ee
1

θ.ee3 ´ θ.ee2 “ y1θ.ee
2

δpθ.ee3q ´ θ.ee1 “ y1θ.ee
3.

Lemma 4.11. Generators in y1Erys Ă C act on the right on Ẽ2 as follows:

‚ Ẽ2
11 b y1Erys Ñ Ẽ2

12 by

y1y2E
2rys bArys y1Erys ÝÑ y1y2y3E

3rys

y1y2eeb y1e ÞÑ y1y2y3pee b eq

‚ Ẽ2
21 b y1Erys Ñ Ẽ2

22 by

G2 bArys y1Erys ÝÑ G3

pe1, e2, ξq b y1e ÞÑ pe1 b y1e, e2 b y1e, 0, ξp´q b y1eq .

They act on the left as follows:

‚ y1Erys b Ẽ2
21 Ñ Ẽ2

11 by

y1Erys bG
op

1
G2 ÝÑ y1y2E

2rys

y1e b pe1, e2, ξq ÞÑ ξpy1eq

‚ y1Erys b Ẽ2
22 Ñ Ẽ2

12 by

y1Erys bG
op

1
G3 ÝÑ y1y2y3E

3rys

y1eb pee1, ee2, ee3, χq ÞÑ χpy1eq.
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Remark. We may confirm that the image of the right action map Ẽ2
21 b

y1Erys Ñ Ẽ2
22 preserves the conditions for G3:

χ “ ξ b y1e,

χ´ b e1 b y1e “ y1y3pξ1 b eq,

χ ´ δEp b e2 b y1eq “
`

ξ ´ δp b e2q
˘

b y1e

“ y1y2pξ2 b eq.

Similarly we may confirm that the image of the left action map y1ErysbẼ2
21 Ñ

Ẽ2
11 lies in y1y2E

2rys:

ξ ˝ y1 “ y2
`

b e1 ` ξ1 ˝ y1
˘

,

ξ1 ˝ y1 “ τy2p b e2q ` y1ξ
1 ˝ y1

“ y1
`

τp b e2q ` ξ1 ˝ y1
˘

´ b e2,

ξ ˝ y1 “ y2

´

y1
`

τp b e2q ` ξ1 ˝ y1
˘

` b pe1 ´ e2q
¯

“ y1y2

´

τp b e2q ` b e1 ` ξ1 ˝ y1

¯

.

And the image of the left action map y1Erys b Ẽ2
22 Ñ Ẽ2

12 lies in y1y2y3E
3rys:

χ ˝ y1 “ y3
`

b ee1 ` χ1 ˝ y1
˘

χ1 ˝ y1 “ ´τEy3y1p b ee2q

` Eδ ˝ τEy3p b ee3q ` y1y2χ
2 ˝ y1

“ ´τEy3y1p b ee2q ` Eδ ˝ y2τEp b ee3q

´ Eδp b ee3q ` y1y2χ
2 ˝ y1

“ ´y2τEy1p b ee2q ` y1p b ee2q ` y1y2Eτ ˝ τEp b ee3q

´ y1p b ee3q ´ b ee1 ` y1y2χ
2 ˝ y1

χ ˝ y1 “ y3y2y1

´

´τEp b ee2q ` Eτ ˝ τEp b ee3q ` χ2 ˝ y1

¯

` y3y1
`

b ee2 ´ b ee3
˘

“ y3y2y1

´

´τEp b ee2q ` Eτ ˝ τEp b ee3q ´ b ee` χ2 ˝ y1

¯

.

Lemma 4.12. Generators in F rys Ă C act on the right on Ẽ2 as follows:

‚ Ẽ2
12 b F rys Ñ Ẽ2

11 by

y1y2y3E
3rys bG

op

1
F rys ÝÑ y1y2E

2rys

y1y2y3eee b f ÞÑ y1y2E
2fpy1eeeq

‚ Ẽ2
22 b F rys Ñ Ẽ2

21 by

G3 bG
op

1
F rys ÝÑ G2

pee1, ee2, ee3, χq b f ÞÑ
`

Efpee1q, Efpee2q, E
2f ˝ χ

˘

.

They act on the left as follows:
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‚ F rys b Ẽ2
11 Ñ Ẽ2

21 by

F rys bArys y1y2E
2rys ÝÑ G2

f b y1y2ee ÞÑ p0, 0, fp´q.y1y2eeq

‚ F rys b Ẽ2
12 Ñ Ẽ2

22 by

F rys bArys y1y2y3E
3rys ÝÑ G3

f b y1y2y3eee ÞÑ p0, 0, 0, fp´q.y1y2y3eeeq .

Remark. We may observe that the image of the right action map Ẽ2
22bF rys Ñ

Ẽ2
21 preserves the conditions for G3:

E2f ˝ χ´ b Efpee1q “ E2f ˝ pχ´ b ee1q

“ y2E
2f ˝ χ1,

E2f ˝ χ´ δp b Efpee2qq “ E2f ˝ pχ´ δEp b ee2qq

“ E2f ˝ y2χ2

“ y1E
2f ˝ χ2,

and the eeℓ relation:

Efpee1 ´ ee2q “ Efpy2ee
2q

“ y1Efpee2q.

It is trivial to check the conditions for the images of the left action maps
F rys b Ẽ2

11 Ñ Ẽ2
21 and F rys b Ẽ2

12 Ñ Ẽ2
22.

Proof of Lemma 4.7. The reader may now check that τ̃ defined in §4.1.1 is
equivariant over the left and right C actions. These checks are completely
mechanical using the formulas just given. �

4.2. Hecke relations.

4.2.1. x̃ and τ̃ satisfy Hecke relations. These checks are also mechanical, but
we write them out because they are important.

Proposition 4.13. On each component Ẽ2
ij, the maps x̃ and τ̃ defined in

§4.1.1 satisfy

Ẽx̃ ˝ τ̃ ´ τ̃ ˝ x̃Ẽ “ Id

τ̃ ˝ Ẽx̃´ x̃Ẽ ˝ τ̃ “ Id.

Proof. On the first row, Ẽ2
11 and Ẽ

2
12, the relations follow from the correspond-

ing relations between x and τ .
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On Ẽ2
21 presented as G2, we have:

Ẽx̃ ˝ τ̃ : pe1, e2, ξq ÞÑ pxe1, ye1, Ex ˝ τ ˝ ξq

τ̃ ˝ x̃Ẽ : pe1, e2, ξq ÞÑ pye1 ´ e2, ye
1 ´ e2, τ ˝ xE ˝ ξq

τ̃ ˝ Ẽx̃ : pe1, e2, ξq ÞÑ pe2 ` xe1, e2 ` xe1, τ ˝Ex ˝ ξq

x̃Ẽ ˝ τ̃ : pe1, e2, ξq ÞÑ pye1, xe1, xE ˝ τ ˝ ξq,

from which

Ẽx̃ ˝ τ̃ ´ τ̃ ˝ x̃Ẽ : pe1, e2, ξq ÞÑ
`

y1e
1 ` e2, e2, pEx ˝ τ ´ τ ˝ xEq ˝ ξ

˘

“ pe1, e2, ξq,

and similarly for the other relation.
On Ẽ2

22 presented as G3, we have:

Ẽx̃ ˝ τ̃ : pee1, ee2, ee3, χq ÞÑ pxEpee1q, yee1, Ex ˝ τpee3q, ExE ˝ τE ˝ χq

τ̃ ˝ x̃Ẽ : pee1, ee2, ee3, χq ÞÑ pyee1 ´ ee2, yee
1 ´ ee2, τ ˝ xEpee3q, τE ˝ xE2 ˝ χq

τ̃ ˝ Ẽx̃ : pee1, ee2, ee3, χq ÞÑ pee1 ` yee1, ee1 ` yee1, τ ˝ Expee3q, τE ˝ ExE ˝ χq

x̃Ẽ ˝ τ̃ : pee1, ee2, ee3, χq ÞÑ pyee1, xEpee1q, xE ˝ τpee3q, xE2 ˝ τE ˝ χq,

and so

Ẽx̃ ˝ τ̃ ´ τ̃ ˝ x̃Ẽ : pee1, ee2, ee3, χq ÞÑ
`

y2ee
1 ` ee2, ee2, pEx ˝ τ ´ τ ˝ xEqpee3q, pExE ˝ τE ´ τE ˝ xE2q ˝ χ

˘

“ pee1, ee2, ee3, χq,

and similarly for the other relation. �

4.2.2. τ̃ 2 “ 0. This is clear.

4.2.3. τ̃ satisfies the braid relation. In this section we give formulas defining k-
module endomorphisms τ̃1 and τ̃2 of the components of the matrix parametriza-
tion of Ẽ3. We show that these endomorphisms satisfy the braid relations.
Then we argue that they correspond to the maps Ẽτ̃ and τ̃ Ẽ induced on the
same bimodule components. This will complete our proof that x̃ and τ̃ satisfy
the nil affine Hecke relations in U`.

Lemma 4.14. Let us be given pee1, ee2, ee3, χq P G3 with ee2 defined as in
§3.21. Then

pτpee1q,´ee2,´ee2, Eτ ˝ χq P E2rys‘3 ‘ HomApAE,E
3qrys

also lies in G3.

Proof. The reader may check this directly. In Prop. 4.18 we will interpret this
element as the image of pee1, ee2, ee3, χq under Ẽτ̃ , and it must therefore lie
in G3. �
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Lemma 4.15. Let us be given peee1, eee2, eee3, eee4, ψq P G4 with eee
pℓq defined

as in §3.23. Then the following elements of E3rys‘4 ‘ HomApAE,E
4qrys also

lie in G4:

pτEpeee1q, eeep2q, eeep2q, Eτpeee4q, EτE ˝ ψq,

peeep4q, eeep4q, τEpeee3q, τEpeee4q, τE2 ˝ ψq.

Proof. The reader may check this directly. In Prop. 4.18 we will interpret
these elements as the images of peee1, eee2, eee3, eee4, ψq under Ẽτ̃ and τ̃ Ẽ

respectively, and they must therefore lie in G4. �

Definition 4.16. Let τ̃1, τ̃2 be k-module maps defined on Ẽ3
ij , presented as in

§3.4.2, as follows:

‚ on Ẽ3
11:

– τ̃1 acts by Eτ
– τ̃2 by τE

‚ on Ẽ3
12:

– τ̃1 by EτE
– τ̃2 by τE2

‚ on Ẽ3
21:

– τ̃1 by pee1, ee2, ee3, χq ÞÑ pτpee1q,´ee2,´ee2, Eτ ˝ χq
– τ̃2 by pee1, ee2, ee3, χq ÞÑ pee1, ee1, τpee3q, τE ˝ χq,

i.e. τ̃ as defined above on G3 considered as Ẽ2
22

‚ on Ẽ3
22:

– τ̃1 by peee1, eee2, eee3, eee4, ψq ÞÑ

pτEpeee1q, eeep2q, eeep2q, Eτpeee4q, EτE ˝ ψq

– τ̃2 by peee1, eee2, eee3, eee4, ψq ÞÑ

peeep4q, eeep4q, τEpeee3q, τEpeee4q, τE2 ˝ ψq.

Proposition 4.17. The τ̃i satisfy τ̃1 ˝ τ̃2 ˝ τ̃1 “ τ̃2 ˝ τ̃1 ˝ τ̃2.

Proof. On Ẽ2
1j the claim follows from the τi braid relation. On Ẽ2

21 “ G3 we
have:

pee1, ee2, ee3, χq
τ̃1ÞÝÑ

pτpee1q,´ee2,´ee2, Eτ ˝ χq
τ̃2ÞÝÑ

p´ee ´ τpee3q,´ee ´ τpee3q,´τpee2q, τE ˝ Eτ ˝ χq
τ̃1ÞÝÑ

p´τpeeq,´τpeeq,´τpeeq, Eτ ˝ τE ˝ Eτ ˝ χq

and

pee1, ee2, ee3, χq
τ̃2ÞÝÑ

pee1, ee1, τpee3q, τE ˝ χq
τ̃1ÞÝÑ

pτpee1q,´ee,´ee, Eτ ˝ τE ˝ χq
τ̃2ÞÝÑ

p´τpeeq,´τpeeq,´τpeeq, τE ˝ Eτ ˝ τE ˝ χq.
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On Ẽ3
22 “ G4 we have:

peee1, eee2, eee3, eee4, ψq
τ̃1ÞÝÑ

pτEpeee1q, eeep2q, eeep2q, Eτpeee4q, EτE ˝ ψq
τ̃2ÞÝÑ

pτEpeeep5qq ` eee, τEpeeep5qq ` eee, τEpeeep2qq, τE ˝ Eτpeee4q, τE2 ˝ EτE ˝ ψq
τ̃1ÞÝÑ

pτEpeeeq, τEpeeeq, τEpeeeq, Eτ ˝ τE ˝ Eτpeee4q, EτE ˝ τE2 ˝ EτE ˝ ψq

and

peee1, eee2, eee3, eee4, ψq
τ̃2ÞÝÑ

peeep4q, eeep4q, τEpeee3q, τEpeee4q, τE2 ˝ ψq
τ̃1ÞÝÑ

pτEpeeep4qq, eee, eee, Eτ ˝ τEpeee4q, EτE ˝ τE2 ˝ ψq
τ̃2ÞÝÑ

pτEpeeeq, τEpeeeq, τEpeeeq, τE ˝ Eτ ˝ τEpeee4q, τE2 ˝EτE ˝ τE2 ˝ ψq.

�

The remaining goal of this section is to relate the τ̃i just defined to the τ̃
acting on Ẽ as described in §4.1.1. The latter is known to be a pC,Cq-bimodule
morphism.

Proposition 4.18. Under the isomorphism of Lemma 3.45, namely

Ẽ3 „
ÝÑ HomKbpBqpX,E

13Xq,

the maps Ẽτ̃ and τ̃ Ẽ on Ẽ3 correspond to τ̃1 and τ̃2 of Definition 4.16.

Corollary 4.19. Lemmas 4.14 and 4.15 follow.

Corollary 4.20. Proposition 4.17 implies Ẽτ̃ ˝ τ̃ Ẽ ˝ Ẽτ̃ “ τ̃ Ẽ ˝ Ẽτ̃ ˝ τ̃ Ẽ.

Proof of the proposition. We consider the tensor product Ẽ bC Ẽ
2 formed ac-

cording to the procedure of §2.4, and study the endofunctor Ẽτ̃ as in Lemma
2.8, and similarly for Ẽ2 bC Ẽ and τ̃ Ẽ. From Lemma 3.45, we have isomor-
phisms

HomKbpBqpX,E
1Xq bC HomKbpBqpX,E

12Xq
„
ÝÑ HomKbpBqpX,E

13Xq

HomKbpBqpX,E
12Xq bC HomKbpBqpX,E

1Xq
„
ÝÑ HomKbpBqpX,E

13Xq

associated with the products

Ẽ bC Ẽ
2 “ Ẽ3

Ẽ2 bC Ẽ “ Ẽ3.

The maps are given by

f b g ÞÑ E 1g ˝ f

f b g ÞÑ E 12g ˝ f.

These isomorphisms determine actions of Ẽτ̃ and τ̃ Ẽ on HomKbpBqpX,E
13Xq

that we may compare to the τ̃1 and τ̃2 defined there by components.
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The components Ẽij and Ẽ2
ij are pEndpXiq

op,EndpXjq
opq-bimodules, and τ̃

gives bimodule endomorphisms τ̃|ij of the latter. These induce endomorphisms

pẼτ̃q
1|2
|ijk of

Ẽ
1|2
ijk “ Ẽij bEndpXjqop Ẽ

2
jk,

as in §2.4. We know that Ẽ3
ik is canonically isomorphic to a quotient of Ẽ

1|2
i1k ‘

Ẽ
1|2
i2k, and that

ˆ

pẼτ̃q
1|2
|i1k

0

0 pẼτ̃q
1|2
|i2k

˙

acting on Ẽ
1|2
i1k ‘Ẽ

1|2
i2k descends to Ẽ

3
ik, where it

gives the components of Ẽτ̃ . Here it may be compared directly with τ̃1 that we
defined on Ẽ3

ik. It therefore suffices for our objective to check commutativity of
the following diagrams labeled D1|2pi, j, kq, indexed by triples pi, j, kq P t1, 2u3:

Ẽij bEndpXjqop Ẽ
2
jk Ẽ3

ik

D1|2pi, j, kq :

Ẽij bEndpXjqop Ẽ
2
jk Ẽ3

ik.

pẼτ̃q
1|2
|ijk

fbg ÞÑE1g˝f

τ̃1|ik

fbg ÞÑE1g˝f

Exactly parallel considerations apply to the study of τ̃ Ẽ, where the diagrams

for pi, j, kq, now labeled D2|1pi, j, kq, instead involve maps pẼτ̃ q
2|1
|ijk and τ̃2|ik.

Checking the diagrams will occupy the next three pages.

Lemma 4.21. The diagrams D1|2pi, j, kq commute.

Proof. We consider the diagrams in turn:

‚ Diagram D1|2p1, 1, 1q:

Consider pẼτ̃ q
1|2
|111 P EndpẼ11 b Ẽ2

11q. Let y1e P Ẽ11 and y1y2ee P Ẽ2
11. The

image of y1eb y1y2ee in the top right corner of the diagram is

E 1py1y2eeq ˝ y1e “ y1y2y3pe b eeq P Ẽ3
11.

Here we can write out E 1py1y2eeq “ py1y2ee, 0, 0, b y1y2eeq P G3. On the

other hand, τ̃py1y2eeq “ y1y2τpeeq, so the image of pẼτ̃q
1|2
|111

`

y1e b y1y2ee
˘

is

y1y2y3peb τpeeqq P Ẽ3
11, which agrees with τ̃1py1y2y3peb eeqq.

‚ Diagram D1|2p1, 2, 1q:

Consider pẼτ̃ q
1|2
|121 P EndpẼ12 b Ẽ2

21q. Let y1y2ee P Ẽ12 and pe1, e2, ξq P Ẽ2
21.

We have no established notation for E 1
`

pe1, e2, ξq
˘

P HomKbpBqpE
1X2, E

12X1q.
It is nevertheless easy to check, by tracking ‘leading terms’ of the upper rows,
that

E 1
`

pe1, e2, ξq
˘

˝ y1y2ee “ Eξpy1y2eeq P Ẽ3
11.

This lies in y1y2y3E
3rys. Then τ̃

`

pe1, e2, ξq
˘

“ pe1, e1, τ ˝ ξq, so pẼτ̃q
1|2
|121 applied

to y1y2ee b pe1, e2, ξq and viewed in Ẽ3
11 is Eτ ˝ Eξpy1y2eeq.

‚ Diagram D1|2p2, 1, 1q:
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Consider pẼτ̃ q
1|2
|211 P EndpẼ21 b Ẽ2

11q. Let pθ, ϕq P Ẽ21 and y1y2ee P Ẽ2
11. This

time we can write E 1py1y2eeq “ py1y2ee, 0, 0, b y1y2eeq. Then

E 1py1y2eeq ˝ pθ, ϕq “ pθy1y2ee, 0, 0, ϕb y1y2eeq P Ẽ3
21.

Going around the diagram in either direction yields pθy1y2τpeeq, 0, 0, ϕby1y2τpeeqq.

‚ Diagram D1|2p2, 2, 1q:

Consider pẼτ̃ q
1|2
|221 P EndpẼ22 b Ẽ2

21q. Let pe1, e2, ξq P Ẽ22 and pē1, ē2, ξ̄q P Ẽ2
21.

We have no notation for E 1
`

pē1, ē2, ξ̄q
˘

. One computes that

E 1
`

pē1, ē2, ξ̄q
˘

˝ pe1, e2, ξq “ pξ̄pe1q, e2 b ē1, e2 b ē2, Eξ̄ ˝ ξq P Ẽ3
21.

Traversing the diagram in either direction gives pτ ˝ ξ̄pe1q, e2 b ē1, e2 b ē1, Eτ ˝
Eξ̄ ˝ ξq.

‚ Diagram D1|2p1, 1, 2q:

Consider pẼτ̃ q
1|2
|112 P EndpẼ11 b Ẽ2

12q. Let y1e P Ẽ11 and y1y2y3eee P Ẽ2
12. Again

by tracking ‘leading terms’, one checks that

E 1py1y2y3eeeq ˝ y1e “ y1 . . . y4peb eeeq P Ẽ3
12.

Traversing the diagram in either direction gives EτEpy1 . . . y4eb eeeq which is
y1 . . . y4peb τEpeeeqq.

‚ Diagram D1|2p1, 2, 2q:

Consider pẼτ̃q
1|2
|122 P EndpẼ12 b Ẽ2

22q. Let y1y2ee P Ẽ12 and pee1, ee2, ee3, χq P

Ẽ2
22. Then check that

E 1 ppee1, ee2, ee3, χqq ˝ y1y2ee “ Eχpy1y2eeq P Ẽ3
12.

Traversing the diagram in either direction gives pEτE ˝ Eχqpy1y2eeq.

‚ Diagram D1|2p2, 1, 2q:

Consider pẼτ̃ q
1|2
|212 P EndpẼ21 b Ẽ2

12q. Let pθ, ϕq P Ẽ21 and y1y2y3eee P Ẽ2
12.

Then check that

E 1py1y2y3eeeq ˝ pθ, ϕq “ pθy1y2y3eee, 0, 0, 0, ϕb y1y2y3eeeq P Ẽ3
22.

Traversing the diagram in either direction gives

pτEpθy1y2y3eeeq, 0, 0, 0, EτE ˝ pϕ b y1y2y3eeeqq .

‚ Diagram D1|2p2, 2, 2q:

Consider pẼτ̃q
1|2
|222 P EndpẼ22bẼ2

22q. Let pe1, e2, ξq P Ẽ22 and pee1, ee2, ee3, χq P

Ẽ2
22. Then check that

E 1
`

pee1, ee2, ee3, χq
˘

˝pe1, e2, ξq “ pχpe1q, e2 b ee1, e2 b ee2, e2 b ee3, Eχ ˝ ξq P Ẽ3
22.

Traversing the diagram in either direction gives
`

τEpχpe1qq, e2 b ee1, e2 b ee1, Eτpe2 b ee3q, EτE ˝Eχ ˝ ξ
˘

.

�

Lemma 4.22. The diagrams D2|1pi, j, kq commute.
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Proof. We consider the diagrams in turn:

‚ Diagram D2|1p1, 1, 1q:

Consider pτ̃ Ẽq
2|1
|111 P EndpẼ2

11 b Ẽ11q. Let y1y2ee P Ẽ2
11 and y1e P Ẽ11. Then

check that

E 12py1eq ˝ y1y2ee “ y1y2y3eeb e P Ẽ3
11.

Traversing the diagram in either direction gives

y1y2y3pτpeeq b eq.

‚ Diagram D2|1p1, 2, 1q:

Consider pτ̃ Ẽq
2|1
|121 P EndpẼ2

12 b Ẽ21q. Let y1y2y3eee P Ẽ2
12 and pθ, ϕq P Ẽ21.

Then check that

E 12
`

pθ, ϕq
˘

˝ y1y2y3eee “ E2ϕpy1y2y3eeeq P Ẽ3
11.

Traversing the diagram in either direction gives

pτE ˝ E2ϕqpy1y2y3eeeq.

‚ Diagram D2|1p2, 1, 1q:

Consider pτ̃ Ẽq
2|1
|211 P EndpẼ2

21 b Ẽ11q. Let pe1, e2, ξq P Ẽ2
21 and y1e P Ẽ11. Then

check that

E 12py1eq ˝ pe1, e2, ξq “ pe1 b y1e, e2 b y1e, 0, ξ b y1eq P Ẽ3
21.

Traversing the diagram in either direction gives

pe1 b y1e, e
1 b y1e, 0, pτ ˝ ξq b y1eq.

‚ Diagram D2|1p2, 2, 1q:

Consider pτ̃ Ẽq
2|1
|221 P EndpẼ2

22 b Ẽ21q. Let pee1, ee2, ee3, χq P Ẽ2
22 and pθ, ϕq P

Ẽ21. Then check that

E 12
`

pθ, ϕq
˘

˝ pee1, ee2, ee3, χq “ pEϕpee1q, Eϕpee2q, θee3, E
2ϕ ˝ χq P Ẽ3

21.

Traversing the diagram in either direction gives
`

Eϕpee1q, Eϕpee1q, θτpee3q, E2ϕ ˝ τE ˝ χ
˘

.

‚ Diagram D2|1p1, 1, 2q:

Consider pτ̃ Ẽq
2|1
|112 P EndpẼ2

11 b Ẽ12q. Let y1y2ee P Ẽ2
11 and y1y2ēē P Ẽ12. Then

check that

E 12py1y2ēēq ˝ y1y2ee “ py1y2eeq b py1y2ēēq “ y1 . . . y4peeb ēēq P Ẽ3
12.

Traversing the diagram in either direction gives

y1 . . . y4pτpeeq b ēēq.

‚ Diagram D2|1p1, 2, 2q:
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Consider pτ̃ Ẽq
2|1
|122 P EndpẼ2

12 b Ẽ22q. Let y1y2y3eee P Ẽ2
12 and pe1, e2, ξq P Ẽ22.

Then check that

E 12
`

pe1, e2, ξq
˘

˝ y1y2y3eee “ E2ξpy1y2y3eeeq P Ẽ3
12.

Traversing the diagram in either direction gives

pτE2 ˝ E2ξqpy1y2y3eeeq.

‚ Diagram D2|1p2, 1, 2q:

Consider pτ̃ Ẽq
2|1
|212 P EndpẼ2

21 b Ẽ12q. Let pe1, e2, ξq P Ẽ2
21 and y1y2ee P Ẽ12.

Then check that

E 12py1y2eeq ˝ pe1, e2, ξq “ pe1 b y1y2ee, e2 b y1y2ee, 0, 0, ξ b y1y2eeq P Ẽ3
22.

Traversing the diagram in either direction gives

pe1 b y1y2ee, e
1 b y1y2ee, 0, 0, pτ ˝ ξq b y1y2eeq .

‚ Diagram D2|1p2, 2, 2q:

Consider pτ̃ Ẽq
2|1
|222 P EndpẼ2

22bẼ22q. Let pee1, ee2, ee3, χq P Ẽ2
22 and pe1, e2, ξq P

Ẽ22. Then check that

E 12
`

pe1, e2, ξq
˘

˝ pee1, ee2, ee3, χq “
`

Eξpee1q, Eξpee2q, ee3 b e1, ee3 b e2, E
2ξ ˝ χ

˘

P Ẽ3
22.

Traversing the diagram in either direction gives
`

Eξpee1q, Eξpee1q, τpee3q b e1, τpee3q b e2, τE
2 ˝ E2ξ ˝ χ

˘

.

�

The proposition that Ẽτ̃ and τ̃ Ẽ correspond to τ̃1 and τ̃2 is now proved. �

4.3. Definition of Lp1q b©V.

Definition 4.23. Let V be a 2-representation of U` given by the data pE, x, τq
for a k-algebra A such that AE is finitely generated and projective and En is
free as a Pn-module. We define Lp1q b V to be the 2-representation of U`

given for the k-algebra C by the data pẼ, x̃, τ̃q.

Proposition 4.24. If E is locally nilpotent, then Ẽ is locally nilpotent.

Proof. Note that in our setting of bimodules, local nilpotence of E bA ´ is
equivalent to nilpotence of E, meaning that En – 0 for some n. This is
because local nilpotence implies En bA A – 0 for some n, but that is just En

as a bimodule.
Recall the expression for Ẽn as a matrix of pArys, Arysq-bimodules:

ˆ

y1 . . . ynE
nrys y1 . . . yn`1E

n`1rys
Gn Gn`1

˙

„
ÝÑ

ˆ

Ẽn
11 Ẽn

12

Ẽn
21 Ẽn

22

˙

.

The method we used to compute a model for Gn for n “ 1, 2, 3 also shows that
Gn for any n can be described as a sub-bimodule ofEn´1rys‘n‘HomApAE,E

nqrys,
given by the elements satisfying a certain set of conditions. It follows that Gn
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vanishes for large n if En does. Also y1 . . . ynE
nrys vanishes for large n because

En does. It follows that Ẽ is nilpotent. �

4.3.1. Weights and gradings for Lp1q b©V. It frequently happens that a 2-
representation has additional structure, and we may ask whether our 2-product
inherits that structure. A 2-representation of U` may have a weight decom-
position, or its algebra may have a grading.

Definition 4.25. A 2-representation V of U` given for k-algebra A by the
data pE, x, τq is said to have a weight decomposition when A has the form
A “

ś

iPZAi with units ei P Ai, and ejEei “ δi`2,j ¨ ei`2Eei.

Proposition 4.26 (weight decomposition). Let A and pE, x, τq satisfy the
conditions of Def. 4.23, and let V be the 2-representation they determine. Sup-
pose that V has a weight decomposition with units ei P Ai. Let C and pẼ, x̃, τ̃q
give the data of Lp1q b V. Then C has a weight decomposition C “

ś

iPZCi

with Ci “ fiCfi where the units fi P Ci Ă C are given in matrix form as
follows:

fi “

ˆ

ei`1 0
0 pei´1, .ei´1q

˙

.

Proof. The elements fi are clearly idempotent and orthogonal, and they sum
to the identity. We have for the matrix components of fjẼfi:

rfjẼfis11 “ ej`1.y1Erys.ei`1

rfjẼfis12 “ ej`1.y1y2E
2rys.ei´1

rfjẼfis21 “ G1

č

´

ej´1Arysei`1 ‘ ej´1.HomApAE,Eq.ei`1rys
¯

rfjẼfis22 “ G2

č

´

ej´1.Erys.ei´1 ‘ ej´1.Erys.ei´1 ‘ ej´1.HomApAE,E
2q.ei´1rys

¯

.

These are all zero unless j “ i` 2. �

Definition 4.27 (graded case). A 2-representation V of U` given for k-algebra
A by the data pE, x, τq is said to be a Z-graded 2-representation when A

is a Z-graded k-algebra, E is a graded bimodule, and x and τ are graded
endomorphisms with deg x “ `2 and deg τ “ ´2.

Proposition 4.28. Let A and pE, x, τq satisfy the conditions of Def. 4.23, and
let V be the 2-representation they determine. Suppose that V is a Z-graded 2-
representation. Let C and pẼ, x̃, τ̃q give the data of Lp1q b V. Then Lp1q b V

is a Z-graded 2-representation. The gradings on generators in C and Ẽ are
inherited from the gradings on A and E with the assumption that deg y “ `2.

Proof. It is trivial to check that C is graded and Ẽ is a graded bimodule. The
formulas for x̃ and τ̃ in Def. 4.4 show that they have the right degrees. �

5. Comparison: V “ Lp1q

In §5.1 we describe a well-known 2-representation of U` categorifying Lp1qb
Lp1q using Soergel bimodules. In §5.2 we describe our product explicitly for
V “ Lp1q, and in §5.3 we show that the result is equivalent to the known
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one. The reader is warned that notations in this section will diverge from the
previous sections.

Let P2 “ kry1, y2s. Let S2 denote the symmetric group on 2 letters, gen-
erated by t1, and acting on P2 by permutation of the yi. Let P S2

2 be the
subalgebra generated by invariant homogeneous polynomials.

5.1. A categorification of Lp1q b Lp1q.

Definition 5.1. We define:

‚ a pP2, P2q-bimodule Bs1 “ P2 b
P

S2

2

P2

– and observe that Bs1 is also a P2-algebra with structure map P2 Ñ Bs1

given by f ÞÑ 1 b f

– and that P2 is a left Bs1-module by pf b gq.θ “ fgθ

‚ a P2-algebra T “ T`2 ‘ T0 ‘ T´2 by

T`2 “ P2, T0 “ EndBs1
pP2 ‘ Bs1qop, T´2 “ P2

‚ a pT, T q-bimodule E “`2 E0 ‘ 0E´2 by

0E´2 “

ˆ

P2

Bs1

˙

– T0e2

`2E0 “
`

P2 Bs1

˘

– e2T0

for e2 the projection onto Bs1

– and observe the canonical isomorphism

`2E
2

´2 “ e2T0 bT0
T0e2

„
ÝÑ Bs1

‚ a bimodule endomorphism x P EndpE q by

`2x0 “
`

y2 y2 b 1
˘

, 0x´2 “

ˆ

y1
y1 b 1

˙

(acting by multiplication)
‚ a bimodule endomorphism τ P EndpE 2q by

`2τ´2 : f b g ÞÑ Bt1pfq b g

where Bt1 P EndkpP2q is a Demazure operator:

Bs1 : f ÞÑ
f ´ f t1

y1 ´ y2
.

The next theorem is well-known. Cf., for example, Lauda [Lau09], Webster
[Web16, §2.3], Stroppel [Str03, §5.1.1], Sartori-Stroppel [SS15]:

Theorem 5.2. The k-algebra T and triple pE , x, τq defined above gives a
2-representation of U`, called T below, that categorifies the tensor product
Lp1q b Lp1q of fundamental representations of sl2.
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5.2. Lp1q b©Lp1q. We notate both factors as in §2.2.3 except that on the right
factor we use y1 in place of y, and on the left factor we use y2 in place of y.
We write Ei, xi, τi, i “ 1, 2 for the 2-representation data on the right (i “ 1)
and on the left pi “ 2).

In the formulas we have given for the product, the algebra A, now A1,
becomes kry1s`1 ˆ kry1s´1 (in its weight decomposition), E becomes kry1s, x
becomes y1, and y becomes y2. Let ω “ y1 ´ y2 P P2. So ω will take over the
role of ‘y1 “ x´y’ that was written in previous sections. Write π : P2 Ñ P2{pωq
for the projection.

We let B, X , E 1, C, Ẽ, x̃, and τ̃ be defined as above. The algebra B and
complex X have nonzero elements only in weights ´2, 0, `2. These are given
as follows:

B´2 “

ˆ

P2 0
0 0

˙

, X1´2
“

ˆ

P2

0

˙

, X2´2
“

ˆ

0
0

˙

,

B0 “

ˆ

P2 krys
0 P2

˙

, X10 “

ˆ

P2

0

˙

, X20 “

ˆ

P2
π
ÝÑ P2{pωq
0 Ñ P2

˙

,

B`2 “

ˆ

0 0
0 P2

˙

, X1`2
“

ˆ

0
0

˙

, X2`2
“

ˆ

0
0 Ñ P2

˙

.

Here the action of P2{pωq from the upper right of B0 on X20 is P2{pωqbP2
P2 Ñ

P2{pωq given by f b 1 ÞÑ f . The complexes for X start in degree 0 on the left.
The matrix coefficients are in each case from the ´1 weight space of A2 in the
upper left corner.

To compute Ẽ we will also need E 1X2, which is:

0E
1
´2pX2´2

q “

ˆ

0
0

˙

,

`2E
1
0pX20q “

˜

0

0 Ñ P2 ‘ P2

p´π,πq
ÝÝÝÝÑ P2{pωq

¸

.

Next we compute C:

rC`2s “

ˆ

0 0
0 P2

˙

, rC0s “

ˆ

P2 ωP2

P2 Q
op

1

˙

, rC´2s “

ˆ

P2 0
0 0

˙

.

Here Qop

1 Ă P2 ‘P2 is the (commutative) algebra of all pθ, ϕq such that ϕ´θ P
ωP2, with componentwise multiplication. It is a P2-algebra by P2 Q f ÞÑ
pf, fq P Q1. The algebra structure of C0 (cf. §2.4) may be described as follows.
The upper right term, ωP2, is a left P2-module by multiplication. It is a right
Q

op

1 -module with pθ, ϕq acting by multiplication by ϕ. The lower left P2 is a left
Q

op

1 -module with the same action. It has a right P2 action by multiplication.
The remaining structure maps are:

ωP2 bP2
P2 Ñ P2(5.1)

by ωθ1 b θ ÞÑ ωθθ1
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and

P2 bP2
ωP2 Ñ Q

op

1(5.2)

by θ b ωθ1 ÞÑ p0, ωθθ1q.

Now compute Ẽ and the endomorphisms x̃ by components:

0rẼs´2 “

ˆ

ωP2 0
Q1 0

˙

, 0rx̃s´2 “

ˆ

y1 0
py2, y1q 0

˙

,

`2rẼs0 “

ˆ

0 0
P2 Q2

˙

, `2rx̃s0 “

ˆ

0 0
y2 py2, y1q

˙

,

where Q2 Ă P2 ‘ P2 is the pP2, Q
op

1 q-bimodule containing all pe1, e2q such that
e1 ´ e2 P ωP2; Q

op

1 acts on Q2 on the right by pe1, e2q.pθ, ϕq “ pe1ϕ, e2θq (note
the swap), and P2 on the left by diagonal multiplication.

In the next section it will be useful to view 0Ẽ´2 as C0q2 using the idempotent
q2 “ p 0 0

0 1 q P rC0s, and to view `2Ẽ0 as q2C0 using the isomorphism of pP2, Q
op

1 q-
bimodules σ : Q1

„
ÝÑ Q2 by pθ, ϕq ÞÑ pϕ, θq. Viewing them in this way, we may

write 0x̃´2 as multiplication on C0q2 on the left by
´

y1 0

0 py2,y1q

¯

P C0, and `2x̃0

as multiplication on q2C0 on the right by
´

y2 0

0 py1,y2q

¯

P C0 (note the swap).

Finally, compute Ẽ2 and τ̃ by components:

`2rẼ
2s´2 “

ˆ

0 0
Q2 0

˙

, `2rτ̃ s´2 “

ˆ

0 0
t21 0

˙

,

where
t21 : pe1, e2q ÞÑ pω´1pe1 ´ e2q, ω´1pe1 ´ e2qq.

5.3. Comparison.

Theorem 5.3. There is an equivalence Lp1q bLp1q
„
ÝÑ T of 2-representations.

We will use a few intermediate steps.
Define a new algebra R:

R “ P2res
L`

e2 ´ ωe
˘

.

There is a map of P2-algebras R
γ
ÝÑ Bs1 given by e ÞÑ 1 b y1 ´ y1 b 1. There

is another map of P2-algebras R
γ1

ÝÑ Q
op

1 given by P2 Q f ÞÑ pf, fq P Qop

1 and
e ÞÑ pω, 0q.

Lemma 5.4. The maps γ and γ1 are isomorphisms of P2-algebras.

Proof. Straightforward. �

We will also use the composition σ˝γ1 to obtain an isomorphism of pP2, P2q-
bimodules R

„
ÝÑ Q2 given by f ÞÑ pf, fq and e ÞÑ p0, ωq.

Now we translate T using γ. The action of Bs1 on P2 induces an action of
R on P2 through γ, according to which P2 ãÑ R acts on P2 by multiplication,
and e acts by zero. We have an isomorphism of R-modules P2

„
ÝÑ R{peq using

this action on P2. In the remainder of this section we assume this isomorphism
and write R in place of Bs1 everywhere in the 2-representation T . Under this
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translation, and using the decomposition R
„
ÝÑ P2 ‘ P2e as P2-modules, we

have:

`2x0 “
`

y2 y2 ` e
˘

, 0x´2 “

ˆ

y1
y1 ´ e

˙

,

and

`2τ´2 “
`

p1 ` p2e ÞÑ ´p2
˘

.

Lemma 5.5. The matrix presentation of T0 is given by:
ˆ

P2 P2

P2 R

˙

„
ÝÑ T0,

where:

‚ for rT0s11 the map sends θ P P2 to p1 ÞÑ θq P EndRpP2qop

‚ for rT0s21 the map sends θ P P2 to p1 ÞÑ θq P HomRpR,P2q
‚ for rT0s12 the map sends θ P P2 to p1 ÞÑ θω ´ θeq P HomRpP2, Rq
‚ for rT0s22 the map sends r P R to p1 ÞÑ rq P EndRpR,Rqop.

The algebra structure maps (cf. §2.4) are given as follows:

‚ rT0s11 œ rT0s12 by θ.θ1 “ θθ1

‚ rT0s21 ö rT0s11 by θ1.θ “ θ1θ

‚ rT0s12 ö rT0s22 by θ.pp1 ` p2eq “ θp1
‚ rT0s22 œ rT0s21 by pp1 ` p2eq.θ “ p1θ

‚ rT0s12 b rT0s21 Ñ rT0s11 by θ b θ1 ÞÑ ωθθ1

‚ rT0s21 b rT0s12 Ñ rT0s22 by θ1 b θ ÞÑ ωθ1θ ´ θ1θe.

Proof. Let us explain the map to rT0s12. Recall that P2 – R{peq. An element
of HomRpR{peq, Rq is given by the image r “ p1 ` p2e of 1, which may be
anything satisfying e.r “ 0, and that condition is equivalent to p1 “ ´p2ω.
The other morphisms and the structure maps are easily computed. �

Lemma 5.6. Let Φ0 : T0 Ñ C0 be given on components by:
ˆ

IdP2
ω

IdP2
γ1

˙

.

Then Φ0 is an isomorphism of P2-algebras.

Proof. The specified maps give algebra isomorphisms on the diagonal compo-
nents, and k-module isomorphisms on the off-diagonal components. Now we
check equivariance under the bimodule structure maps. The only nonobvious
cases concern maps involving the lower right component.

An element of Qop

1 may be written uniquely as a sum pωθ, 0q ` pϕ, ϕq. This
is sent by γ1´1 to ϕ ` θe P R. So the action of pθ, ϕq by multiplication by
ϕ agrees with the action of p1 ` p2e by multiplication by p1. The structure
map rT0s12 b rT0s21 Ñ rT0s11 clearly agrees with Eq. 5.1 through Φ0. The
map rT0s21 b rT0s12 Ñ rT0s22 agrees with Eq. 5.2 through Φ0 because γ1 :
ωθ1θ ´ θ1θe ÞÑ p0, ωθθ1q. �

Proof of Theorem 5.3. Extend Φ0 to an algebra isomorphism Φ : T
„
ÝÑ C by

Φ`2 “ IdP2
and Φ´2 “ IdP2

. It remains to check compatibility with the actions
of E, x, and τ in U`, and this poses no difficulty. We summarize that now.
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We have in T that 0E´2
„
ÝÑ T0r2 for r2 “ p 0 0

0 1 q P rT0s, and similarly 0Ẽ´2 “
C0q2 in Lp1q b Lp1q; and we have q2 “ Φ0pr2q. The action of 0x´2 on 0E´2 in
T can be written in T0r2 as multiplication on the left by

`

y1 0
0 y1´e

˘

P rT0s. In

Lp1q b Lp1q it is written as multiplication on the left by
´

y1 0

0 py2,y1q

¯

. These

correspond using γ1 : R
„
ÝÑ Q

op

1 . Similarly for `2x0 since γ1 : R Q y2 ` e ÞÑ
py1, y2q P Q

op

1 . Finally, the action of τ in R by `2τ´2 “
`

p1 ` p2e ÞÑ ´p2
˘

corresponds to `2τ̃´2, now using σ ˝ γ1 : R
„
ÝÑ Q2. �

References

[BFK99] Joseph Bernstein, Igor Frenkel, and Mikhail Khovanov, A categorification of the

Temperley-Lieb algebra and Schur quotients of Upsl2q via projective and Zucker-

man functors, Selecta Mathematica 5 (1999), no. 2, 199–241.
[CF94] Louis Crane and Igor Frenkel, Four-dimensional topological quantum field theory,

Hopf categories, and the canonical bases, Journal of Mathematical Physics 35

(1994), no. 10, 5136–5154.
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[MR20] Andrew Manion and Raphaël Rouquier, Higher representations and cornered Hee-

gaard Floer homology, preprint arXiv:2009.09627 (2020).
[MS09] Volodymyr Mazorchuk and Catharina Stroppel, A combinatorial approach to

functorial quantum slpkq-knot invariants, American Journal of Mathematics 131
(2009), no. 6, 1679–1713.
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