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Week 02 notes
Repeated trials

01 Theory

A simple type of trial, called a Bernoulli trial, has two possible outcomes, 1 and 0, or success
and failure, or  and . A sequence of repeated Bernoulli trials is called a Bernoulli process.

A more complex trial may have three outcomes, , , and .

Let  stand for the sum of successes in some Bernoulli process. So, for example, “ ” stands
for the event that the number of successes is exactly 3. The probabilities of  events follow a
binomial distribution.

Suppose a coin is biased with , and  is ‘success’. Flip the coin 20 times. Then:

⨠⨠

Repeated trials

When a single experiment type is repeated many times, and we assume each instance is
independent of the others, we say it is a sequence of repeated trials or independent
trials.

The probability of any sequence of outcomes is derived using independence together with
the probabilities of outcomes of each trial.

Write sequences like  for the outcomes of repeated trials of this type.
Independence implies

Write  and , and because these are all outcomes (exclusive and
exhaustive), we have . Then:

⨠⨠ ⨠⨠

This gives a formula for the probability of any sequence of these trials.

Write sequences like  for the outcomes.
Label  and  and . We must have .
Independence implies

⨠⨠ ⨠⨠

This gives a formula for the probability of any sequence of these trials.
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Each outcome with exactly 3 heads and 17 tails has probability . The number of such
outcomes is the number of ways to choose 3 of the flips to be heads out of the 20 total flips.

The probability of at least 18 heads would then be:

With three possible outcomes, , , and , we can write sum variables like  which counts the
number of  outcomes, and  and  similarly. The probabilities of events like

 follow a multinomial distribution.

02 Illustration

Reliability

03 Theory

Consider some process schematically with components in series and components in
parallel:

⨠⨠

⨠⨠

Example - Multinomial: Soft drinks preferred

Folks coming to a party prefer Coke (55%), Pepsi (25%), or Dew (20%). If 20 people order
drinks in sequence, what is the probability that exactly 12 have Coke and 5 have Pepsi and
3 have Dew?

Solution

The multinomial coefficient  gives the number of ways to assign 20 people into

bins according to preferences matching the given numbers,  and  and .

Each such assignment is one sequence of outcomes. All such sequences have probability
.

The answer is therefore:

⨠⨠

Each component has a probability of success or failure.
Event  indicates ‘success’ of that component (same name).
Then  is the probability of  succeeding.
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Success for a series of components requires success of each member.

Failure for parallel components requires failure of each member.

For series components:

For parallel components:

If  for all components , then:

To analyze a complex diagram of series and parallel components, bundle each:

This is like the analysis of resistors and inductors.

04 Illustration

Series components rely on each other.

Success of the whole is success of part 1 AND success of part 2 AND part 3, etc.

Parallel components represent redundancy.

Success of the whole is success of part 1 OR success of part 2 OR part 3, etc.

⨠⨠

⨠⨠

Series components: 
Parallel components: 

pure series set as a single compound component with its own success probability (the
product)
pure parallel set as a single compound component with its own success probability (using
the failure formula)

Example - Series, parallel, series

Suppose a process has internal components arranged like this:

Write  for the event that component  succeeds, and  for the event that it fails.

The success probabilities for each component are given in the chart:

1 2 3 4 5

92% 89% 95% 86% 91%

Find the probability that the entire system succeeds.

Solution
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Discrete random variables

05 Theory

Random variables can be formed from other random variables using mathematical operations
on the output numbers.

Given random variables  and , we can form these new ones:

Suppose  is some particular outcome. Then, for example,  is by definition
.

Random variables determine events.

1. 
 Compute:

⨠⨠ ⨠⨠

Therefore:

⨠⨠ ⨠⨠

2. 
 Compute for the complement (failure) first:

⨠⨠

⨠⨠ ⨠⨠

Flip back to success:

⨠⨠ ⨠⨠

3. 
 Compute:

⨠⨠

⨠⨠

 Conjoin components 2 and 3 in series.

 Conjoin components (2-3) with 4 and 5 in parallel.

 Conjoin components 1 with (2-3-4-5) in series.

Random variable

A random variable (RV)  on a probability space  is a function .

So  assigns to each outcome a number.

Given , the event “ ” is equal to the set 

That is: the set of outcomes mapped to  by 
That is: the event “  took the value ”

 The word ‘variable’ indicates that the RV outputs numbers.
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Such events have probabilities. We write them like this:

⨠⨠

This generalized to events where  lies in some range or set, for example:

The axioms of probability translate into rules for these events.

For example, additivity leads to:

A discrete random variable has probability concentrated at a discrete set of real numbers.

A continuous random variable has probability spread out over the space of real numbers.

For any RV, whether discrete or continuous, the distribution of probability is encoded by a
function:

A ‘discrete set’ means finite or countably infinite.

The distribution of probability is recorded using a probability mass function (PMF) that
assigns probabilities to each of the discrete real numbers.
Numbers with nonzero probability are called possible values.

PMF

The PMF function for  (a discrete RV) is defined by:

for  a possible value.

The distribution of probability is recorded using a probability density function (PDF)
which is integrated over intervals to determine probabilities.

PDF

The PDF function for  (a CRV) is written  for , and probabilities are calculated
like this:

CDF
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Notes:

The CDF of a discrete RV is always a stepwise increasing function. At each step up, the jump
size matches the PMF value there.

From this graph of :

we can infer the PMF values based on the jump sizes:

For a discrete RV, the CDF and the PMF can be calculated from each other using formulas.

06 Illustration

The cumulative distribution function (CDF) for a random variable  is defined for all
 by:

Sometimes the relation to  is omitted and one sees just “ .”
Sometimes the CDF is called, simply, “the distribution function” because:

Not true for PMF (discrete only) or PDF (continuous only).
There are mixed cases (partly discrete, partly continuous) for which the CDF is
essential.

PMF from CDF from PMF

Given a PMF , the CDF is determined by:

where  is the set of possible values of .

Given a CDF , the PMF is determined by:

 The CDF works equally well for discrete and continuous RVs.
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Example - PDF and CDF: Roll 2 dice

Roll two dice colored red and green. Let  record the number of dots showing on the red
die,  the number on the green die, and let  be a random variable giving the total
number of dots showing after the roll, namely .

Solution

Find the PMFs of  and of  and of .
Find the CDF of .
Find .

1. 
 Denote outcomes with ordered pairs of numbers , where  is the number

showing on the red die and  is the number on the green one.
Require that  are integers satisfying .
Events are sets of distinct such pairs.

2. 
 Chart:

3. 
 We have  and .

Therefore .

4. 
 Use variable  for each possible value of , so .

Find :

⨠⨠

⨠⨠ ⨠⨠

Therefore  for every .

5. 
 Same as for :

6. 
 Find :

⨠⨠ ⨠⨠

Create table of :

Create bar chart of :

 Sample space.

 Create chart of outcomes.

 Definitions of , , and .

 Find PMF of .

 Find PMF of .

 Find PMF of .

 Count outcomes along diagonal lines in the chart.
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Evaluate: ⨠⨠ .

7. 
 CDF definition:

Apply definition: add new PMF value at each increment:

 Find CDF of .

Example - Total heads count; binomial expansion of 1

A fair coin is flipped  times.

Let  be the random variable that counts the total number of heads in each sequence.

The PMF of  is given by:

Since the total probability must add to 1, we know this formula must hold:

Is this equation really true?

There is another way to view this equation: it is the binomial expansion  where
 and :

⨠⨠

Example - Life insurance payouts
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A life insurance company has two clients,  and , each with a policy that pays $100,000
upon death. Consider events  that the older client dies next year, and  that the
younger dies next year. Suppose  and .

Define a random variable  measuring the total money paid out next year in units of
$1,000. The possible values for  are 0, 100, 200. We calculate:

⨠⨠

⨠⨠

⨠⨠


