
Week 14 notes
Statistical testing cont’d

01 Theory - Binary testing, MAP and ML

Binary hypothesis test

Ingredients of a binary hypothesis test:

Complementary hypotheses  and 
Maybe also know the prior probabilities  and 
Goal: determine which case we are in,  or 

Decision rule made of complementary events  and 
 is likely given , while  is likely given 

Decision rule: outcome , accept ; outcome , accept 
Usually:  written in terms of decision statistic  using a design

We cover three designs:
MAP and ML (minimize ‘error probability’)
MC (minimizes ‘error cost’)

Designs use  and  (densities for continuous) to construct 
and 

MAP design

Suppose we know:

The maximum a posteriori probability (MAP) design for a decision statistic
:

Discrete case:

Continuous case:

Then .

The MAP design minimizes the total probability of error.

Both prior probabilities  and 
Both conditional distributions  and  (or  and )

MAP design meaning
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The probability of a false alarm, a Type I error, is called .

The probability of a miss, a Type II error, is called .

Total probability of error:

02 Illustration

The MAP design selects for  all those  which render  more likely than .

It also minimizes the total probability of error.

ML design

Suppose we know only:

The maximum likelihood (ML) design for :

ML is a simplified version of MAP.  (Set  and  to .)

Both conditional distributions

False alarm  false alarm

Suppose  sets off a smoke alarm, and  is ‘no fire’ and  is ‘yes fire’.

Then  is the odds that we get an alarm assuming there is no fire.

This is not the odds of experiencing a false alarm (no context). That would be
.

This is not theodds of a given alarm being a false one. That would be .

Example - ML test: Smoke detector

Suppose that a smoke detector sensor is configured to produce  when there is
smoke, and  otherwise. But there is background noise with distribution

.
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Design an ML test for the detector electronics to decide whether to activate the
alarm.

What are the three error probabilities? (Type I, Type II, Total.)

Solution

First, establish the conditional distributions:

Density functions:

The ML condition becomes:

Therefore,  is , while  is .

The decision rule is: activate alarm when .

Type I error:

Type II error:

Total error:

⨠⨠

⨠⨠

⨠⨠

⨠⨠

⨠⨠

⨠⨠ ⨠⨠

⨠⨠

⨠⨠

⨠⨠ ⨠⨠
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Example - MAP test: Smoke detector

Suppose that a smoke detector sensor is configured to produce  when there is
smoke, and  otherwise. But there is background noise with distribution

.

Suppose that the background chance of smoke is . Design a MAP test for the
alarm.

What are the three error probabilities? (Type I, Type II, Total.)

Solution

First, establish priors:

The MAP condition becomes:

Therefore,  is , while  is .

The decision rule is: activate alarm when .

Type I error:

Type II error:

⨠⨠

⨠⨠

⨠⨠

⨠⨠

⨠⨠

⨠⨠ ⨠⨠

⨠⨠

⨠⨠ ⨠⨠
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03 Theory - MAP criterion proof

Total error:

Explanation of MAP criterion - discrete case

First, we show that the MAP design selects for  all those  which render 
more likely than .

Observe this Calculation:

Now, take the condition for , and cross-multiply:

⨠⨠

Divide both sides by  and apply the above Calculation in reverse:

⨠⨠

This is what we sought to prove.

Next, we verify that the MAP design minimizes the total probability of error.

The total probability of error is:

Expand this with summation notation (assuming the discrete case):

⨠⨠

Now, how do we choose the set  (and thus ) in such a way that this
sum is minimized?

Since all terms are positive, and any  may be placed in  or in  freely
and independently of all other choices, the total sum is minimized when we
minimize the impact of placing each .

So, for each , we place it in  if:

That is equivalent to the MAP condition.

Week 14 notes

5 / 14

PLAIB] = PCBIAJ .

RA]
P[B]

,
t



04 Theory - MC design

05 Illustration

Write  for cost of false alarm, i.e. cost when  is true but decided .
Probability of incurring cost  is .

Write  for cost of miss, i.e. cost when  is true but decided .
Probability of incurring cost  is .

Expected value of cost incurred

MC design

Suppose we know:

The minimum cost (MC) design for a decision statistic :

Discrete case:

Continuous case:

Then .

The MC design minimizes the expected value of the cost of error.

Both prior probabilities  and 
Both conditional distributions  and  (or  and )

MC minimizes expected cost

Inside the argument that MAP minimizes total probability of error, we have this
summation:

The expected value of the cost has a similar summation:

Following the same reasoning, we see that the cost is minimized if each  is
placed into  precisely when the MC design condition is satisfied, and otherwise
it is placed into .
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Example - MC Test: Smoke detector

Suppose that a smoke detector sensor is configured to produce  when there is
smoke, and  otherwise. But there is background noise with distribution

.

Suppose that the background chance of smoke is . Suppose the cost of a miss is
 the cost of a false alarm. Design an MC test for the alarm.

Compute the expected cost.

Solution

We have priors:

And we have costs:

(The ratio of these numbers is all that matters in the inequalities of the
condition.)

The MC condition becomes:

Therefore,  is , while  is .

The decision rule is: activate alarm when .

Type I error:

Type II error:

⨠⨠

⨠⨠

⨠⨠

⨠⨠

⨠⨠ ⨠⨠
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Mean square error

06 Theory - Minimum mean square error

Suppose our problem is to estimate or guess or predict the value of a random variable
 in one run of the experiment. Assume we have the distribution of . Which value

do we choose?

There is no single best answer to this question. The best answer is a function of
additional factors in the problem context.

One method is to pick a value where the PMF or PDF of  is maximal. This is a value
of highest probability. (There may be more than one.)

Another method is to pick the expected value .

For the normal distribution, or any symmetrical distribution, these are the same
value. For most distributions they are not the same value.

The MSE quantifies the typical (square of the) error, meaning the difference between
the true value  and the estimate . The expected value calculates the typical value
of this error.

Other error estimates are reasonable and useful in niche contexts. For example,
 or . They are not frequently used, so we do not consider their

theory further.

Total error:

PMF of total cost:

Therefore .

⨠⨠ ⨠⨠

Mean square error

Given an estimate  for a random variable , the mean square error
(MSE) of  is:

Week 14 notes

8 / 14

V &



In problem contexts where large errors are more costly than small errors (many real
problems), the most likely value of  (point with maximal PDF) may fare poorly as
an estimate.

It turns out the expected value  also happens to be the value that minimizes the
MSE.

When the estimate  is made in the absence of information (besides the distribution
of ), it is called a blind estimate. Therefore,  is the blind minimal MSE
estimate, and  is the error of this estimate.

In the presence of additional information, namely that event  is known, then the
MSE estimate is  and the error of this estimate is .

The MSE estimate can also be conditioned on another variable, say .

Minimal mean square error

Given a random variable , its expectation  provides the estimate with
minimal mean square error.

The MSE error itself of :

Proof that  gives minimal MSE

Expand the MSE error:

⨠⨠

Minimize this parabola. Differentiate:

⨠⨠

Find zeros:

⨠⨠

⨠⨠

Minimal MSE of  given 

The minimal MSE estimate of  given another variable :
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Notice that the minimal MSE of  given  can be used to define a random variable:

This variable is a derived variable of  given by post-composition with the function
.

The variable  provides the minimal MSE estimates of  when experimental
outcomes are viewed as providing the information of  only, and the model is used to
derive estimates of  from this information.

07 Illustration

The error of this estimate is , which equals .

Example - Minimal MSE estimate given PMF, given fixed event

Suppose  has the following PMF:

1 2 3 4 5

0.15 0.28 0.26 0.19 0.13

Find the minimal MSE estimate of , given that  is even. What is the error of
this estimate?

Solution

The minimal MSE given  is just  where .

First compute the conditional PMF:

Therefore:

The error is:

⨠⨠

Exercise - Minimal MSE estimate from joint PDF

Here is the joint PDF of  and :
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08 Theory - Line of minimal MSE

Linear approximation is very common in applied math.

One could consider the linearization of  (its tangent line) instead of the exact
function .

Instead, one can minimize the MSE over all possible linear functions of . The line
with minimal MSE is called the linear estimator.

Find the minimal MSE estimate of  in terms of .

What is the estimate of  when ? When ?

Solution

Line of minimal MSE

Let  be the line . Let .

The mean square error (MSE) of  is:

The linear estimator is the line  with minimal MSE, and it is:

The minimal error value  is:

The variable of minimal error, , is uncorrelated with .

Slope and 

Notice:

Thus,  is the slope of the minimal MSE line for standardized variables  and
.
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In each graph,  and .

The line of minimal MSE is the “best fit” line, .

09 Illustration

Example - Estimating on a variable interval

Suppose that  and suppose .

(a) Find   (b) Find   (c) Find 

Solution

(a) Find .

We know .

Given , so  is uniform on , we have .

(b) Find .

We know .

To compute this function, we calculate a sequence of densities.

We know  and . From these we derive the joint distribution :

⨠⨠

Now extract the marginal :

Now deduce the conditional :

⨠⨠

⨠⨠ ⨠⨠
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Then:

So .

(c) Find .

We need all the basic statistics.

 because .

.

 using the marginal PDF  on . (IBP and
L’Hopital are needed.)

 also using the marginal .

 using , namely:

From this we infer  and .

Hence:

Thus:

⨠⨠

⨠⨠

⨠⨠ ⨠⨠
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Exercise - Line of minimal MSE given joint PDF

Here is the joint PDF of  and :

Find the line giving the linear MSE estimate of  in terms of .

What is the expected error of this line, ?

What is the estimate of  when ? When ?

Answers
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