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Week 07 notes
Joint distributions

01 Theory

Joint distributions describe the probabilities of events associated with multiple random
variables simultaneously.

In this course we consider only two variables at a time, typically called  and . It is easy
to extend this theory to vectors of  random variables.

Probabilities of events: Discrete case
If  is a set of points in the plane, then an event  is formed by the set of all outcomes
 mapped by  and  to points in :

The probabilities of such events can be measured using the joint PMF:

Joint PMF and joint PDF

Discrete joint PMF:

Continuous joint PDF:
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Probabilities of events: Continuous case

Let  be the rectangular region defined by  such that 
and . Then:

For more general regions :

The existence of a variable  does not change the theory for a variable  considered by
itself.

However, it is possible to relate the theory for  to the theory for , in various ways.

The simplest relationship is the marginal distribution for , which is merely the
distribution of  itself, considered as a single random variable, but in a context where it is
derived from the joint distribution for .

Marginal PMF, marginal PDF

Marginal distributions are obtained from joint distributions by summing the
probabilities over all possibilities of the other variable.

Discrete marginal PMF:

Continuous marginal PMF:

Infinitesimal method

Suppose  has density  that is continuous at . Then for small :

Suppose  and  have joint density  that is continuous at . Then for
small :

A = "X = x"
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02 Illustration

Joint densities depend on coordinates

The density  in these integration formulas depends on the way  and  act as
Cartesian coordinates and determine differential areas  as little rectangles.

To find a density  in polar coordinates, for example, it is not enough to solve for
 and  and plug into . We must consider the differential area  vs.

. We find that . So we will add a factor of . See an example below for
details.

Joint densities may not exist

It is not always possible to form a joint PDF  from any two continuous RVs  and 
.

For example, if , then  cannot have a joint PDF, since  but the
integral over the region  will always be 0. (The area of a line is zero.)

Example - Smaller and bigger rolls

Roll two dice, and let  indicate the smaller of the numbers rolled, and let  indicate
the bigger number.

Make a chart showing the PMF. Compute the marginal probabilities, and write them in
the margins of the chart.

Solution

Exercise - Reading a PMF table

Here is a joint PMF table:

I
Y = X

----o
-

Not

reasons :
indes . *

① no product rate

② "smallest = > implies
biggest =6 Loo !

"
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Using the table, compute the following event probabilities:
(a) 
(b) 
(c) 
(d) 

Exercise - Coin flipping

Flip a fair coin four times. Let  measure the number of heads in the first two flips,
and let  measure the total number of heads.

Make a chart showing the PMF. Compute the marginal probabilities, and write them in
the margins of the chart.

Example - Marginal and event probability from joint density

Suppose the joint density of  and  is given by:

Find  and .

Solution

Compute the marginal PDF:

Find probability of the event :

⨠⨠ ⨠⨠

⨠⨠

⨠⨠

Exercise - Marginals from joint density

The joint PDF for  and  is given by:
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03 Theory

We can relate the joint CDF to the joint PDF using integration:

Conversely, if  and  have a continuous joint PDF  that is also differentiable, we
can obtain the PDF from the CDF using partial derivatives:

There is also a marginal CDF that is computed using a limit:

This could also be written, somewhat abusing notation, as .

04 Illustration

Find  and .

Exercise - Event probability from joint density

The joint PDF for  and  is given by:

Compute .

Joint CDF

The joint CDF of  and  is defined by:

Exercise - Properties of joint CDFs

->
x
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Independent random variables

05 Theory

Since , this definition is equivalent to
independence of all events constructible using the variables  and .

For discrete random variables, it is enough to check independence for simple events of type
 and  for  and  any possible values of  and .

The independence criterion for random variables can be cast entirely in terms of their
distributions and written using the PMFs or PDFs.

06 Illustration

(a) Show with a drawing that if both  and , we know:

(b) Explain why:

(c) Explain why:

Independent random variables

Random variables  are independent when they satisfy the product rule for all
valid subsets :

Independence using PMF and PDF

Discrete case:

Continuous case:

Independence via joint CDF

Random variables  and  are independent when their CDFs obey the product rule:

win

P(AB) = P(AJP[B]

PLAIBT = P(A]

(xFy)=
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Example - Meeting in the park

A man and a woman arrange to meet in the park between 12:00 and 1:00 am. They
both arrive at a random time with uniform distribution over that hour, and do not
coordinate with each other.

Find the probability that the first person to arrive has to wait longer than 15 minutes
for the second person to arrive.

Solution
Let  denote the time the man arrives. Use minutes starting from 12:00, so .
Let  denote the time the woman arrives, using the same interval.

The probability we seek is:

Because  and  are symmetrical in probability, these terms have the same value, so
we just double the first one for our answer.

Since the arrivals are independent of each other, we have .

Since each arrival time is uniform over the interval, we have:

Therefore the joint density is . Calculate:

Example - Uniform disk: Cartesian vs. polar

Suppose that a point is chosen uniformly at random on the unit disk.

(a) Let  and  be the Cartesian coordinates of the chosen point. Are  and 
independent?

(b) Let  and  give the polar coordinates of the chosen point. Are  and 
independent?

10 , 60]

A
P((X-Y( IS] (x-y/ IS

X-y > 15 - 02 - X-y - 15
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= "measure of probability"
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Solution

(a)
Write  for the joint distribution of  and . We have:

Then computing , we obtain:

By similar reasoning,  for .

The product  is not equal to , so  and  are not independent.
Information about the value of  does provide constraints on the possible values of ,
so this result makes sense.

(b)
To find the marginals  and , the standard method is to integrate the density

 in the opposite variables.

We can take two approaches to finding the density .

Once we have , integrate to get the marginals:

⨠⨠

⨠⨠

(i) Area of a differential sector divided by total area ⨠⨠

 So the density is 
(ii) Compute CDF first, then use partial derivatives.

Elaborating on (ii): joint CDF then partials for joint PDF

The region ‘below’ a given point , in polar coordinates, is a sector with area
. The factor  is a percentage of the circle with area .

The density is a constant  across the disk, so the CDF at  is this same area
times . Thus:

Then in polar coordinates the density is given by taking partial derivatives:

⨠⨠

 The probability density  is not constant! The area of a differential sector
 depends on .
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Check independence:

In this problem it is feasible to find the marginals directly, without computing the new
density, only using some geometric reasoning.

⨠⨠ ⨠⨠

⨠⨠ ⨠⨠

Direct geometric approach

The probability  is the area (over ) of a thickened circle with
radius  and thickness . The circumference of a circle at radius  is . So the
area of the thickened circle is . So the probability is . This tells us that
the marginal probability density is .

The probability  is the area (over ) of a thin sector with radius 1
and angle . This area is . So the probability is . This tells us that the
marginal probability density is .

These results agree with those of the ‘calculus’ approach above!
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