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Week 07 notes

Joint distributions
01 Theory

Joint distributions describe the probabilities of events associated with multiple random
variables simultaneously.

In this course we consider only two variables at a time, typically called X and Y. It is easy
to extend this theory to vectors of n random variables.

Discrete joint PMF:

Continuous joint PDF:

Probabilities of events: Discrete case

If B C R? is a set of points in the plane, then an event B is formed by the set of all outcomes
s mapped by X and Y to points in B:

B= {s e8| (X(s), Y(s)) € B}

The probabilities of such events can be measured using the joint PMF:

P[(X,Y)eB]=P[B = Y Pxy(k?)
(k,£)eB
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Probabilities of events: Continuous case
Let V = [a,b] x [c,d] C R? be the rectangular region defined by (z,y) € R? such thata <z <b
and ¢ < y < d. Then:

P[(m,y) GV} :P[aSXS b,c<Y < d] = /d/bfx,y(:c,y)d:ndy

For more general regions V C R%:

P[(X,Y)EV} = //VfX,Y(mvy)dA

The existence of a variable Y does not change the theory for a variable X considered by
itself.

However, it is possible to relate the theory for X to the theory for (X,Y), in various ways.

The simplest relationship is the marginal distribution for X, which is merely the
distribution of X itself, considered as a single random variable, but in a context where it is
derived from the joint distribution for (X,Y).

g¥ Marginal PMF, marginal PDF

Marginal distributions are obtained from joint distributions by summing the
o

probabilities over all possibilities of the ot/er variable. A 0 X = >

Discrete marginal PMF: B _ .,y: Y, " ?75 ‘h,m}
vy gt pes Y
Px()) = Y Pxy(he Bo= 77 r
l s

Pr(®) = Y Pxy(k?) PlA1 = PAB] +P[AE. ] <
g + 13[4 R )
Continuous marginal PMF: g A = oAP
Fx(@)obr= - fxy(z,y) dyol=
A
fry) = _::o fxy(z,y)dzdy

Suppose X has density fx(z) that is continuous at zo. Then for small dz > 0:

Plzg < X <z9+dz] =~ fx(g)dz @

Suppose X and Y have joint density fx y(z,y) that is continuous at (zg, o). Then for ol

b
. Selxlobx ™ of " o
small dz, dy > 0: Lo & (m3)dudy <P B Gy

P[mo <X<zo+dr, yo<Y <yo+ dy] ~ fxy(zo,yo)dzdy : 3dyY
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N Joint densities depend on coordinates

The density fxy(z,y) in these integration formulas depends on the way X and Y act as

Cartesian coordinates and determine differential areas dz dy as little rectangles.

To find a density fze(r,6) in polar coordinates, for example, it is not enough to solve for
z(r,0) and y(r,0) and plug into fx,y. We must consider the differential area dz dy vs.

dr df. We find that dz dy = r dr df. So we will add a factor of r. See an example below for
details.

It is not always possible to form a joint PDF fx y from any two continuous RVs X and Y’

For example, if X =Y, then (X,Y) cannot have a joint PDF, since P[X = Y] = 1 but the

integral over the region X =Y will always be 0. (The area of a line is zero.)

V v=X
02 Illustration e

]

:= Example - Smaller and bigger rolls

Roll two dice, and let X indicate the smaller of the numbers rolled, and let Y indicate

the bigger number.

Make a chart showing the PMF. Compute the marginal probabilities, and write them in

the margins of the chart.

Solution

11/36 6 0236 2036 2536 236 236 136 N %_
936 5 €236 €236 2536 236 136 @)
7136 4 0236 236 2536 1736 - (/(j @
5536 3 ©236 2536 e 1/36 VLQ/O(KM/S . | A /A '
336 2 ©236 136 (\/{/)/‘(; )[
D no  pPro ~Ac

1/36 1 ® 1/36

[
X
L2 3 456 @ Cirna ngl =G YA [ res
11/36 9/36 7/36 5/36 3/36 1/36

£} Exercise - Reading a PMF table

Here is a joint PMF table:
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Todgp. V7

Poc(g,9) [9=0 g=1 g=2 g=3
0.06~ 0.18° 0.24“ 0.12 .46

0.04°" 012" 0.16” 0.08" .4
. .2 B 2
Using the table, compute the following event probabilities:
@PQ=0 = )6+ (&¥€.24+.12

(b) P[Q =G = .06 t.12

(c) P[G > 1] ,7_u1+,47_+,t6+.08

(d) PG > Q] AX A 16 .y 0Ft 2

g=0
g=1

11

Z! Exercise - Coin flipping

N o 1 2 3
Flip a fair coin four times. Let X measure the number of heads in the first two flips, ol% % & o
and let Y measure the total number of heads. o % 4
oz
Make a chart showing the PMF. Compute the marginal probabilities, and write them in 0 O i i
i Y 6 Y <4
b b b b b

the margins of the chart.

:= Example - Marginal and event probability from joint density

Suppose the joint density of X and Y is given by:

_ 2ze” V) y> a2 z e0,1]
Fxr(@y) = {0 otherwise
Find fy(y) and P[Y < 3X%. —61  yele 2+ /
%/e-'Je'\J o] L

Solution
Compute the marginal PDF: (|

+00

fr(y) = fxy(z,y)de

—00

- -

|
=¢ =Y
>>> 2xe € ol
T éié)/u s eet e’

0
1 p3a? Y
P[Y < 3X7] :/ / 2ze”’ Y dyda sl-Je” Wl yo!
0 Ja2

Vi 5
> > / 2wePeVdz »» 1-e? when 0¢Y<l
0

Find probability of the event Y < 3X2:

1
> > / 2ze”’ (e_””2 — 6_322) dz
0

»>>» 1(l+e7?)

Z! Exercise - Marginals from joint density

The joint PDF for X and Y is given by:
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 [6(z+37)/5 QsergTT
fxy(z,y) = {0 otherwise

Find fx(z) and fy(y).

x

i Exercise - Event probability from joint density - g_ 206— —;;0
5

. . . . —_L\j ‘j ’ o

The joint PDF for X and Y is given by: 7 i{f el
_ f2e"e™® z,y>0 10€”  2y>0
fX,Y(mvy) - {0 else ]C ;7 = % 0
Compute P[X < Y].
03 Theory
g8 Joint CDF
The joint CDF of X and Y is defined by:
Fxy(z,y) = P[X =z Y=< y]

We can relate the joint CDF to the joint PDF using integration:

y z
FX,Y(-’E,?J) = / / fxyy(s,t) dsdt
—0o0 —0o0
Y

Conversely, if X and Y have a continuous joint PDF fx y(z,y) that is also differentiable, we

can obtain the PDF from the CDF using partial derivatives:

62
fxy(z,y) = 8m_8yFX’Y($’y)

There is also a marginal CDF that is computed using a limit:

Fx(z) = yl{lfoo Fxy(z,y)

This could also be written, somewhat abusing notation, as Fx(z) = Fxy(z,+00).

04 Illustration

Z! Exercise - Properties of joint CDFs
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(a) Show with a drawing that if both z < z’ and y < 3/, we know: [ ) é
)

neres sy

\

FX,Y(%?J) < FX,y(w',y') (

S

(b) Explain why:

Fx(m) = FX,y(:B, OO)
Fy(y) = Fx,y(c0,y)

(c) Explain why:

FX’y(m, —OO) = 0
FX,Y(_oo’y) =0

Independent random variables

Random variables X, Y are independent when they satisfy the product rule for all
valid subsets B;, B, C R:

P[X € B,,Y € By] = P[X € B,| - P[Y € By

Since {X € B, Y € By} = {X € B} N{Y € By}, this definition is equivalent to
independence of all events constructible using the variables X and Y.

For discrete random variables, it is enough to check independence for simple events of type

{X =k} and {Y = ¢} for k and £ any possible values of X and Y.

The independence criterion for random variables can be cast entirely in terms of their
distributions and written using the PMF's or PDF's.

PLAR) = PIAIP[E]

Discrete case: P(A } @] = P[Al
Pxy(k,£) = Px(k)-Py({)
Continuous case:

fxy(z,y) = fx(z)- fr(y)

Random variables X and Y are independent when their CDFs obey the product rule:

Fxy(z,y) = Fx(z)- Fr(y)

“ . 9K 7B
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:= Example - Meeting in the park

A man and a woman arrange to meet in the park between 12:00 and 1:00 am. They
both arrive at a random time with uniform distribution over that hour, and do not
coordinate with each other.

Find the probability that the first person to arrive has to wait longer than 15 minutes
for the second person to arrive.

Solution (0,601
Let X denote the time the man arrives. Use minutes starting from 12:00, so X € (0, 60). %
Let Y denote the time the woman arrives, using the same interval.
The probability we seek is: P[\X‘ v1>15] bl
X=7>1% -or- X-7 ¢-1S
PX+15<Y]+ PlY +15 < X] X > 7tis X+ls ¢

Because X and Y are symmetrical in probability, these terms have the same value, so
we just double the first one for our answer.

Since the arrivals are independent of each other, we have fxy = fx - fy.

Since each arrival time is uniform over the interval, we have:

__J1/60 =z € (0,60) __J1/60 y € (0,60)
Fx(x) = {0 otherwise, Fr(y) = {0 otherwise
Therefore the joint density is fxy = (%)2. Calculate: cot

2P[X+15<Y}:2// f(z,y) dzdy q=A+1S
z+15<y Ky

- 2//z+15<y P vy dady / |$
_ 2/1:0 /0y15 <6_10>2dmdy

2 60
BRCOE / y-15dy

9

16

4]

=

:= Example - Uniform disk: Cartesian vs. polar

(a) Let X and Y be the Cartesian coordinates of the chosen point. Are X and Y
independent?

——
1
%%
——
Suppose that a point is chosen uniformly at random on the unit disk. 47
__——t
=

A S
(b) Let R and O give the polar coordinates of the chosen point. Are R and © s‘@ T 90 arce
independent? l: AA = olP

118

:”/m@asmfe 0(" /arqba()«'/}(>"

719
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Solution

(@)
Write fxy for the joint distribution of X and Y. We have:

1 2442<1
fX,Y:{/Tr T Y=<

0 otherwise
wnll-ot
Then computing fx(z), we obtain: Y RNy PRy a0 € [0
+V1a? e , = else
/ o o»» EPyiie %4 )
VI T T
_sL Xyt e
2/1-2% zel-1,]] # fhr = iw (
> > fx(@) = {0 otherwise o che

-\
By similar reasoning, fy(y) = 2+/1 —y? for y € [, 1]. ﬁ?

The product fx(z)fy(y) is not equal to fx y(x,y), so X and Y are not independent.
Information about the value of X does provide constraints on the possible values of Y,
so this result makes sense.

(b)
To find the marginals fr(r) and fg(6), the standard method is to integrate the density
fre in the opposite variables.

The probability density"fR,@(r, B)His not constant! The area of a differential sector
dr df depends on r.

- . . {%\S’M dA=rdrde
We can take two approaches to finding the density fre. E 5,609
. . . .. rdrdf r
(1) Area of a differential sector divided by total area = >>» —drdf
™ ™
So the density is fre = = _ AP rdrd & =/
(i) Compute CDF first, then use partial derivatives. ‘measoe o
probebi [tk ¥ basicall
qSice ﬂ
Y (e, st00) - rdrd @
Xy
The region ‘below’ a given point (r, 6), in polar coordinates, is a sector with area — D{ P

0

o

7r2. The factor % is a percentage of the circle with area mr2.

The density is a constant % across the disk, so the CDF at (r, ) is this same area
times <. Thus:

or?

F =
R,0 o

Then in polar coordinates the density is given by taking partial derivatives:
32

- 1 2 T
fro(r,0) = W(%9r> »» -

Once we have fp o, integrate to get the marginals:
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27

2m
fr(r) = / fredodr>> / %d@m >>» 2r
- 0

- 2relr
Sadr =

1 A g
T

1 1
fo(6) = / frodr > / Zdar »» —
r=0 o T 2

Check independence:

fR,G)Z% z (27“)<%):f1%‘f9 1

In this problem it is feasible to find the marginals directly, without computing the new

density, only using some geometric reasoning.

The probability P[R € (r,r+ dr)] is the area (over 7) of a thickened circle with
radius r and thickness dr. The circumference of a circle at radius r is 27r. So the
area of the thickened circle is 27r dr. So the probability is 27 dr. This tells us that
the marginal probability density is Pr(r) = 2.

The probability P[© € (6,6 + df)] is the area (over ) of a thin sector with radius 1
and angle df. This area is %12 df. So the probability is % df. This tells us that the

marginal probability density is Pg(f) = .

These results agree with those of the ‘calculus’ approach above!
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