
Week 10 notes
Expectation for two variables

01 Theory

These formulas are not trivial to prove, and we omit the proofs. (Recall the technical nature of the
proof we gave for E[ g(X) ] in the discrete case.)

We already know that expectation is linear in a single variable: E[aX + b] = aE[X] + b.

Therefore this two-variable formula implies:

E[aX + bY + c] = aE[X] + bE[Y ] + c

Expectation for a function on two variables

Discrete case:

E[ g(X,Y ) ] = ∑
k,ℓ

g(k, ℓ)PX,Y (k, ℓ) (sum over possible values)

Continuous case:

E[ g(X,Y ) ] = ∫
+∞

−∞
∫

+∞

−∞
g(x, y) fX,Y (x, y) dx dy

Expectation sum rule

Suppose X and Y  are any two random variables on the same probability model.

Then:

E[X + Y ] = E[X] + E[Y ]

Expectation product rule: independence

Suppose that X and Y  are independent.

Then we have:

E[XY ] = E[X]E[Y ]

Extra - Proof: Expectation sum rule, continuous case

Suppose fX and fY  give marginal PDFs for X and Y , and fX,Y  gives their joint PDF.

Then:
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02 Illustration

Observe that this calculation relies on the formula for E[ g(X,Y ) ], specifically with
g(x, y) = x + y.

E[X + Y ] ⨠⨠ ∫
+∞

−∞
∫

+∞

−∞
(x + y)fX,Y (x, y) dx dy

⨠⨠ ∫
+∞

−∞
∫

+∞

−∞
xfX,Y dx dy + ∫

+∞

−∞
∫

+∞

−∞
yfX,Y dx dy

⨠⨠ ∫
+∞

−∞
xfX(x) dx + ∫

+∞

−∞
yfY (y) dy

⨠⨠ E[X] + E[Y ]

Extra - Proof: Expectation product rule

E[XY ] ⨠⨠ ∫
+∞

−∞

∫
+∞

−∞

(xy)fX,Y (x, y) dx dy

⨠⨠ ∫
+∞

−∞
∫

+∞

−∞
(xy)fX(x)fY (y) dx dy

⨠⨠ ∫
+∞

−∞
xfX(x) dx∫

+∞

−∞
yfY (y) dy

⨠⨠ E[X]E[Y ]

E[X 2 + Y ] from joint PMF chart

Suppose the joint PMF of X and Y  is given by this chart:

Y ↓ X → 1 2

−1 0.2 0.2

0 0.35 0.1

1 0.05 0.1

Define W = X 2 + Y . Find the expectation E[W ].

Solution
First compute the values of W  for each pair (X,Y ) in the chart:

Y ↓ X → 1 2

−1 0 3

0 1 4

1 2 5

Now take the sum, weighted by probabilities:

⨠⨠ 1.95 = E[W ]
0 ⋅ (0.2) + 3 ⋅ (0.2) + 1 ⋅ (0.35)

+4 ⋅ (0.1) + 2 ⋅ (0.05) + 5 ⋅ (0.1)
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Covariance and correlation

03 Theory

Write μX = E[X] and μY = E[Y ].

Observe that the random variables X − μX and Y − μY  are “centered at zero,” meaning that
E[X − μX] = 0 = E[Y − μY ].

Exercise - Understanding expectation for two variables

Suppose you know only that X ∼ Geo(p) and Y ∼ Bin(n, q).

Which of the following can you calculate?

E[X + Y ], E[XY ], E[X 2 + Y 2], E[(X + Y )2]

E[Y ] two ways, and E[XY ], from joint density

Suppose X and Y  are random variables with the following joint density:

fX,Y (x, y) = {

(a) Compute E[Y ] using two methods.

(b) Compute E[XY ].

Solution
(a) Method One: via marginal PDF fY (y):

fY (y) = ∫
2

0

3

16
xy2 dx ⨠⨠ {

Then expectation:

E[Y ] = ∫
2

0
y fY (y) dy ⨠⨠ ∫

2

0

3

8
y3 dy ⨠⨠ 3/2

(a) Method Two: directly, via two-variable formula:

E[Y ] = ∫
2

0

∫
2

0

y ⋅
3

16
xy2 dy dx⨠⨠ ∫

2

0

3

4
x dx ⨠⨠ 3/2

(b) Directly, via two-variable formula:

3
16 xy

2 x, y ∈ [0, 2]

0  otherwise 

3
8
y2 y ∈ [0, 2

0 otherwise

E[XY ] = ∫
2

0
∫

2

0
xy ⋅

3

16
xy2 dy dx

⨠⨠ ∫
2

0

3

4
x2 dx ⨠⨠ 2

Covariance

Suppose X and Y  are any two random variables on a probability model. The covariance of
X and Y  measures the typical synchronous deviation of X and Y  from their respective
means.
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To derive the shorter formula, first expand the product (X − μX)(Y − μY ) and then apply
linearity.

Notice that covariance is always symmetric:

Cov[X,Y ] = Cov[Y ,X]

The self covariance equals the variance:

Cov[X,X] = Var[X]

The sign of Cov[X,Y ] reveals the correlation type between X and Y :

Correlation Sign

Positively correlated Cov(X,Y ) > 0

Negatively correlated Cov(X,Y ) < 0

Uncorrelated Cov(X,Y ) = 0

Covariance depends on the separate variances of X and Y  as well as their relationship.

Correlation coefficient, because we have divided out σXσY , depends only on their relationship.

04 Illustration

Then the defining formula for covariance of X and Y  is:

Cov[X,Y ] = E[ (X − μX)(Y − μY ) ]

There is also a shorter formula:

Cov[X,Y ] = E[XY ] − μXμY

Correlation coefficient

Suppose X and Y  are any two random variables on a probability model.

Their correlation coefficient is a rescaled version of covariance that measures the
synchronicity of deviations:

ρ[X,Y ] =
Cov[X,Y ]

σXσY

The rescaling ensures:

−1 ≤ ρX,Y ≤ +1

Covariance from PMF chart
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05 Theory

Suppose the joint PMF of X and Y  is given by this chart:

Y ↓ X → 1 2

−1 0.2 0.2

0 0.35 0.1

1 0.05 0.1

Find Cov[X,Y ].

Solution
We need E[X] and E[Y ] and E[XY ].

E[X] = 1 ⋅ (0.2 + 0.35 + 0.05) + 2 ⋅ (0.2 + 0.1 + 0.1) ⨠⨠ 1.4

E[XY ] = −1 ⋅ (0.2) − 2 ⋅ (0.2) + 0 + 1 ⋅ (0.05) + 2 ⋅ (0.1) ⨠⨠ − 0.35

Therefore:

E[Y ] = −1 ⋅ (0.2 + 0.2) + 0 ⋅ (0.35 + 0.1) + 1 ⋅ (0.05 + 0.1)

⨠⨠ −0.25

Cov[X,Y ] = E[XY ] − E[X]E[Y ]

⨠⨠ −0.35 − (1.4)(−0.25) ⨠⨠ 0

Covariance bilinearity

Given any three random variables X, Y , and Z, we have:

Cov[X + Y , Z ] = Cov[X,Z] + Cov[Y ,Z]

Cov[Z, X + Y ] = Cov[Z,X] + Cov[Z,Y ]

Covariance and correlation: shift and scale

Covariance scales with each input, and ignores shifts:

Cov[ aX + b, Y ] = aCov[X,Y ] = Cov[X, aY + b ]

Whereas shift or scale in correlation only affects the sign:

ρ[ aX + b, Y ] = sign(a) ρ[X,Y ] = ρ[X, aY + b ]

Extra - Proof of covariance bilinearity

Cov[X + Y , Z] ⨠⨠ E[(X + Y − (μX + μY ))(Z − μZ)]

⨠⨠ E[(X − μX + Y − μY )(Z − μZ)]

⨠⨠ E[(X − μX)(Z − μZ)] + E[(Y − μY )(Z − μZ)]

⨠⨠ Cov[X,Z] + Cov[Y ,Z]

Extra - Proof of covariance shift and scale rule
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Cov[aX + b,Y ] ⨠⨠ E[(aX + b)Y ] − E[aX + b]E[Y ]

⨠⨠ E[aXY + bY ] − aE[X]E[Y ] − E[b]E[Y ]

⨠⨠ aE[XY ] + bE[Y ] − aE[X]E[Y ] − bE[Y ]

⨠⨠ a(E[XY ] − E[X]E[Y ])

Independence implies zero covariance

Suppose that X and Y  are any two random variables on a probability model.

If X and Y  are independent, then:

Cov[X,Y ] = 0

Sum rule for variance

Suppose that X and Y  are any two random variables on a probability space.

Then:

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ]

When X and Y  are independent, the formula simplifies to:

Var[X + Y ] = Var[X] + Var[Y ]

Proof: Independence implies zero covariance

The product rule for expectation, since X and Y  are independent:

E[XY ] = E[X]E[Y ]

The shorter formula for covariance:

Cov[X,Y ] = E[XY ] − μXμY

But E[XY ] = E[X]E[Y ] = μXμY , so those terms cancel and Cov[X,Y ] = 0.

Proof: Sum rule for variance

Var[X + Y ] ⨠⨠ E[ (X + Y − (μX + μY ))2 ]

⨠⨠ E[ ((X − μX) + (Y − μY ))2 ]

⨠⨠ E[ (X − μX)2 + (Y − μY )2 + 2(X − μX)(Y − μY ) ]

⨠⨠ Var[X] + Var[Y ] + 2Cov[X,Y ]

Proof that −1 ≤ ρ ≤ +1
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06 Illustration

1. Create standardizations:

~
X =

X − μX

σX
,

~
Y =

Y − μY

σY

2. Now ~
X and ~

Y  satisfy E[
~
X] = 0 = E[

~
Y ] and Var[

~
X] = 1 = Var[

~
Y ].

3. Observe that Var[W ] ≥ 0 for any W . Variance can’t be negative.
4. Apply the variance sum rule.

Apply to ~
X and ~

Y :

0 ≤ Var[
~
X +

~
Y ] = Var[

~
X] + Var[

~
Y ] + 2Cov[

~
X,

~
Y ]

Simplify:

⨠⨠ 1 + 1 + 2Cov[
~
X,

~
Y ] ≥ 0

⨠⨠ 1 + Cov[
~
X,

~
Y ] ≥ 0

Notice effect of standardization:

Cov[
~
X,

~
Y ] = ρ[X,Y ]

Therefore ρ[X,Y ] ≥ −1.
5. Modify and reapply variance sum rule.

Change to ~
X −

~
Y :

0 ≤ Var[
~
X −

~
Y ] = Var[

~
X] + Var[−

~
Y ] + 2Cov[

~
X, −

~
Y ]

Simplify:

⨠⨠ 1 + 1 − 2Cov[
~
X,

~
Y ] ≥ 0

⨠⨠ 1 − Cov[
~
X,

~
Y ] ≥ 0

Exercise - Covariance rules

Simplify:

Cov[ 2X + 5Y + 1, Z + 8W + X + 9 ]

Exercise - Independent variables are uncorrelated

Let X be given with possible values {−1, 0, +1} and PMF given uniformly by PX(k) = 1/3 for
all three possible k. Let Y = X 2.

Show that X and Y  are dependent but uncorrelated.

Hint: To speed the calculation, notice that X 3 = X.

Variance of sum of indicators

An urn contains 3 red balls and 2 yellow balls.
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Suppose 2 balls are drawn without replacement, and X counts the number of red balls
drawn.

Find Var(X).

Solution
Let X1 indicate (one or zero) whether the first ball is red, and X2 indicate whether the second
ball is red, so X = X1 + X2.

Then X1X2 indicates whether both drawn balls are red; so it is Bernoulli with success
probability 3

5
2
4 = 3

10 . Therefore E[X1X2] = 3
10 .

We also have E[X1] = E[X2] = 3
5 .

The variance sum rule gives:

Var[X] = Var[X1] + Var[X2] + 2Cov[X1,X2]

⨠⨠ E[X 2
1 ] − E[X1]2 + E[X 2

2 ] − E[X2]2 + 2(E[X1X2] − E[X1]E[X2])

⨠⨠
3

5
− ( 3

5
)

2

+
3

5
− ( 3

5
)

2

+ 2( 3

10
−

3

5
⋅

3

5
) ⨠⨠

9

25
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