
W11 - Examples
Conditional distribution
Conditioning on a fixed event

Suppose X measures the lengths of some items and has the following PMF:

PX(k) =

Let L be the event that X ≥ 5.

(a) Find the PMF of X conditioned on L.

(b) Find the conditional expected value and variance of X given L.

Solution
(a)

(b)

⎧⎪⎨⎪⎩0.15 k = 1, 2, 3, 4
0.1 k = 5, 6, 7, 8
0  otherwise 

1. By the definition:

PX∣L(x) =
⎧⎪⎨⎪⎩ PX(x)

P [L]
x = 5, 6, 7, 8

0  otherwise 

2. Adding exclusive probabilities:

P [L] =
8

∑
k=5

PX(k) ⨠⨠ 0.4

3. Note that 0.1/0.4 = 0.25. Therefore:

PX∣L(k) = {0.25 k = 5, 6, 7, 8
0  otherwise 

1. Find E[X ∣ L ]:

E[X ∣ L ] =
8

∑
k=5

kPX∣L(k)

⨠⨠ 5 ⋅ (0.25) + 6 ⋅ (0.25) + 7 ⋅ (0.25) + 8 ⋅ (0.25)

⨠⨠ 6.5 min

2. Find E[X2 ∣ L ]:

E[X2 ∣ L ] =
8

∑
k=5

k2 PX∣L(k)

⨠⨠ 52 ⋅ (0.25) + 62 ⋅ (0.25) + 72 ⋅ (0.25) + 82 ⋅ (0.25)

⨠⨠ 43.5 min2
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Conditioning on variable events, discrete PMF function

Suppose X and Y  have joint PMF given by:

PX,Y (k, ℓ) = {

Find PX|Y (k|ℓ) and PY |X(ℓ, k).

Solution
First compute the marginal PMFs:

PX(k) =
2k + 3

21
, k = 1, 2, 3

PY (ℓ) =
ℓ + 2

7
, ℓ = 1, 2

Therefore, assuming ℓ = 1 or 2, then for any k = 1, 2, 3 we have:

PX|Y (k, ℓ) =
PX,Y (k, ℓ)

PY (ℓ)
⨠⨠

k + ℓ

3ℓ + 6

And, assuming k = 1, 2, or 3, then for any ℓ = 1, 2 we have:

PY |X(ℓ, k) =
PY ,X(ℓ, k)

PX(k)
⨠⨠

k + ℓ

2k + 3

Conditional expectation
Proof of Iterated Expectation, continuous case

Prove Iterated Expectation for the continuous case.

Conditional expectations from joint density

Suppose X and Y  are random variables with joint density given by:

fX,Y (x, y) =

Find E[X ∣ Y = y ]. Use this to compute E[X].

Solution
First derive the marginal density fY (y):

Use fY (y) to compute fX|Y (x|y):

3. Find Var[X ∣ L ]:

Var[X ∣ L ] = E[X2 ∣ L ] − E[X ∣ L ]2 ⨠⨠ 1.25 min2

k + ℓ

21
k = 1, 2, 3; ℓ = 1, 2

0 otherwise

⎧⎪⎨⎪⎩ 1

y
e−x/ye−y x, y ∈ (0, ∞)

0 otherwise

fY (y) ⨠⨠ ∫
+∞

0

1
y e

−x/ye−y dx

⨠⨠ −e−x/ye−y
∞

x=0
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Use fX|Y (x|y) to calculate expectation conditioned on the variable event:

So, set g(y) = y. By Iterated Expectation, we know that E[X] = E[g(Y )].

Therefore:

Notice that g(Y ) = Y , so E[X ∣ Y ] = Y , and Iterated Expectation says that E[X] = E[Y ].

Flip coin, choose RV

Suppose X ∼ Ber(1/3) and Y ∼ Ber(1/4) represent two biased coins, giving 1 for heads and 0
for tails.

Here is the experiment:

What is E[Z]?

Solution
Let G ∼ Ber(1/2) describe the fair coin.

Then:

Sum of random number of RVs

Let N  denote the number of customers that enter a store on a given day.
Let Xi denote the amount spent by the ith customer.
Assume that E[N ] = 50 and E[Xi] = $8 for each i.

What is the expected total spend of all customers in a day?

fX|Y (x|y) ⨠⨠
fX,Y (x, y)

fY (y)

⨠⨠ 1
y
e−x/ye−y ⋅ (e−y)−1 ⨠⨠ 1

y
e−x/y

E[X ∣ Y = y] ⨠⨠ ∫
+∞

−∞
x fX|Y (x|y) dx

⨠⨠ ∫
∞

0

x
y e

−x/y dx ⨠⨠ y

E[X] = E[g(Y )] = ∫
+∞

−∞
g(y) fY (y) dy

⨠⨠ ∫
+∞

0
y e−y dy ⨠⨠ 1

1. Flip a fair coin.
2. If heads, flip the X coin; if tails, flip the Y  coin.
3. Record the outcome as Z.

E[Z] = E[E[Z ∣ G ] ]

⨠⨠ E[Z ∣ G = 0 ]PG(0) + E[Z ∣ G = 1 ]PG(1)

⨠⨠ E[Y ]PG(0) + E[X]PG(1)

⨠⨠
1

4
⋅

1

2
+

1

3
⋅

1

2
⨠⨠

7

24
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Solution
A formula for the total spend is X = ∑

N
i=1 Xi.

By Iterated Expectation, we know E[X] = E[E[X ∣ N ] ].

Now compute E[X ∣ N ] as a function of N :

Therefore g(n) = 8n and g(N) = 8N  and E[X ∣ N ] = 8N .

Then by Iterated Expectation, E[X] = E[8N ] = 8E[N ] = $400.

E[X ∣ N = n] ⨠⨠ E [(
N

∑
i=1

Xi) ∣ N = n]

⨠⨠ E [(
n

∑
i=1

Xi) ∣ N = n]

⨠⨠
n

∑
i=1

E[Xi ∣ N = n]

⨠⨠
n

∑
i=1

E[Xi] ⨠⨠ 8n
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