
Week 13 notes
Deviation and Large Numbers
01 Theory - Sample mean

The sample mean is typically applied to repeated trials of an experiment. The trials
are independent, and the probability distribution of outcomes should be identical from
trial to trial.

Notice that the variance of the sample mean limits to 0 as n → ∞. As more trials are
repeated, and the average of all results is taken, the fluctuations of this average will
shrink toward zero.

As n → ∞ the distribution of Mn(X) will converge to a PMF with all the probability
concentrated at E[Xi] and none elsewhere.

02 Theory - Tail estimation
Every distribution must trail off to zero for large enough |X|. The regions where X
trails off to zero (large magnitude of X) are informally called ‘tails’.

Sample mean and its variance

The sample mean of a set X1, X2, …  of IID random variables is an RV that
averages the first n instances:

Mn(X) =
1

n
(X1 + ⋯ + Xn)

Statistics of the sample mean (for any i):

E[Mn(X)] = E[Xi] Var[Mn(X)] =
Var[Xi]

n

Tail probabilities

A tail probability is a probability with one of these forms:

P[X ≥ c ] P[X ≤ −c ] P[ |X − μX| ≥ c ]

Markov’s inequality

Assume that X ≥ 0. Take any c > 0.

Then the Markov’s inequality states:

P[X ≥ c ] ≤
μX

c
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Chebyshev’s inequality

Take any X, and c > 0.

Then the Chebyshev’s inequality states:

P[ |X − μX| ≥ c ] ≤
σ2
X

c2

Markov vs. Chebyshev

Chebyshev’s inequality works for any X, and it usually gives a better estimate
than Markov’s inequality.

The main value of Markov’s inequality is that it only requires knowledge of μX.

Think of Chebyshev’s inequality as a tightening of Markov’s inequality using the
additional data of σX.

Derivation of Markov’s inequality - Continuous RV

Under the hypothesis that X ≥ 0 and c > 0, we have:

μX = E[x] = ∫
∞

0
xfX(x) dx = ∫

c

0
xfX(x) dx + ∫

∞

c

xfX(x) dx

On the range c ≤ x < ∞ we may convert x to c, making the integrand bigger:

∫
∞

c

xfX(x) dx ≥ ∫
∞

c

cfX(x) dx

Simplify:

∫
∞

c

cfX(x) dx⨠⨠ c∫
∞

c

fX(x) dx ⨠⨠ cP[X ≥ c ]

Also:

∫
c

0
xfX(x) dx ≥ 0

Therefore:

∫
∞

0
xfX(x) dx ≥ cP[X ≥ c ]

⨠⨠ E[x] ≥ cP[X ≥ c ]

Extra - Derivation of Chebyshev’s inequality

Notice that the variable (X − μX)2 is always positive. Chebyshev’s inequality is a
simple application of Markov’s inequality to this variable.

Specifically, using c2 as the Markov constant, Markov’s inequality yields:
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03 Illustration

04 Theory - Law of Large Numbers
Let X1, X2, …  be a collection of IID random variables with μ = E[Xi] for any i, and
σ2 = Var[Xi] for any i.

Recall the sample mean:

Mn(X) =
1

n
(X1 + ⋯ + Xn)

Recall that Var[Mn(X)] = σ2

n
.

P[ (X − μX)2 ≥ c2 ] ≤
E[ (X − μX)2 ]

c2

Then, by monotonicity of square roots:

(X − μX)2 ≥ c2
⟺ |X − μX| ≥ c

And of course E[ (X − μX)2 ] = σ2
X

. Chebyshev’s inequality follows.

Markov’s inequality derivation - Discrete RV

Derive Markov’s inequality for a discrete RV.

Example - Markov and Chebyshev

A tire shop has 500 customers per day on average.

(a) Estimate the odds that more than 700 customers arrive today.

(b) Assume the variance in daily customers is 10. Repeat (a) with this information.

Solution

Write X for the number of daily customers.

(a) Using Markov’s inequality with c = 700, we have:

P[X ≥ 700 ] ≤
500

700
≈ 0.71

(b) Using Chebyshev’s inequality with c = 200, we have:

P[ |X − 500| ≥ 200 ] ≤
100

2002
≈ 0.0025

The Chebyshev estimate is much smaller!

Law of Large Numbers (weak form)

For any ε > 0, by Chebyshev’s inequality we have:
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05 Illustration

Statistical testing
06 Theory - Significance testing

Therefore:

lim
n→∞

P[ Mn(X) − μ ≥ ε ] = 0

And the complement:

P[ Mn(X) − μ ≥ ε ] ≤
σ2

nε2∣ ∣ (finite LLN)∣ ∣lim
n→∞

P[ Mn(X) − μ < ε ] = 1∣ ∣ (infinite LLN)

Example - LLN: Average winnings

A roulette player bets as follows: he wins $100 with probability 0.48 and loses
$100 with probability 0.52. The expected winnings after a single round is therefore
$100 ⋅ 0.48 − $100 ⋅ 0.52 which equals −$4.

By the LLN, if the player plays repeatedly for a long time, he expects to lose $4 per
round on average.

The ‘expects’ in the last sentence means: the PMF of the cumulative average
winnings approaches this PMF:

PMn(X)(k) = {

This is by contrast to the ‘expects’ of expected value: the probability of achieving
the expected value (or something near) may be low or zero! For example, a single
round of this game.

1 k = $4
0 k ≠ $4

Exercise - Enough samples

Suppose X1, X2, …  are IID samples of X ∼ Ber(0.6).

(a) Compute E[X] and Var[X] and Var [M100(X)].

(b) Use the finite LLN to find α such that:

P[ |M100(X) − 0.6| ≥ 0.05 ] ≤ α

(c) How many samples n are needed that to guarantee that:

P[ |Mn(X) − 0.6| ≥ 0.1 ] ≤ 0.05
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More generally, we do not need these details:

In basic statistical inference theory, there are two kinds of error.

Significance test

Ingredients of a significance test (unary hypothesis test):

Null hypothesis event H0

Identify a Claim
Then: H0 is background assumption (supposing Claim isn’t known)
Goal is to invalidate H0 in favor of Claim

Rejection Region (decision rule): an event R
R is unlikely assuming H0

Directionality: R is more likely if Claim
Write R in terms of decision statistic X and significance level α

Ability to compute P [R ∣ H0]

Usually: inferred from fX|H0
 or PX|H0

Adjust R to achieve P [R ∣ H0] = α

Significance level

Suppose we are given a null hypothesis H0 and a rejection region R.

The significance level of R is:

Sometimes the condition is dropped and we write α = P [R], e.g. when a
background model without assuming H0 is not known.

α = P[ reject H0 ∣ H0 is true ]

= P [R ∣ H0]

Null hypothesis implies a distribution

Frequently H0 will not take the form of an event in a sample space, H0 ⊂ S.

Usually S is unspecified, yet H0 determines a known distribution.

At a minimum, the assumption of H0 must determine numbers P [R ∣ H0].

Background sample space S
Non-conditional distribution (full model): fX or PX

Complement conditionals: fX|H c
0
 or PX|H c

0

Type I error concludes with rejecting H0 when H0 is true.
Type II error concludes with maintaining H0 when H0 is false.
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Type I error is usually a bigger problem. We want to consider H0 “innocent until
proven guilty.”

H0 is true H0 is false
Maintain null hypothesis Made right call Wrong acceptance 

Reject null hypothesis Wrong rejection Made right call

To design a significance test at α, we must identify H0, and specify R with the property
that P [R ∣ H0] = α.

When R is written using a variable X, we must choose between:

07 Illustration

Type II Error

Type I Error

One-tail rejection region: x with R(x) ≤ r or x with R(x) ≥ r

Two-tail rejection region: x with |R(x) − μ| ≥ c

Example - One-tail test: Weighted die

Your friend gives you a single regular die, and say she is worried that it has been
weighted to prefer the outcome of 2. She wants you to test it.

Design a significance test for the data of 20 rolls of the die to determine whether
the die is weighted. Use significance level α = 0.05.

Solution

Let X count the number of 2s that come up.

The Claim: “the die is weighted to prefer 2”
The null hypothesis H0: “the die is normal”

Assuming H0 is true, then X ∼ Bin(20, 1/6), and therefore:

PX|H0
(k) = (20

k
)(1/6)k(5/6)20−k

⚠ Notice that “prefer 2” implies the claim is for more 2s than normal.

Therefore: Choose a one-tail rejection set.

Need r such that P [X ≥ r ∣ H0] = 0.05

Equivalently: P [X < r ∣ H0] = 0.95
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Solve for r by computing conditional CDF values:

k : 0 1 2 3 4 5 6 7
FX∣H0

(k) : 0.026 0.130 0.329 0.567 0.769 0.898 0.963 0.989

Therefore, choose r = 6. Then P [X ≥ r ∣ H0] < 0.04 and no smaller (integer) r will
produce significance below 0.05.

The final answer is:

R = {x ∣ x ≥ 6}

Two-tail test: Circuit voltage

A boosted AC circuit is supposed to maintain an average voltage of 130 V with a
standard deviation of 2.1 V. Nothing else is known about the voltage distribution.

Design a two-tail test incorporating the data of 40 independent measurements to
determine if the expected value of the voltage is truly 130 V. Use α = 0.02.

Solution

Use M40(V ) as the decision statistic, i.e. the sample mean of 40 measurements of V
.

The Claim to test: μ is not 130
The null hypothesis H0: μ = 130

Rejection region:

|M40 − 130| ≥ c

where c is chosen so that P[ |M40 − 130| ≥ c ] = 0.02

Assuming H0, we expect that:

E[M40] = 130 σ2 = Var[M40] =
2.12

40
≈ 0.110

Recall Chebyshev’s inequality:

P[ |M40 − 130| ≥ c ] ≤
σ2

c2
≈

0.110

c2

Now solve:

0.110

c2
= 0.2 ⨠⨠ c ≈ 0.74

Therefore the rejection region should be:
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M40 < 129.26 ∪ 130.74 < M40

One-tail test with a Gaussian: Weight loss drug

Assume that in the background population in a specific demographic, the
distribution of a person’s weight W  satisfies W ∼ N (190, 24). Suppose that a
pharmaceutical company has developed a weight-loss drug and plans to test it on a
group of 64 individuals.

Design a test at the α = 0.01 significance level to determine whether the drug is
effective.

Solution

Since the drug is tested on 64 individuals, we use the sample mean M64(W) as the
decision statistic.

The Claim: “the drug is effective in reducing weight”
The null hypothesis H0: “no effect: weights on the drug still follow N (190, 24)”

Assuming H0 is true, then W ∼ N (190, 24).

⚠ One-tail test because the drug is expected to reduce weight (unidirectional).

Rejection region:

M64(W) ≤ r

Compute 24
√64

= 3.

Since W ∼ N (190, 24), we know that M64(W) ∼ N (190, 32).

Furthermore:

M64(W) − 190

3
∼ N (0, 1)

Then:

Solve:

P [M64(W) < r] = P [Z <
r − 190

3
]

= Φ( r − 190

3
)
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Therefore, the rejection region:

P [M64(W) < r] = 0.01

⨠⨠ Φ( r − 190

3
) = 0.01

⨠⨠ Φ( 190 − r

3
) = 0.99

⨠⨠
190 − r

3
= 2.33

⨠⨠ r = 183.01

M64(W) ≤ 183.01
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