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Abstract. This paper provides a novel proof of a generalization of Pappus’ Centroid
Theorem on n-dimensional tubes using Stokes’ Theorem on manifolds.

1. Introduction

The (second) Pappus Centroid Theorem or the Pappus-Guldin Theorem states that
the volume of a solid of revolution generated by rotating a plane region R with
piecewise-smooth boundary about an axis L is 2πr · Area(R), where r is the distance
from the centroid of R to L. This result generalizes considerably to the following main
theorem.

Theorem 1.1 (Main Theorem). Let C be a simple, regular, smooth curve in Rn. Let

R be a region in Rn−1 whose boundary is an embedding of the (n − 2)-dimensional

sphere Sn−2. Let W be a region in Rn whose boundary is a generalized tube around C
such that the cross-section normal to C of W at each point P of C is the region R with

centroid at P . Assuming the cross-section R rotates smoothly as it “travels” along C,

then

Voln(W) = length(C) ·Voln−1(R).

The Pappus Centroid Theorem follows from this Main Theorem by taking n = 3,
C to be a circle in R3, and R to remain fixed with respect to the principal normal
to C in the normal plane. This theorem recently was proved by Gray, Miquel, and
Domingo-Juan in [1] and [3] using parallel transport. However, in 1959 in [2], these
authors proved this theorem in a special case for R3 using elementary methods related
to Stokes’ Theorem. This article proves the Main Theorem in full generality using
Stokes’ Theorem on manifolds. In this regard, we can consider the proof elementary
compared to those in [1] and [3].

Before proving the Main Theorem in full generality, we sketch Goodman’s proof of
it in R3, leaving the reader to consult [2] for details. The description of the general-
ized tube and the method involving the divergence theorem motivate the situation for
arbitrary n.
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2. Generalized Tubes In Dimension 3

Definition 2.1. Let C be a simple, regular, smooth space curve and letR be a compact
planar region with one boundary component ∂R is a piecewise smooth simple closed
curve. Select a marked point P in R. C has a normal plane at each point. Let W be a
region in R3 such that the intersection of W with the normal plane to C at any point
is isometric to the region R, with the corresponding marked point P lying on the curve
C. We assume R rotates smoothly in the normal plane to C as it travels along C. Such
a region W is called a generalized tube along C with cross-section R and center P .

This definition allows for rotational freedom of R around the marked point P in the
normal planes to C. However, this rotational varies smoothly. We may also describe
the generalized tube as a fiber-bundle over C with fiber R, that is a subbundle of the
normal bundle over C.

Figure 1 depicts two generalized tubes around a portion of a helix. More precisely,
the figure depicts the tube boundary excluding the “caps,” or cross-sections at the end
points of C. The planar curve shows its generating region R where the marked point
of R is the origin.

Let S be the boundary ∂W of a generalized tube excluding the caps. (If C is a closed
curve, then ∂W has no caps.) Suppose that α : [0, ℓ] → R3 gives a parametrization by

arclength of C. Also suppose that ~β : [0, c] → R2 is a parametrization of ∂R placing

the marked point P at the origin. We write ~β(u) =
(
x(u), y(u)

)
for the coordinate

functions. A parametrization for S is

~X(s, u) = ~α(s) + (cos(θ(s))x(u)− sin(θ(s))y(u))~P (s)(1)

+ (sin(θ(s))x(u) + cos(θ(s))y(u)) ~B(s),

for some function θ(s), where ~P (s) and ~B(s) are respectively the principal normal and
binormal vector functions to ~α(s).

Recall that (~T (s), ~P (s), ~B(s)), where ~T , ~P , and ~B are the usual tangent, principal
normal, and binormal vectors to ~α(s), is called the Frenet frame to ~α(s). The function
θ(s) determines the rotation of the region R around the origin with respect to the
Frenet frame. The stipulation that R rotates smoothly as it moves along C implies
that θ(s) is a smooth function.

Figure 1(b) depicts a generalized tube where the x-axis in the depiction of R always
lies along the principal normal vector of ~α(s), and Figure 1(c) depicts a generalized
tube with the same cross-section region but having some rotation with respect to the

basis (~P , ~B) in the normal plane. For brevity, we write

~X = ~α+ (x cos θ − y sin θ)~P + (x sin θ + y cos θ) ~B

where functional dependence is understood from (1).

Theorem 2.2 (Corollary 2 in [2]). The volume of a generalized tube as described in

Definition 2.1 is V = length(C) ·Area(R).

Goodman’s method to calculate the volume uses the fact that the position vector
field ~r(x, y, z) = (x, y, z) has divergence everywhere 3. So, using the notation defined
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a) b) c)

Figure 1. A generalized tube with its generating region.

above, the volume of the generalized tube is

Vol(W) =
1

3

∫∫∫

W

3 dV =
1

3

∫∫∫

W

∇ · ~r dV =
1

3

∫∫

∂W

~r · d ~A

where d ~A is the outward pointing surface element. Note that ∂W consists of the tube’s

outward surface S, parametrized by ~X, and the end caps (if C is not a closed curve).

Over S, d ~A is given by d ~A = ( ~Xu × ~Xs) du ds with (u, v) ∈ [0, c] × [0, ℓ] while on the

end caps, d ~A = −~T (0)dA when s = 0 and d ~A = ~T (ℓ)dA when s = ℓ. The caps, like
any cross-section at s, are parametrized by

~Ys(p, q) = ~α(s) + p~P (s) + q ~B(s) for (p, q) ∈ Rs,

where Rs is the region R rotated about the origin (the marked point P ) by the angle

θ(s). Thus, since ~T (s) is perpendicular to both ~P (s) and ~B(s), we have

3Vol(W)

=

ℓ∫

s=0

c∫

u=0

~X · ( ~Xu × ~Xs) du ds+

∫∫

Rℓ

~α(ℓ) · ~T (ℓ) dp dq +

∫∫

R0

−~α(0) · ~T (0) dp dq

=

ℓ∫

s=0

c∫

u=0

~X · ( ~Xu × ~Xs) du ds+Area(R)
(
~α(ℓ) · ~T (ℓ)− ~α(0) · ~T (0)

)
.

(2)

The problem of calculating the volume of W reduces to calculating the double integral
in (2).

Recall that vectors of the Frenet frame (parametrized by arclength) differentiate
according to

(3)

~T ′ = κ~P
~P ′ = −κ~T τ ~B
~B′ = −τ ~P ,
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where κ(s) and τ(s) are the curvature and torsion functions of the space curve ~α(s).

Then the tangent vectors to ~X are given (after simplification) by

~Xu = (x′ cos θ − y′ sin θ)~P + (x′ sin θ + y′ cos θ) ~B

~Xs = (1− κx cos θ + κy sin θ)~T − (θ′ + τ)(x sin θ + y cos θ)~P

+ (θ′ + τ)(x cos θ − y sin θ) ~B.

So

~Xu × ~Xs = (θ′ + τ)(xx′ + yy′)~T + (1− κx cos θ + κy sin θ)(x′ sin θ + y′ cos θ)~P

− (1− κx cos θ + κy sin θ)(x′ cos θ − y′ sin θ) ~B.

The dot product ~X · ( ~Xu× ~Xs) involves many terms. However, all of the additive terms
involved in the integrals are multiplicatively separable, which, by the usual corollary
to Fubini’s Theorem, allows us to separate the double integral. Many of the integrals
involving u vanish or evaluate to a simple constant, namely the area of the cross-section.
Consider the following integrals. By substitution,

c∫

u=0

xx′ du = x2
∣∣∣
c

0
= 0

because (x(u), y(u)) with u ∈ [0, c] parametrizes a closed curve ∂R. By similar reason-
ing, the following integrals are all 0:

(4)

c∫

u=0

x′ du = 0,

c∫

u=0

y′ du = 0,

c∫

u=0

xx′ du = 0,

c∫

u=0

yy′ du = 0.

By Green’s Theorem for the area of the interior of a simple closed piecewise smooth
curve,

(5)

∫ c

u=0
xy′ du = −

∫ c

u=0
yx′ du =

∫∫

R

1 dA = Area(R).

Also by Green’s Theorem,

(6)

∫ c

u=0

1

2
x2y′ du =

∫ c

u=0
−xyx′ du =

∫∫

R

x dA = 0

because this integral is the y-moment of Rs and by hypothesis the centroid of Rs is
(0, 0) for all s. By the same reasoning but for the x-moment, we also have

(7)

∫ c

u=0
−
1

2
y2x′ du =

∫ c

u=0
xyy′ du =

∫∫

R

y dA = 0.

Upon applying these integrals only a few terms remain in (2). Setting A = Area(R),
we get

3Vol(W) =

ℓ∫

s=0

(−~α · ~T ′A+ 2A) ds+A
(
~α(ℓ) · ~T (ℓ)− ~α(0) · ~T (0)

)
.
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Using integration by parts on the dot product, we obtain

3 ·Vol(W) = −A
(
~α · ~T

)∣∣∣∣
ℓ

0

+A

ℓ∫

s=0

~α′ · ~T ds+ 2Aℓ+A
(
~α(ℓ) · ~T (ℓ)− ~α(0) · ~T (0)

)

= −A
(
~α(ℓ) · ~T (ℓ)− ~α(0) · ~T (0)

)

+A

ℓ∫

s=0

~T · ~T ds+ 2Aℓ+A
(
~α(ℓ) · ~T (ℓ)− ~α(0) · ~T (0)

)

= Aℓ+ 2Aℓ = 3Aℓ.

We conclude that Vol(W) = Area(R) · length(C).
Theorem 2.2 establishes the Main Theorem of the paper for generalized tubes in R3.

In order to prove the Main Theorem in full generality, we will need to use differential
forms along with Stokes’ Theorem on manifolds. However, a key component to the
Main Theorem is a set of integral formulas for the general case similar to (4), (5), (6),
and (7).

3. Volumes, Moments, and Zero Integrals for Solids in Rm

Recall that Stokes’ Theorem on manifolds states that if M is an m-dimensional,
oriented manifold with boundary ∂M , and ω is a differential (m− 1)-form on M , then

(8)

∫

∂M

ω =

∫

M

dω,

where ∂M has the boundary orientation inherited from the orientation on M .

Definition 3.1. We define a solid in Rm as a compact embedded m-dimensional sub-
manifold of Rm with boundary ∂M . We assume the pull-back orientation on M .

We define the (m− 1)-form ηi in Rm by

ηi = (−1)i+1dy1 ∧ dy2 ∧ · · · ∧ d̂yi ∧ · · · ∧ dym

where (y1, y2, . . . , ym) is a coordinate system on Rm and ̂ denotes removal of that
term.

Lemma 3.2. The m-dimensional volume of a solid M is

Volm(M) =

∫

∂M

yiηi

for any i = 1, 2, . . . ,m.

Proof. The differential of yiηi is

d(yiηi) = (−1)i+1dyi ∧ dy1 ∧ dy2 ∧ · · · ∧ d̂yi ∧ · · · ∧ dym = dy1 ∧ dy2 ∧ · · · ∧ dym.

This form is precisely the volume form on Rm and thus on the solid M as well. Hence,
by Stokes’ Theorem,∫

∂M

yiηi =

∫

M

dy1 ∧ dy2 ∧ · · · ∧ dym = Volm(M). �



6 COLE ADAMS, STEPHEN LOVETT, MATTHEW MCMILLAN

This lemma immediately implies the following corollary:

Corollary 3.3. Let ν =
1

m

m∑

i=1

yiηi. The m-dimensional volume of M is

Volm(M) =

∫

∂M

ν.

In this article, if F : M → N is a differentiable map between differentiable manifolds,
we will denote by [dF ] the matrix of functions of the differential dF in reference to given
coordinate systems on M and on N . Furthermore, when the dimension of M is one
less than the dimension of N and when coordinate systems on neighborhoods of M
and N are implied, we denote by |djF | the determinant of [dF ] in which the jth row
is removed.

Proposition 3.4. Let M be an m-dimensional solid such that the boundary ∂M is

the embedding of a continuous map H : Sm−1 → Rm that is smooth except on a subset

of measure 0 in Sm−1. Suppose also that H induces an orientation on ∂M that is

compatible with the boundary orientation induced from M . Let ν be the (m − 1)-form
as in Corollary 3.3 and let ω be the (m − 1)-form on Sm−1 given by ω = dx1 ∧ dx2 ∧
· · · ∧ dxm−1 for coordinates (x1, x2, . . . , xm−1). The m-dimensional volume of M is

(9) Volm(M) =

∫

H(Sm−1)
ν =

∫

Sm−1

H∗ν =
1

m

∫

Sm−1

det
(
H, [dH]

)
ω,

where in det
(
H, [dH]

)
we write the components of H as a column vector. If H induces

the opposite orientation, the second two integrals change sign.

Proof. The equality

Volm(M) =

∫

H(Sm−1)
ν

follows immediately from Corollary 3.3. Let (x1, x2, . . . , xm−1) be coordinates on Sm−1

and (y1, y2, . . . , ym) on Rm. Notice that the pullback of ν by H is

H∗ν =
1

m

m∑

i=1

H i(−1)i+1 dH1 ∧ dH2 ∧ · · · ∧ d̂H i ∧ · · · ∧ dHm.

Or, writing in xi coordinates, and using the fact that

dH i =
∂H i

∂xj
dxj

(assuming the Einstein summation convention), we find

H∗ν =
1

m

m∑

i=1

H i(−1)i+1

(
∂H1

∂xj1
dxj1

)
∧

(
∂H2

∂xj2
dxj2

)
∧· · ·∧

̂
(
∂H i

∂xji
dxji

)
∧· · ·∧

(
∂Hm

∂xjm
dxjm

)
.
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By Theorem C.5.22 in [4], this is equivalent to

H∗ν =
1

m

m∑

i=1

H i(−1)i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂x1

∂H1

∂x2 . . . ∂H1

∂xm−1

∂H2

∂x1

∂H2

∂x2 . . . ∂H2

∂xm−1

...
...

. . .
...

∂̂Hi

∂x1

∂̂Hi

∂x2 . . . ∂̂Hi

∂xm−1

...
...

. . .
...

∂Hm

∂x1

∂Hm

∂x2 . . . ∂Hm

∂xm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dx1 ∧ dx2 ∧ · · · ∧ dxm−1.

Taking the summation and recognizing the Laplace expansion of a determinant down
the first column, we see that

H∗ν =
1

m
det
(
H, [dH]

)
dx1 ∧ dx2 ∧ · · · ∧ dxm−1.

Then (9) follows. Note that the second integral changes sign if H induces the opposite
orientation on ∂M , so the third integral changes sign as well. �

Lemma 3.2, Corollary 3.3, and Proposition 3.4 are generalizations to higher dimen-
sions of Green’s Theorem for area. For example, suppose that S is a solid in R3

such that the boundary ∂S is parametrized by ~X(u, v) = (x(u, v), y(u, v), z(u, v)) with

(u, v) ∈ D such that ~Xu× ~Xv is outward-pointing. Then by Proposition 3.4, the volume
of S is

Vol(S) =
1

3

∫∫

D

∣∣∣∣∣∣

x xu xv
y yu yv
z zu zv

∣∣∣∣∣∣
du dv.

Because of the flexibility in Stokes’ Theorem, as in Green’s Area Theorem, this formula
still applies when ∂S is piecewise smooth. In that case, we interpret the above integral
as a sum of integrals taken over domains D1,D2, . . . ,Dr such that the parametrizations
for the smooth pieces of ∂S have domains Di. The same principle applies in (9).

We will encounter other integrals that cancel. We list them here.

Proposition 3.5. Let M be a solid and let (y1, y2, . . . , ym) be a coordinate system on

M . Then for i and q in {1, 2, . . . ,m},
∫

∂M

yqηi = δqi Volm(M),

where δqi is the Dirac delta in which δqi = 1 if i = q and δqi = 0 if i 6= q.

Proof. The case with i = q is Lemma 3.2. If i 6= q, then

d(yqηi) = dyq ∧ dy1 ∧ dy2 ∧ · · · ∧ d̂yi ∧ · · · ∧ dym = 0

because one differential is repeated. Then by Stokes’ Theorem, we have
∫

∂M

yqηi =

∫

M

d(yqηi) =

∫

M

0 = 0. �
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Corollary 3.6. Let M , H, and ω be as in Proposition 3.4. Then∫

Sm−1

(−1)i+1Hq|diH|ω = δqi Volm(M).

Proof. This follows immediately from the fact that (−1)i+1Hq|diH|ω = H∗(yqηi). �

Proposition 3.7. Let M , H, and ω be as in Proposition 3.4. Let ~a = (a1, a2, . . . , am)
be a constant vector, listed as a column vector. Then∫

Sm−1

det(~a, [dH])ω = 0.

Proof. By the reasoning in the proof of Proposition 9, we see that

det(~a, [dH])ω =
m∑

i=1

(−1)i+1aidH1 ∧ dH2 ∧ · · · ∧ d̂H i ∧ · · · ∧ dHm

= H∗




m∑

i=1

(−1)i+1aidy1 ∧ dy2 ∧ · · · ∧ d̂yi ∧ · · · ∧ dym


 .

Hence, by a pull-back and then Stokes’ Theorem,
∫

Sm−1

det(~a, [dH]) =

∫

H(Sm−1)

m∑

i=1

(−1)i+1aidy1 ∧ dy2 ∧ · · · ∧ d̂yi ∧ · · · ∧ dym

=

∫

M

d




m∑

i=1

(−1)i+1aidy1 ∧ dy2 ∧ · · · ∧ d̂yi ∧ · · · ∧ dym




=

∫

M

0 = 0. �

In the proof of Theorem 2.2, certain integrals vanished by virtue of the cross-section
always having its centroid on the curve C, and the same thing occurs in higher di-
mensions. The following proposition establishes the centroid generalizations needed
later:

Proposition 3.8. Let M be an m-dimensional solid as given in Definition 3.1. Let

(y1, y2, . . . , ym) be a coordinate system covering M . Let (ȳ1, ȳ2, . . . , ȳm) be the center

of mass of M . Then

∫

∂M

ypyqηi =





0 if p 6= i and q 6= i

ȳpVolm(M) if p 6= i and q = i

2ȳiVolm(M) if p = q = i.

Proof. By Stokes’ Theorem, ∫

∂M

ypyqηi =

∫

M

d(ypyqηi).

However,

d(ypyqηi) = (yqdyp + ypdyq) ∧ ηi = yqdyp ∧ ηi + ypdyq ∧ ηi.
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If neither p = i nor q = i, then dyp ∧ ηi = 0 and dyq ∧ ηi = 0. If q = i and p 6= i, then
d(ypyqηi) = yp dy1 ∧ dy2 ∧ · · · ∧ dym and

∫

M

yp dy1 ∧ dy2 ∧ · · · ∧ dym = ȳpVolm(M)

by definition of the center of mass. Finally, if p = q = i, then d(ypyqηi) = 2yi dy1 ∧
dy2 ∧ · · · ∧ dym and

∫

M

2yi dy1 ∧ dy2 ∧ · · · ∧ dym = 2ȳiVolm(M). �

4. Generalized Tubes In Higher Dimensions

We are finally in position to prove the Main Theorem 1.1.
We must first set up a useful description of a generalized tube. LetW be a generalized

tube with guiding curve C and cross-section R as described in the statement of the
Main Theorem. A generalized tube is a fiber-bundle over C with fiber R, that is a
subbundle of the normal bundle over C. Suppose that C is parametrized by arclength
by α : [0, ℓ] → Rn. Suppose that the cross-section R is a solid in Rn−1 whose boundary
∂R is parametrized by an orientation-preserving, differentiable map H : Sn−2 → Rn−1.
We also assume that R rotates smoothly about the origin in the normal plane as it is
transported along C. For the purpose of the theorem, we also assume that the center
of mass of R is the origin in Rn−1. Define H̄ : Sn−2 → Rn by H̄(~x) = (0, H(~x)).

The boundary ∂W of the solid generalized tube consists of the caps at α(0) and α(ℓ)
as well as the side surface S, which we can parametrize by

α(t) +M(t)H̄(~x) for (t, ~x) ∈ [0, ℓ]× S
n−2,

where M : [0, ℓ] → SO(n) is a differentiable curve of special orthogonal (rotation)
matrices in Rn such that for all t,

(10) M(t)




1
0
...
0


 = M(t)~e1 = α′(t).

Note that since M(t) is a rotation matrix and the unit vector ~e1 in the y1 direction is
perpendicular to {(0, y2, . . . , yn) | yi ∈ R}, then for all t ∈ [0, ℓ], the boundary of the
cross-section M(t)H̄(~x), for ~x ∈ Sn−2, is in a plane perpendicular to the tangent vector
α′(t). For simplicity later, we write F (t, ~x) = M(t)H̄(~x).

Recall that since M(t) is a special orthogonal matrix for all t, then M(t)−1 = M(t)⊤,
detM(t) = 1, and M ′(t) = M(t)A(t), where A(t) is some anti-symmetric matrix for
all t. Using the rotation matrix M(t) provides the following useful fact.

Lemma 4.1. The first component of the vector M(t)−1α(t) is equal to the dot product

α(t) · α′(t).

Proof. By (10), the dot product α(t) · α′(t) is

α(t) · α′(t) = α(t)⊤M(t)~e1.
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~v1 ~v2

~v3

Figure 2. Reversed orientation on a cylinder

Taking the transpose of the matrix expression on the right, and since the whole ex-
pression is just a real number, we get

α(t) · α′(t) = ~e⊤1 M(t)⊤α(t) =
(
1 0 · · · 0

)
M(t)−1α(t)

and the lemma follows. �

Proof of the Main Theorem 1.1. Case 1: Assume that the guiding curve C is not

closed. Let ν be the (n − 1)-form ν =
1

n

n∑

i=1

yiηi. By Corollary 3.3, the volume of

the generalized tube is

(11) Voln(W) =

∫

∂W

ν =

∫

S

ν +

∫

capt=0

ν +

∫

capt=ℓ

ν.

We parametrize S by α + F but we note that this parametrization is orientation-
reversing. This can be seen by applying our setup to the case of a circular cylinder in
R3 and generalizing to higher dimensions. In Figure 2, ~v1 is α

′(t), ~v2 is a tangent vector
to the cross-section boundary in positive orientation, and ~v3 is the outward pointing
normal vector to the solid M . These three vectors form a left-handed system so the
orientation induced from our parametrization is reversed from the boundary orientation
on ∂M induced by the standard orientation of Rn on M .

We can parametrize the caps by G0 and Gℓ where, for each t ∈ [0, ℓ], we define
Gt : R → Rn with

Gt(~z) = α(t) +M(t)

(
0
~z

)
.

Now G0 induces an orientation that is opposite the boundary orientation on ∂W while
Gt gives a compatible orientation. Hence, (11) becomes

(12) Voln(W) = −

∫

I×Sn−2

(α+ F )∗ν −

∫

R

G∗
0ν +

∫

R

G∗
ℓν.

We calculate the integrals on the caps first. By the same reasoning as in Proposi-
tion 3.4, for each t ∈ [0, ℓ],

G∗
t ν =

1

n
det
(
Gt, [d(Gt)]

)
dz1 ∧ dz2 ∧ · · · ∧ dzn−1.
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Now

det
(
Gt, [d(Gt)]

)
= det



α(t) +M(t)




0
z1

z2

...
zn−1




,M(t)




0 0 · · · 0
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1







= det(M(t)) det



M(t)−1α(t) +




0
z1

z2

...
zn−1




,




0 0 · · · 0
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1







= det



M(t)−1α(t),




0 0 · · · 0
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1







= α(t) · α′(t),

where the last equality holds by Lemma 4.1. Consequently,

(13)

∫

R

G∗
ℓν −

∫

R

G∗
0ν =

1

n
Voln−1(R)(α(ℓ) · α′(ℓ)− α(0) · α′(0)).

Now we must calculate
∫

I×Sn−2

(α+F )∗ν. Applying Proposition 3.4, over a coordinate

patch of Sn−2 with coordinate system (x1, x2, . . . , xn−2), we have

(α+ F )∗ν =
1

n
det
(
α(t) + F (~x), α′(t) + Ft(t, ~x), M(t)[dH̄]

)
dt ∧ dx1 ∧ · · · ∧ dxn−2

where here Ft = ∂F/∂t. This can be broken down by multilinearity of the determinant
as follows:

(14)

(α+ F )∗ν =
1

n

[
det
(
α(t), α′(t), M(t)[dH̄]

)

+ det
(
F (~x), Ft(t, ~x), M(t)[dH̄]

)

+ det
(
F (~x), α′(t), M(t)[dH̄]

)

+ det
(
α(t), Ft(t, ~x), M(t)[dH̄]

) ]
dt ∧ dx1 ∧ · · · ∧ dxn−2.

We now consider the integration over [0, ℓ]× Sn−2 of the four forms in (14).
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For the first determinant in (14),

det
(
α(t), α′(t), M(t)[dH̄]

)
= det

(
α(t), M(t)~e1, M(t)[dH̄]

)

= det(M(t)) det
(
M(t)−1α(t), ~e1, [dH̄]

)

= − det
(
~e1, M(t)−1α(t), [dH̄]

)
.

Doing Laplace expansion down the first column, we obtain an integral of the form in
Proposition 3.7, with a vector ~a that depends on t. Hence, by Proposition 3.7,
∫

Sn−2

∫ ℓ

t=0
det
(
α(t), α′(t), M(t)[dH̄]

)
dt ∧ dx1 ∧ · · · dxn−2

= (−1)n−2

ℓ∫

t=0

∫

Sn−2

det
(
α(t), α′(t), M(t)[dH̄]

)
dx1 ∧ · · · dxn−2 ∧ dt = 0.

For the second determinant in (14),

det
(
F (t, ~x), Ft(t, ~x), M(t)[dH̄]

)
= det

(
M(t)H̄(~x), M(t)A(t)H̄(~x), M(t)[dH̄]

)

= det(M(t)) det
(
H̄(~x), A(t)H̄(~x), [dH̄]

)

= det
(
H̄(~x), A(t)H̄(~x), [dH̄]

)
.

Performing a Laplace expansion of the determinant using the first two columns of this
last determinant produces terms resembling the forms described in Proposition 3.8.
Since the centroid of R is assumed to be at the origin, then for all t, integrating all
these terms over Sn−2 give 0.

For the third determinant in (14) we have

det
(
F (t, ~x), α′(t), M(t)[dH̄]

)
= det

(
M(t)H̄(~x), M(t)~e1, M(t)[dH̄]

)

= det(M(t)) det
(
H̄(~x), ~e1, [dH̄]

)

= − det
(
~e1, H̄(~x), [dH̄]

)

= − det
(
H(~x), [dH]

)

where the last equality follows by Laplace expansion of the determinant on the first
row

(
1 0 · · · 0

)
. By Proposition 3.4,

∫

Sn−2

ℓ∫

t=0

det
(
F (~x), α′(t), [d(F )]

)
dt ∧ dx1 ∧ · · · ∧ dxn−2

= −ℓ

∫

Sn−2

det
(
H(~x), [d(H)]

)
dx1 ∧ · · · ∧ dxn−2

= −(n− 1)ℓVoln−1(R).

As with previous determinants, the fourth determinant becomes

det
(
α(t), Ft(t, ~x), M(t)[dH̄]

)
= det

(
M(t)−1α(t), A(t)H̄(~x), [dH̄]

)
.
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Since there are zeros in the first row of H̄ and d(H̄), and because M−1 = M⊤, another
Laplace expansion gives

det
(
M−1α, AH̄, [dH̄]

)

= αiM
i
1

n∑

j=2

(−1)jAj
qH̄

q
∣∣djH̄

∣∣− αi

n∑

j=2

(−1)jM i
jA

1
qH̄

q
∣∣djH̄

∣∣

=
n∑

j=2

αiH̄
q
∣∣djH̄

∣∣ (−1)j
[
M i

1A
j
q −M i

jA
1
q

]
,

where we use the Einstein summation convention over the repeated indices appearing
in superscript and subscript, namely i and q. By Proposition 3.5, after integration on
Sn−2, all terms will reduce to 0 except those for which q = j, which will give the volume
of the cross-section, Voln−1(R). Set I = [0, ℓ]. So,

∫

Sn−2

∫

I

det
(
M−1α, AH̄, [d(H̄)]

)
dt ∧ dx1 ∧ · · · ∧ dxn−2

=

∫

Sn−2

∫

I

n∑

j=2

αiH̄
q
∣∣djH̄

∣∣ (−1)j
[
M i

1A
j
q −M i

jA
1
q

]
dt ∧ dx1 ∧ · · · ∧ dxn−2

=

∫

Sn−2

∫

I

n∑

j=2

αiH̄
j
∣∣djH̄

∣∣ (−1)j
[
M i

1A
j
j −M i

jA
1
j

]
dt ∧ dx1 ∧ · · · ∧ dxn−2

=

∫

Sn−2

∫

I

n∑

j=2

αiH
j−1
∣∣djH̄

∣∣ (−1)jM i
jA

j
1 dt ∧ dx1 ∧ · · · ∧ dxn−2

=

∫

I

αi

n∑

j=2

M i
jA

j
1 dt

∫

Sn−2

(−1)jHj−1
∣∣dj−1H

∣∣ dx1 ∧ · · · ∧ dxn−2.

But α′(t) = M(t)~e1 so α′′(t) = M ′(t)~e1 = M(t)A(t)~e1. Hence M i
jA

j
1 are the compo-

nents of the covariant vector α′′(t)⊤. Note that since A(t) is an antisymmetric matrix,
A1

1 = 0. Thus

αi

n∑

j=2

M i
jA

j
1 = α(t) · α′′(t).
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Hence, we get∫

Sn−2

∫

I

det
(
M−1α, AH̄, [d(H̄)]

)
dt ∧ dx1 ∧ · · · ∧ dxn−2

= Voln−1(R)

∫

I

αiα
′′
i dt

= Voln−1(R)

(
α(t) · α′(t)

∣∣ℓ
0
−

∫

I

α′ · α′ dt

)

= Voln−1(R)
(
α(t) · α′(t)

∣∣ℓ
0
− ℓ
)
.

Now putting into (12) the integrals of the four determinants in (14) and the integrals
for the caps (13), we get

(15) n ·Voln(W) = (n− 1)Voln−1(R)ℓ−Voln−1(R)
(
α(t) · α′(t)

∣∣ℓ
0
− ℓ
)

+Voln−1(R)
(
α(t) · α′(t)

∣∣ℓ
0

)
.

Hence
Voln(W) = Voln−1(R)ℓ,

which establishes the main theorem when the guiding curve of the generalized tube is
not closed.

Case 2: If C is a closed curve, then in (12) we do not have integrals for the caps.
Then (15) becomes

n ·Voln(W) = (n− 1)Voln−1(R)ℓ−Voln−1(R)
(
α(t) · α′(t)

∣∣ℓ
0
− ℓ
)

and since α(0) ·α′(0) = α(ℓ) ·α′(ℓ), the result of the main theorem follows for this case
as well. �
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