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Week 05 notes
Discrete families: summary

01 Theory

Bernoulli: 

Binomial: 

Geometric: 

Pascal: 

Poisson: 

Function on a random variable

02 Theory

Memorize this info!

Indicates a win.

Counts number of wins.

These are  times the Bernoulli numbers.

Counts discrete wait time until first win.

Counts discrete wait time until  win.

These are  times the Geometric numbers.

Counts “arrivals” during time interval.

E(x] = 1 . p + 0
. (1 - p) = p

var(x] = E[X]
- E[X]

E[X] = 1 . p + 0 . ll -p) = P

Var
= p - pi = p(1 -p) = p9

a
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By composing any function  with a random variable  we obtain a new
random variable . The new one is called a derived random variable.

The proofs of these formulas are not trivial, since one must relate the PDF or PMF of 
to that of .

Expectation of derived variables

Discrete case:

(Here the sum is over all possible values  of .)

Continuous case:

 is the output of 
 is the output of 

Proof - Discrete case - Expectation of derived variable

Linearity of expectation

For constants  and :

For any  and  on the same probability model:

Exercise - Linearity of expectation

 Write  for this derived random variable .

 Notice: when applied to outcome :

Pgix(4)
= P(q(x) = 3]

= P(x(5(3)]
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Thus variance ignores the offset and squares the scale factor. It is not linear!

Using the definition of expectation, verify both linearity formulas for the discrete
case.

Be careful!

Usually  and .

Pulling out  and  across  only works because they are constants.

Variance squares the scale factor

For constants  and :

Proof - Variance squares the scale factor

Extra - Moments

The  moment of  is defined as the expectation of :

Discrete case:

Continuous case:

A central moment of  is a moment of the variable :

E[X . x] + ElX] · ELX]

o(ax + 6) = 190(x)Nar = (a)

X
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The data of all the moments collectively determines the probability distribution. This
fact can be very useful! In this way moments give an analogue of a series representation,
and are sometimes more useful than the PDF or CDF for encoding the distribution.

03 Illustration

Example - Function given by chart

Suppose that  in such a way that  and  and .

1 2 3

4 1 87

Then:

⨠⨠

And:

⨠⨠

Therefore:

⨠⨠ ⨠⨠

Variance of uniform random variable

The uniform random variable  on  has distribution given by 
for .

Solution
(a)

(a) Find .
(b) Find  using “squaring the scale factor.”
(c) Find  directly.

1. 
 The density for  is:

2. 
 Compute :

 Compute density.

 Compute  and  directly using integral formulas.

One to one

(or e.g . g(x) = x)

Y

SE[X] + 2EC3+3

·

=
E[X] - E[X]" fx(x) = Sa its

I I

A b IR

Var = E(X] - E[X]"

-
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(b)

(c)

Now compute :

⨠⨠

3. 
 Plug in:

⨠⨠

⨠⨠

“Squaring the scale factor” formula:

Plugging in:

⨠⨠ ⨠⨠

1. 
 The variable  will have  the density spread over the interval .

Density is then:

2. 
 Use  and .

Get variance:

Simplify:

⨠⨠ ⨠⨠

 Find variance using short formula.

 Density.

 Plug into prior variance formula.

Exercise - Probabilities via CDF

Suppose the CDF of  is given by . Compute:

(a) 

#
a

=fy(x)

I
sa !
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04 Theory

Suppose we are given the PDF  of , a continuous RV.

What is the PDF , the PDF of the derived variable given by composing  with
?

Therefore, if we know , we can find  using a 3-step process:

05 Illustration

Solution

(b) 
(c) 
(d) 

PDF of derived

The PDF of  is not (usually) equal to .

Relating PDF and CDF

When the CDF of  is differentiable, we have:

1. 
Compute .
Now remember that .

2. 
Remember definition .
Compare  to , for example.
These are equal if  is monotone increasing.

3. 
Use .

Example - PDF of derived from CDF

Suppose that .

(a) Find the PDF of .
(b) Find the PDF of .

 Find , the CDF of , by integration.

 Find , the CDF of , by direct comparison to .

 Find , the PDF of , by differentiation.
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Continuous wait times

06 Theory

Solution
(a)

(b)

Formula:

Plug in:

⨠⨠

⨠⨠

By definition:

Since  is increasing, we know:

Therefore:

⨠⨠ ⨠⨠

Then using differentiation:

⨠⨠ ⨠⨠

Exponential variable

A random variable  is exponential, written , when  measures the
wait time until first arrival in a Poisson process with rate .

Exponential PDF:
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07 Illustration

The exponential distribution is the continuous counterpart of the geometric
distribution.

Analogous to how the Poisson distribution is a like a continuous binomial.
Notice that:

⨠⨠ ⨠⨠

so the coefficient of  in  is there to ensure that .

Compute the improper integral to find this.

Erlang variable

A random variable  is Erlang, written , when  measures the wait
time until  arrival in a Poisson process with rate .

Erlang PDF:

The Erlang distribution is the continuous counterpart of the Pascal distribution.

Example - Earthquake wait time

Suppose the San Andreas fault produces major earthquakes modeled by a Poisson
process, with an average of 1 major earthquake every 100 years.

Solution
(a)
Since the average wait time is 100 years, we set  earthquakes per year. Set

 and compute:

⨠⨠ ⨠⨠

(b)
The same Poisson process has the same  earthquakes per year. Set

(a) What is the probability that there will not be a major earthquake in the next
20 years?
(b) What is the probability that three earthquakes will strike within the next 20
years?

 Notice also that the “tail probability”  is given by , an exponential
decay.
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08 Theory

, so:

and compute:

⨠⨠ ⨠⨠

⨠⨠ ⨠⨠

The memoryless distribution is exponential

The exponential distribution is memoryless. This means that knowledge that
an event has not yet occurred does not affect the probability of its occurring in future
time intervals:

This is easily checked using the PDF: .

No other continuous distribution is memoryless. This means any other
(continuous) memoryless distribution agrees in probability with the exponential
distribution. The reason is that the memoryless property can be rewritten as

. Consider  as a function of , and notice
that this function converts sums into products. Only the exponential function can do
this.

The geometric distribution is the discrete memoryless one.

and by substituting , we also know .

Then:

⨠⨠ ⨠⨠

⨠⨠ ⨠⨠

⨠⨠ ⨠⨠

⨠⨠ ⨠⨠

Extra - Inversion of decay rate factor in exponential



10 / 10

For constants  and :

Derivation
Let  and observe that  (the “tail probability”).

Now observe that:

Let . So we see that:

Since the tail event is complementary to the cumulative event, these two
distributions have the same CDF, and therefore they are equal.

Extra - Geometric limit to exponential

Divide the waiting time into small intervals. Let  be the probability of at least
one success in the time interval  for any . Assume these events are
independent.

A random variable  measuring the end time of the first interval 
containing a success would have a geometric distribution with  in place of :

By taking the sum of a geometric series, one finds:

Thus  as .


