W03 - Examples

Repeated trials

19 - Multinomial: Soft drinks preferred

Folks coming to a party prefer Coke (55%), Pepsi (25%), or Dew (20%). If 20 people order drinks in sequence, what is the probability that exactly 12 have Coke and 5 have Pepsi and 3 have Dew?

Solution

The multinomial coefficient $\binom{20}{12,5,3}$ gives the number of ways to assign 20 people into bins according to preferences matching the given numbers, C = 12 and P = 5 and D = 3.

Each such assignment is one sequence of outcomes. All such sequences have probability $(0.55)^{12} \cdot (0.25)^5 \cdot (0.2)^3$.

The answer is therefore:

$$\binom{20}{12,5,3} \cdot (0.55)^{12} \cdot (0.25)^5 \cdot (0.2)^3 \quad \gg \gg \quad \frac{20!}{12! \ 5! \ 3!} \cdot (0.55)^{12} \cdot (0.25)^5 \cdot (0.2)^3$$

Reliability

20 - Reliability: Series, parallel, series

Suppose a process has internal components arranged like this:

Write W_i for the event that component *i* succeeds, and W_i^c for the event that it fails.

The success probabilities for each component are given in the chart:

1	2	3	4	5	
92%	89%	95%	86%	91%	

Find the probability that the entire system succeeds.

Solution

1. \equiv Conjoin components 2 and 3 in series.

• Compute:

 $P[W_2W_3] \gg P[W_2] \cdot P[W_3] \gg (0.89) \cdot (0.95) = 0.8455$

• Therefore:

```
P[(W_2W_3)^c] \gg 1 - 0.846 \gg 0.1545
```

2. ⇒ Conjoin components (2-3) with 4 and 5 in parallel. • Compute for the complement (failure) first: $P[(W_2W_3 \cup W_4 \cup W_5)^c] \implies P[(W_2W_3)^c] \cdot P[W_4^c] \cdot P[W_5^c]$ $\gg \gg \quad (0.1545)(0.14)(0.09) \implies \gg \quad 0.0019467$ • Flip back to success: $P[W_2W_3 \cup W_4 \cup W_5] \implies \gg \quad 1 - 0.0019467 \implies \gg \quad 0.9980533$ 3. ≡ Conjoin components 1 with (2-3-4-5) in series. • Compute:

 $\gg \gg ~~ 0.918209036 ~~ pprox 91.82\%$

 $P\Big[W_1(W_2W_3 \cup W_4 \cup W_5)\Big] \gg (0.92)(0.9980533)$

Discrete random variables

21 - PDF and CDF: Roll 2 dice

Roll two dice colored red and green. Let X_R record the number of dots showing on the red die, X_G the number on the green die, and let S be a random variable giving the total number of dots showing after the roll, namely $S = X_R + X_G$.

- Find the PMFs of X_R and of X_G and of S.
- Find the CDF of *S*.
- Find P[S = 8].

Solution

•

- 1. \equiv Sample space.
 - Denote outcomes with ordered pairs of numbers (i, j), where *i* is the number showing on the red die and *j* is the number on the green one.
 - Require that $i, j \in \mathbb{N}$ are integers satisfying $1 \leq i, j \leq 6$.
 - Events are sets of distinct such pairs.

2. \Rightarrow Create chart of outcomes.

Chart:									
+	1	2	3	4	5	6			
1	2	3	4	5	6	7			
2	3	4	5	6	7	8			
3	4	5	6	7	8	9			
4	5	6	7	8	9	10			
5	6	7	8	9	10	11			
6	7	8	9	10	11	12			

- 3. \equiv Definitions of X_R , X_G , and S.
 - We have $X_R(i, j) = i$ and $X_G(i, j) = j$.
 - Therefore S(i, j) = i + j.

4. \implies Find PMF of X_R .

• Use variable *n* for each possible value of X_R , so n = 1, 2, ..., 6.

• Find $P_{X_R}(n)$:

$$P_{X_R}(n) \quad \gg \gg \quad P[X_R=n]$$

$$\gg \gg \frac{|\text{outcomes with } n \text{ on red}|}{\text{all outcomes}} \gg \gg \frac{6}{36} = \frac{1}{6}$$

• Therefore $P_{X_R}(n) = 1/6$ for every n.

5. \equiv Find PMF of X_G .

• Same as for X_R :

$$P_{X_G}(n)=rac{1}{6} \quad ext{for all } n$$

6. \mathbf{E} Find PMF of S.

• Find $P_S(n)$:

$$P_S(n) \gg P[S=n] \gg rac{| ext{outcomes with sum } n|}{ ext{all outcomes}}$$

• **(**Count outcomes along *diagonal lines* in the chart.

• Create table of $P_S(n)$:

k	2	3	4	5	6	7	8	9	10	11	12
$p_S(k) = P(S = k)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

• Create bar chart of $P_S(n)$:


```
• Evaluate: P[S=8] \gg 5/36.
```

7. $\models \exists$ Find CDF of S.

• CDF definition:

$$F_S(n) = P[S \le n]$$

• Apply definition: add new PMF value at each increment:

$$F_S(n) = egin{cases} 0 & n < 1 \ 1/36 & 1 \le n < 2 \ 3/36 & 2 \le n < 3 \ 6/36 & 3 \le n < 4 \ 10/36 & 4 \le n < 5 \ 15/36 & 5 \le n < 6 \ 21/36 & 6 \le n < 7 \ 26/36 & 7 \le n < 8 \ 30/36 & 8 \le n < 9 \ 33/36 & 9 \le n < 10 \ 35/36 & 10 \le n < 11 \ 36/36 & 11 \le n \end{cases}$$

22 - PMF for total heads count; binomial expansion of 1

A fair coin is flipped n times.

Let *X* be the random variable that counts the total number of heads in each sequence.

The PMF of X is given by:

$$P_X(k) = {n \choose k} {\left(rac{1}{2}
ight)}^n$$

Since the total probability must add to 1, we know this formula must hold:

$$egin{aligned} 1 &= \sum_{ ext{possible } k} P_X(k) \ &\gg \gg \quad 1 &= \sum_{k=0}^n inom{n}{k} inom{1}{2}^n \end{aligned}$$

Is this equation really true?

There is another way to view this equation: it is the binomial expansion $(x + y)^n$ where $x = \frac{1}{2}$ and $y = \frac{1}{2}$:

$$\left(rac{1}{2}+rac{1}{2}
ight)^n=\sum_{k=0}^n\binom{n}{k}\left(rac{1}{2}
ight)^n$$

23 - Life insurance payouts

A life insurance company has two clients, A and B, each with a policy that pays \$100,000 upon death. Consider events D_1 that the older client dies next year, and D_2 that the younger dies next year. Suppose $P[D_1] = 0.10$ and $P[D_2] = 0.05$.

Define a random variable X measuring the total money paid out next year in units of \$1,000. The possible values for X are 0, 100, 200. We calculate:

$$\begin{split} P[X=0] & \implies \qquad P[D_1^c]P[D_2^c] = 0.95 \cdot 0.90 = 0.86 \\ P[X=100] & \implies \qquad 0.05 \cdot 0.90 + 0.95 \cdot 0.10 = 0.14 \\ P[X=200] & \implies \qquad 0.05 \cdot 0.10 = 0.005 \end{split}$$