
Week 14 notes
Statistical testing cont’d
01 Theory - Binary testing, MAP and ML

Binary hypothesis test

Ingredients of a binary hypothesis test:

Complementary hypotheses H0 and H1

Maybe also know the prior probabilities P [H0] and P [H1]

Goal: determine which case we are in, H0 or H1

Decision rule made of complementary events A0 and A1

A0 is likely given H0, while A1 is likely given H1

Decision rule: outcome A0, accept H0; outcome A1, accept H1

Usually: Ai written in terms of decision statistic X using a design
We cover three designs:

MAP and ML (minimize ‘error probability’)
MC (minimizes ‘error cost’)

Designs use PX|H0
 and PX|H1

 (or fX|H0
, fX|H1

) to construct A0 and A1

MAP design

Suppose we know:

The maximum a posteriori probability (MAP) design for a decision statistic
X:

A0 = set of x for which:

Discrete case:

PX∣H0
(x) ⋅ P [H0] ≥ PX∣H1

(x) ⋅ P [H1]

Continuous case:

fX∣H0
(x) ⋅ P [H0] ≥ fX∣H1

(x) ⋅ P [H1]

Then A1 = {x ∈ R ∣ x ∉ A0}.

The MAP design minimizes the total probability of error.

Both prior probabilities P [H0] and P [H1]

Both conditional distributions PX|H0
(x) and PX|H1

(x) (or fX|H0
(x) and fX|H1

(x))

ML design
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The probability of a false alarm, a Type I error, is called PFA.

The probability of a miss, a Type II error, is called PMiss.

Total probability of error:

PERR = P [A1 ∣ H0] ⋅ P [H0] + P [A0 ∣ H1] ⋅ P [H1]

02 Illustration

Suppose we know only:

The maximum likelihood (ML) design for X:

A0 = set of x for which:

ML is a simplified version of MAP.  (Set P [H0] and P [H1] to 0.5.)

Both conditional distributions

PX∣H0
(x) ≥ PX∣H1

(x) (discrete)

fX∣H0
(x) ≥ fX∣H1

(x) (continuous)

PFA = P [A1 ∣ H0]

PMiss = P [A0 ∣ H1]

False alarm ≠ false alarm

Suppose A1 sets off a smoke alarm, and H0 is ‘no fire’ and H1 is ‘yes fire’.

Then PFA is the odds that we get an alarm assuming there is no fire.

This is not the odds of experiencing a false alarm (no context). That would be
P [A1H0].

This is not the odds of a given alarm being a false one. That would be P [H0 ∣ A1].

Example - ML test: Smoke detector

Suppose that a smoke detector sensor is configured to produce 8V when there is
smoke, and 0V otherwise. But there is background noise with distribution
N (0, 32 V).

Design an ML test for the detector electronics to decide whether to activate the
alarm.

What are the three error probabilities? (Type I, Type II, Total.)

Solution

First, establish the conditional distributions:
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X ∣ H0 ∼ N (0, 32) X ∣ H1 ∼ N (8, 32)

Density functions:

fX|H0
=

1

√2π9
e−

1
2 (

x−0
3 )2 fX|H1

=
1

√2π9
e−

1
2 (

x−8
3 )2

The ML condition becomes:

Therefore, A0 is x ≤ 4, while A1 is x > 4.

The decision rule is: activate alarm when x > 4.

Type I error:

Type II error:

Total error:

PERR = PFA ⋅ 0.5 + PMiss ⋅ 0.5 ≈ 0.0912
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PFA = P [A1 ∣ H0] ⨠⨠ P [X > 4 ∣ H0]

⨠⨠ 1 − P [X − 0

3
≤

4

3
H0]

⨠⨠ 1 − P [Z ≤ 1.3333] ⨠⨠ ≈ 0.0912∣PMiss = P [A0 ∣ H1] ⨠⨠ P [X ≤ 4 ∣ H1]

⨠⨠ P [X − 8

3
≤

4 − 8

3
H1]

⨠⨠ P [Z ≤ −1.3333] ⨠⨠ ≈ 0.0912∣Example - MAP test: Smoke detector
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Suppose that a smoke detector sensor is configured to produce 8V when there is
smoke, and 0V otherwise. But there is background noise with distribution
N (0, 32 V).

Suppose that the background chance of smoke is 5%. Design a MAP test for the
alarm.

What are the three error probabilities? (Type I, Type II, Total.)

Solution

First, establish priors:

P [H0] = 0.95 P [H1] = 0.05

The MAP condition becomes:

Therefore, A0 is x ≤ 7.31, while A1 is x > 7.31.

The decision rule is: activate alarm when x > 7.31.

Type I error:

Type II error:

Total error:

PERR = PFA ⋅ 0.95 + PMiss ⋅ 0.05 ≈ 0.02749
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⨠⨠ x ≤ 7.31

0.95 0.05

PFA = P [A1 ∣ H0] ⨠⨠ P [X > 7.31 ∣ H0]

⨠⨠ 1 − P [Z ≤ 2.4367] ⨠⨠ ≈ 0.007411

PMiss = P [A0 ∣ H1] ⨠⨠ P [X ≤ 7.31 ∣ H1]

⨠⨠ P [Z ≤ −0.23] ⨠⨠ ≈ 0.4090
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03 Theory - MAP criterion proof

04 Theory - MC design

Explanation of MAP criterion - discrete case

First, we show that the MAP design selects for A0 all those x which render H0

more likely than H1.

Observe this Calculation:

Now, take the condition for A0, and cross-multiply:

⨠⨠ PX|H0
(x) ⋅ P [H0] ≥ PX|H1

(x) ⋅ P [H1]

Divide both sides by P [X] and apply the above Calculation in reverse:

⨠⨠ P [H0 ∣ X = x] ≥ P [H1 ∣ X = x]

This is what we sought to prove.

Next, we verify that the MAP design minimizes the total probability of error.

The total probability of error is:

PERR = P [A1 ∣ H0] ⋅ P [H0] + P [A0 ∣ H1] ⋅ P [H1]

Expand this with summation notation (assuming the discrete case):

⨠⨠ ∑
x∈A1

PX|H0
(x) ⋅ P [H0] + ∑

x∈A0

PX|H1
(x) ⋅ P [H1]

Now, how do we choose the set A0 ⊂ R (and thus A1 = Ac
0) in such a way that this

sum is minimized?

Since all terms are positive, and any x ∈ R may be placed in A1 or in A0 freely
and independently of all other choices, the total sum is minimized when we
minimize the impact of placing each x.

So, for each x, we place it in A0 if:

PX|H0
(x) ⋅ P [H0] ≥ PX|H1

(x) ⋅ P [H1]

That is equivalent to the MAP condition.

P [Hi ∣ X = x] = P [X = x ∣ Hi] ⋅
P [Hi]

P [X]

= PX|Hi
(x) ⋅

P [Hi]

P [X]

(Bayes’ Rule)

(Conditional PMF)

Write C10 for cost of false alarm, i.e. cost when H0 is true but decided H1.
Probability of incurring cost C10 is PFA ⋅ P [H0].

Write C01 for cost of miss, i.e. cost when H1 is true but decided H0.
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05 Illustration

Probability of incurring cost C01 is PMiss ⋅ P [H1].

Expected value of cost incurred

E[C] = P [A1 ∣ H1] ⋅ P [H0] ⋅ C10 + P [A0 ∣ H1] ⋅ P [H1] ⋅ C01

MC design

Suppose we know:

The minimum cost (MC) design for a decision statistic X:

A0 = set of x for which:

Discrete case:

PX∣H0
(x) ⋅ P [H0] ⋅ C10 ≥ PX∣H1

(x) ⋅ P [H1] ⋅ C01

Continuous case:

fX∣H0
(x) ⋅ P [H0] ⋅ C10 ≥ fX∣H1

(x) ⋅ P [H1] ⋅ C01

Then A1 = {x ∈ R ∣ x ∉ A0}.

The MC design minimizes the expected value of the cost of error.

Both prior probabilities P [H0] and P [H1]

Both conditional distributions PX|H0
(x) and PX|H1

(x) (or fX|H0
(x) and fX|H1

(x))

MC minimizes expected cost

Inside the argument that MAP minimizes total probability of error, we have this
summation:

PERR = ∑
x∈A1

PX|H0
(x) ⋅ P [H0] + ∑

x∈A0

PX|H1
(x) ⋅ P [H1]

The expected value of the cost has a similar summation:

E[C] = ∑
x∈A1

PX|H0
(x) ⋅ P [H0] ⋅ C10 + ∑

x∈A0

PX|H1
(x) ⋅ P [H1] ⋅ C01

Following the same reasoning, we see that the cost is minimized if each x is
placed into A0 precisely when the MC design condition is satisfied, and otherwise
it is placed into A1.

Example - MC Test: Smoke detector

Suppose that a smoke detector sensor is configured to produce 8V when there is
smoke, and 0V otherwise. But there is background noise with distribution
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N (0, 3V).

Suppose that the background chance of smoke is 5%. Suppose the cost of a miss is
50× the cost of a false alarm. Design an MC test for the alarm.

Compute the expected cost.

Solution

We have priors:

P [H0] = 0.95 P [H1] = 0.05

And we have costs:

C10 = 1 C01 = 50

(The ratio of these numbers is all that matters in the inequalities of the
condition.)

The MC condition becomes:

Therefore, A0 is x ≤ 2.91, while A1 is x > 2.91.

The decision rule is: activate alarm when x > 2.91.

Type I error:

Type II error:

Total error:

PERR = PFA ⋅ 0.95 + PMiss ⋅ 0.05 ≈ 0.1599
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PFA = P [A1 ∣ H0]

⨠⨠ P [X > 2.91 ∣ H0] ⨠⨠ ≈ 0.1660

PMiss = P [A0 ∣ H1]

⨠⨠ P [X ≤ 2.91] ⨠⨠ ≈ 0.04488
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Mean square error
06 Theory - Minimum mean square error
Suppose our problem is to estimate or guess or predict the value of a random variable
X in one run of the experiment. Assume we have the distribution of X. Which value
do we choose?

There is no single best answer to this question. The best answer is a function of
additional factors in the problem context.

One method is to pick a value where the PMF or PDF of X is maximal. This is a value
of highest probability. (There may be more than one.)

Another method is to pick the expected value E[X].

For the normal distribution, or any symmetrical distribution, these are the same
value. For most distributions they are not the same value.

The MSE quantifies the typical (square of the) error, meaning the difference between
the true value X and the estimate x̂. The expected value calculates the typical value
of this error.

Other error estimates are reasonable and useful in niche contexts. For example,
E [ |X − x̂| ] or Max |X − x̂|. They are not frequently used, so we do not consider their
theory further.

In problem contexts where large errors are more costly than small errors (many real
problems), the most likely value of X (point with maximal PDF) may fare poorly as
an estimate.

PMF of total cost:

PC(c) =

Therefore E[C] = 0.27.

⎧⎪⎨⎪⎩0.002244 c = 50
0.1577 c = 1
0.840056 c = 0

Mean square error

Given an estimate x̂ ∈ R for a random variable X, the mean square error
(MSE) of x̂ is:

E[(X − x̂)2]
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It turns out the expected value E[X] also happens to be the value that minimizes the
MSE.

When the estimate x̂ is made in the absence of information (besides the distribution
of X), it is called a blind estimate. Therefore, x̂B = E[X] is the blind minimal MSE
estimate, and eB = Var[X] is the error of this estimate.

In the presence of additional information, namely that event A is known, then the
MSE estimate is x̂A = E[X ∣ A] and the error of this estimate is eX|A = Var[X ∣ A].

The MSE estimate can also be conditioned on another variable, say Y .

Notice that the minimal MSE of X given Y  can be used to define a random variable:

X̂M(Y ) = E[X ∣ Y ]

Minimal mean square error

Given a random variable X, its expectation x̂ = E[X] provides the estimate with
minimal mean square error.

The MSE error itself of x̂ = E[X]:

MSE error when x̂ = E[X]: E[(X − x̂)2] = Var[X]

Proof that E[X] gives minimal MSE

Expand the MSE error:

E[(X − x̂)2] ⨠⨠ E[X 2] − 2x̂E[X] + x̂2

Minimize this parabola. Differentiate:

d

dx̂
E[(X − x̂)2] ⨠⨠ 0 − 2E[X] + 2x̂

Find zeros:

0 − 2E[X] + 2x̂ = 0

⨠⨠ 2x̂ = 2E[X]

⨠⨠ x̂ = E[x]

Minimal MSE of X given Y

The minimal MSE estimate of X given another variable Y :

x̂M(y) = E[X ∣ Y = y]

The error of this estimate is Var[X ∣ Y = y], which equals E[(X − x̂M(y))2 ∣ Y = y].
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This variable is a derived variable of Y  given by post-composition with the function
x̂M .

The variable X̂M(Y ) provides the minimal MSE estimates of X when experimental
outcomes are viewed as providing the information of Y  only, and the model is used to
derive estimates of X from this information.

07 Illustration

Example - Minimal MSE estimate given PMF, given fixed event

Suppose X has the following PMF:

k 1 2 3 4 5
PX(k) 0.15 0.28 0.26 0.19 0.13

Find the minimal MSE estimate of X, given that X is even. What is the error of
this estimate?

Solution

The minimal MSE given A is just E[X ∣ A] where A = {2, 4}.

First compute the conditional PMF:

PX|A(k) =

Therefore:

x̂A = 2
0.28

0.47
+ 4

0.19

0.47
≈ 2.80851

The error is:

⎧⎪⎨⎪⎩0.19/0.47 k = 4
0.28/0.47 k = 2
0 k ≠ 2, 4

eX|A = (2 − 2.81)2
0.28

0.47
+ (4 − 2.81)2

0.19

0.47

⨠⨠ ≈ 0.9633

Exercise - Minimal MSE estimate from joint PDF

Here is the joint PDF of X and Y :

fX,Y = {

Find the minimal MSE estimate of X in terms of Y .

What is the estimate of X when Y = 0.2? When Y = 0.8?

Answer

8xy 0 ≤ y ≤ x ≤ 1
0 otherwise
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08 Theory - Line of minimal MSE
Linear approximation is very common in applied math.

One could consider the linearization of x̂M(y) (its tangent line) instead of the exact
function x̂M(y).

Instead, one can minimize the MSE over all possible linear functions of Y . The line
with minimal MSE is called the linear estimator.

x̂M(y) =
2

3
⋅
1 − y3

1 − y2

x̂M(0.2) = 0.6889 x̂M(0.8) = 0.9037

Line of minimal MSE

Let L(y) be the line L(y) = ay+ b. Let X̂L(Y ) = L(Y ) = aY + b.

The mean square error (MSE) of L is:

eL(a, b) = E[(X − X̂L(Y ))2]

The linear estimator is the line Lmin with minimal MSE, and it is:

Lmin(y) = ρX,Y
σX

σY

(y− μY ) + μX

The minimal error value eLmin  is:

eLmin = σ2
X(1 − ρ2

X,Y )

The variable of minimal error, X − X̂Lmin(Y ), is uncorrelated with Y .

Slope and ρX,Y

Notice:

X̂Lmin(Y ) − μX

σX

= ρX,Y ⋅ (
Y − μY

σY

)

Thus, ρX,Y  is the slope of the minimal MSE line for standardized variables X and
Y .
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In each graph, E[X] = E[Y ] = 0 and Var[X] = Var[Y ] = 1.

The line of minimal MSE is the “best fit” line, X̂Lmin
(Y ) = ρX,Y Y .

09 Illustration

Example - Estimating on a variable interval

Suppose that R ∼ Unif((0, 1)) and suppose X ∼ Unif(0,R).

(a) Find x̂M(r)  (b) Find r̂M(x)  (c) Find R̂Lmin(X)

Solution

(a) Find x̂M(r).

We know x̂M(r) = E[X ∣ R = r].

Given R = r, so X is uniform on (0, r), we have E[X ∣ R = r] = r
2 .

(b) Find r̂M(x).

We know r̂M(x) = E[R ∣ X = x].

To compute this function, we calculate a sequence of densities.

We know fR and fX|R. From these we derive the joint distribution fX,R:

fR(r) = { fX|R(x|r) = {

⨠⨠ fX,R(x, r) = fX|R ⋅ fR = {

Now extract the marginal fX:

Now deduce the conditional fR|X:

fR|X =
fX,R

fX
= {

Then:

1 r ∈ (0, 1)
0 otherwise

1/r x ∈ (0, r)
0 otherwise

1/r 0 < x < r < 1
0 else

⨠⨠ fX(x) = ∫
∞

−∞
fX,R(x, r) dr

⨠⨠ ∫
1

x

1

r
dr ⨠⨠ − lnx (0 < x < 1)

−1
r lnx 0 < x < r < 1
0 otherwise
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So r̂M(x) = x−1
lnx .

(c) Find R̂Lmin(X).

We need all the basic statistics.

E[R] = 1/2 because R ∼ Unif((0, 1)).

σ2
R =

(b−a)2

12 = 1/12.

E[X] = 1/4 using the marginal PDF fX(x) = − lnx on x ∈ (0, 1). (IBP and
L’Hopital are needed.)

σX = √7/12 also using the marginal fX(x) = − lnx.

E[XR] = 1/6 using fX,R(x, r), namely:

From this we infer Cov[X,R] = 1/24 and ρX,R = √3/7.

Hence:

Lmin(x) =
6

7
x+

2

7

Thus:

R̂Lmin
(X) =

6

7
X +

2

7

E[R ∣ X = x] ⨠⨠ ∫
1

x

r
−1

r lnx
dr

⨠⨠
x− 1

lnx

E[XR] = ∫
1

r=0
∫

r

x=0
xr

1

r
dx dr

⨠⨠ ∫
1

0

x2

2
dx ⨠⨠

1

6
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Exercise - Line of minimal MSE given joint PDF

Here is the joint PDF of X and Y :

fX,Y = {

Find the line giving the linear MSE estimate of X in terms of Y .

What is the expected error of this line, eLmin
?

What is the estimate of X when Y = 0.2? When Y = 0.8?

Answer

X̂Lmin
(Y ) = 0.3637Y + 0.6060

eLmin
= 0.02020

x̂Lmin
(0.2) = 0.67874 x̂Lmin

(0.8) = 0.89696

8xy 0 ≤ y ≤ x ≤ 1
0 otherwise
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