W08 - Homework

Functions on two random variables

01

Suppose the PDF of *X* is given by:

$$f_X(x) = egin{cases} rac{2}{3}x & 1 \leq x \leq 2 \ 0 & ext{otherwise} \end{cases}$$

Find the CDF and PDF of $W = \ln X$.

02

PDF of min and max

Suppose $X \sim \text{Exp}(2)$ and $Y \sim \text{Exp}(3)$. Find:

- (a) The PDF of W = Max(X, Y)
- (b) The PDF of W = Min(X, Y)

Sums of random variables

03

☑ PDF of sum from joint PDF

Suppose the joint PDF of *X* and *Y* is given by:

f

$$\hat{x}_{X,Y} \quad = \quad egin{cases} rac{8}{81}xy & 0 \leq y \leq x \leq 3 \ 0 & ext{otherwise} \end{cases}$$

Find the PDF of X + Y.

04

🗹 ★ Poisson plus Bernoulli

Suppose that:

- $X \sim \operatorname{Pois}(\lambda)$
- $Y \sim \operatorname{Ber}(p)$
- Assume that X and Y are independent

Find a formula for the PMF of X + Y.

Apply your formula with $\lambda = 2$ and p = 0.3 to find $P_{X+Y}(7)$.

05

Convolution for uniform distributions over intervals

Suppose that:

- $X \sim \text{Unif}[a, b]$
- $Y \sim \text{Unif}[c, d]$
- X and Y are independent

Find the PDF of X + Y.

(You may find it helpful to start by considering specific numbers for *a*, *b*, *c*, *d*.)

06

$\square \star Sums$ of normals

- (a) Suppose $X, Y \sim \mathcal{N}(\mu, \sigma^2)$ are independent variables. Find the values of μ and σ for which $X + X \sim X + Y$, or prove that none exist.
- (b) Suppose $\mu = 0$, $\sigma = 1$ in part (a). Find P[X > Y + 2].
- (c) Suppose $X \sim \mathcal{N}(0, \sigma_X)$ and $Y \sim \mathcal{N}(0, \sigma_Y)$. Find P[X 3Y > 0].