Expectation for two variables

01 Theory

Discrete case:

$$E[\,g(X,Y)\,] \quad = \quad \sum_{k,\ell} g(k,\ell)\,P_{X,Y}(k,\ell) \qquad ext{(sum over possible values)}$$

Continuous case:

$$E[\,g(X,Y)\,] \quad = \quad \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y)\,f_{X,Y}(x,y)\,dx\,dy$$

These formulas are *not trivial to prove*, and we omit the proofs. (Recall the technical nature of the proof we gave for E[g(X)] in the discrete case.)

B^o Expectation sum rule

Suppose *X* and *Y* are *any* two random variables on the same probability model.

Then:

$$E[X+Y] = E[X] + E[Y]$$

We already know that expectation is linear in a single variable: E[aX + b] = aE[X] + b.

Therefore this two-variable formula implies:

$$E[aX+bY+c] = aE[X]+bE[Y]+c$$

🕆 Expectation product rule: independence

Suppose that *X* and *Y* are *independent*.

Then we have:

$$E[XY] = E[X]E[Y]$$

🗒 Extra - Proof: Expectation sum rule, continuous case

Suppose f_X and f_Y give marginal PDFs for X and Y, and $f_{X,Y}$ gives their joint PDF.

Then:

$$egin{aligned} E[X+Y] &\gg & \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x+y) f_{X,Y}(x,y) \, dx \, dy \ &\gg & \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f_{X,Y} \, dx \, dy + \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f_{X,Y} \, dx \, dy \ &\gg & \int_{-\infty}^{+\infty} x f_X(x) \, dx + \int_{-\infty}^{+\infty} y f_Y(y) \, dy \ &\gg & E[X] + E[Y] \end{aligned}$$

Observe that this calculation relies on the formula for E[g(X, Y)], specifically with g(x, y) = x + y.

🗒 Extra - Proof: Expectation product rule

$$\begin{split} E[XY] \quad \gg \gg \quad \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (xy) f_{X,Y}(x,y) \, dx \, dy \\ \quad \gg \gg \quad \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (xy) f_X(x) f_Y(y) \, dx \, dy \\ \quad \gg \gg \quad \int_{-\infty}^{+\infty} x f_X(x) \, dx \int_{-\infty}^{+\infty} y f_Y(y) \, dy \\ \quad \gg \gg \quad E[X] E[Y] \end{split}$$

02 Illustration

$\Xi E[X^2 + Y]$ from joint PMF chart

Suppose the joint PMF of X and Y is given by this chart:

$Y\downarrow \ X\rightarrow$	1	2
-1	0.2	0.2
0	0.35	0.1
1	0.05	0.1

Define $W = X^2 + Y$. Find the expectation E[W].

Solution

First compute the values of *W* for each pair (X, Y) in the chart:

$Y\downarrow \ X\rightarrow$	1	2
$^{-1}$	0	3
0	1	4
1	2	5

Now take the sum, weighted by probabilities:

$$\begin{array}{lll} 0\cdot(0.2)+3\cdot(0.2)+1\cdot(0.35)\\ +4\cdot(0.1)+2\cdot(0.05)+5\cdot(0.1) \end{array} \gg \gg & 1.95 \ = \ E[W] \end{array}$$

🗄 Exercise - Understanding expectation for two variables

Suppose you know *only* that $X \sim \text{Geo}(p)$ and $Y \sim \text{Bin}(n, q)$.

Which of the following can you calculate?

$$E[X+Y], \quad E[XY], \quad E[X^2+Y^2], \quad E[(X+Y)^2]$$

 $\Xi E[Y]$ two ways, and E[XY], from joint density

Suppose *X* and *Y* are random variables with the following joint density:

$$f_{X,Y}(x,y) = egin{cases} rac{3}{16}xy^2 & x,y\in [0,2]\ 0 & ext{otherwise} \end{cases}$$

(a) Compute E[Y] using two methods.

(b) Compute E[XY].

Solution

(a) <u>Method One</u>: via marginal PDF $f_Y(y)$:

$$f_Y(y) \quad = \quad \int_0^2 rac{3}{16} x y^2 \, dx \quad \gg \gg \quad egin{cases} rac{3}{8} y^2 & y \in [0,2] \ 0 & ext{otherwise} \end{cases}$$

Then expectation:

$$E[Y] = \int_0^2 y \, f_Y(y) \, dy \quad \gg \gg \quad \int_0^2 rac{3}{8} y^3 \, dy \quad \gg \gg \quad 3/2$$

(a) <u>Method Two:</u> directly, via two-variable formula:

$$E[Y] = \int_0^2 \int_0^2 y \cdot \frac{3}{16} x y^2 \, dy \, dx \gg \int_0^2 \frac{3}{4} x \, dx \gg 3/2$$

(b) Directly, via two-variable formula:

1

$$\begin{split} E[XY] &= \int_0^2 \int_0^2 xy \cdot \frac{3}{16} xy^2 \, dy \, dx \\ \gg \gg \int_0^2 \frac{3}{4} x^2 \, dx \implies \gg 2 \end{split}$$

Covariance and correlation

03 Theory

Write $\mu_X = E[X]$ and $\mu_Y = E[Y]$.

Observe that the random variables $X - \mu_X$ and $Y - \mu_Y$ are "centered at zero," meaning that $E[X - \mu_X] = 0 = E[Y - \mu_Y]$.

₿[®] Covariance

Suppose X and Y are any two random variables on a probability model. The **covariance** of X and Y measures the *typical synchronous deviation* of X and Y from their respective means.

Then the *defining formula* for covariance of *X* and *Y* is:

 $\operatorname{Cov}[X,Y] = E[(X - \mu_X)(Y - \mu_Y)]$

There is also a *shorter formula*:

$$\operatorname{Cov}[X,Y] = E[XY] - \mu_X \mu_Y$$

To derive the shorter formula, first expand the product $(X - \mu_X)(Y - \mu_Y)$ and then apply linearity.

Notice that covariance is always *symmetric*:

$$\operatorname{Cov}[X,Y] = \operatorname{Cov}[Y,X]$$

The *self* covariance equals the variance:

 $\operatorname{Cov}[X, X] = \operatorname{Var}[X]$

The *sign* of Cov[X, Y] reveals the *correlation type* between X and Y:

Correlation	Sign
Positively correlated	$\operatorname{Cov}(X,Y)>0$
Negatively correlated	$\operatorname{Cov}(X,Y) < 0$
Uncorrelated	$\operatorname{Cov}(X,Y)=0$

B Correlation coefficient

Suppose X and Y are any two random variables on a probability model.

Their **correlation coefficient** is a rescaled version of covariance that measures the *synchronicity of deviations*:

$$ho[X,Y] \;=\; rac{\mathrm{Cov}[X,Y]}{\sigma_X\sigma_Y}$$

The rescaling ensures:

$$-1 \leq
ho_{X,Y} \leq +1$$

Covariance depends on the separate variances of X and Y as well as their relationship.

Correlation coefficient, because we have divided out $\sigma_X \sigma_Y$, depends only on their *relationship*.

04 Illustration

 \equiv Covariance from PMF chart

Suppose the joint PMF of X and Y is given by this chart:

$Y\downarrow \ X\rightarrow$	1	2
-1	0.2	0.2
0	0.35	0.1
1	0.05	0.1

Find $\operatorname{Cov}[X, Y]$.

Solution

We need E[X] and E[Y] and E[XY].

$$E[X] = 1 \cdot (0.2 + 0.35 + 0.05) + 2 \cdot (0.2 + 0.1 + 0.1) \implies 1.4$$
$$E[Y] = -1 \cdot (0.2 + 0.2) + 0 \cdot (0.35 + 0.1) + 1 \cdot (0.05 + 0.1)$$

 $\gg \gg -0.25$

$$E[XY] = -1 \cdot (0.2) - 2 \cdot (0.2) + 0 + 1 \cdot (0.05) + 2 \cdot (0.1) \implies \gg -0.35$$

Therefore:

$$\operatorname{Cov}[X,Y] = E[XY] - E[X]E[Y]$$

 $\gg \gg -0.35 - (1.4)(-0.25) \gg \gg 0$

05 Theory

Covariance bilinearity

Given any three random variables X, Y, and Z, we have:

$$\operatorname{Cov}[X+Y, Z] = \operatorname{Cov}[X, Z] + \operatorname{Cov}[Y, Z]$$

 $\operatorname{Cov}[Z, X+Y] = \operatorname{Cov}[Z, X] + \operatorname{Cov}[Z, Y]$

Covariance and correlation: shift and scale

Covariance scales with each input, and ignores shifts:

$$\operatorname{Cov}[\,aX+b,\,Y\,] \quad = \quad a\operatorname{Cov}[X,Y] \quad = \quad \operatorname{Cov}[\,X,\,aY+b\,]$$

Whereas shift or scale in correlation *only affects the sign*:

$$ho[\,aX+b,\,Y\,] \quad = \quad \mathrm{sign}(a)\,
ho[X,Y] \quad = \quad
ho[\,X,\,aY+b\,]$$

🗒 Extra - Proof of covariance bilinearity

$$\begin{split} \operatorname{Cov}[X+Y,\,Z] & \gg \gg \quad E[(X+Y-(\mu_X+\mu_Y))(Z-\mu_Z)] \\ & \gg \gg \quad E[(X-\mu_X+Y-\mu_Y)(Z-\mu_Z)] \\ & \gg \gg \quad E[(X-\mu_X)(Z-\mu_Z)] + E[(Y-\mu_Y)(Z-\mu_Z)] \\ & \gg \gg \quad \operatorname{Cov}[X,Z] + \operatorname{Cov}[Y,Z] \end{split}$$

🗒 Extra - Proof of covariance shift and scale rule

$$\begin{aligned} \operatorname{Cov}[aX+b,Y] & \gg \gg \quad E[(aX+b)Y] - E[aX+b]E[Y] \\ & \gg \gg \quad E[aXY+bY] - aE[X]E[Y] - E[b]E[Y] \\ & \gg \gg \quad aE[XY] + bE[Y] - aE[X]E[Y] - bE[Y] \\ & \gg \gg \quad a(E[XY] - E[X]E[Y]) \end{aligned}$$

Independence implies zero covariance

Suppose that X and Y are any two random variables on a probability model.

If X and Y are independent, then:

$$\operatorname{Cov}[X,Y] = 0$$

🖹 Sum rule for variance

Suppose that X and Y are any two random variables on a probability space.

Then:

$$\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}[X,Y]$$

When X and Y are *independent*, the formula simplifies to:

$$\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$$

Proof: Independence implies zero covariance

The product rule for expectation, since X and Y are independent:

E[XY] = E[X]E[Y]

The shorter formula for covariance:

$$\operatorname{Cov}[X,Y] = E[XY] - \mu_X \mu_Y$$

But $E[XY] = E[X]E[Y] = \mu_X \mu_Y$, so those terms cancel and $\operatorname{Cov}[X, Y] = 0$.

Proof: Sum rule for variance

$$\begin{aligned} \operatorname{Var}[X+Y] & \gg \gg \quad E\Big[\left(X+Y-(\mu_X+\mu_Y)\right)^2\Big] \\ & \gg \gg \quad E\Big[\left((X-\mu_X)+(Y-\mu_Y)\right)^2\Big] \\ & \gg \gg \quad E\Big[\left(X-\mu_X\right)^2+(Y-\mu_Y)^2+2(X-\mu_X)(Y-\mu_Y)\Big] \\ & \gg \gg \quad \operatorname{Var}[X]+\operatorname{Var}[Y]+2\operatorname{Cov}[X,Y] \end{aligned}$$

 $\textcircled{\exists} \textbf{Proof that} -1 \leq \rho \leq +1$

1. Create standardizations:

$$ilde{X} \;=\; rac{X-\mu_X}{\sigma_X}, \qquad ilde{Y} \;=\; rac{Y-\mu_Y}{\sigma_Y}$$

2. Now \tilde{X} and \tilde{Y} satisfy $E[\tilde{X}] = 0 = E[\tilde{Y}]$ and $\operatorname{Var}[\tilde{X}] = 1 = \operatorname{Var}[\tilde{Y}]$.

3. Observe that $Var[W] \ge 0$ for any W. Variance can't be negative.

2

4. Apply the variance sum rule.

• Apply to \tilde{X} and \tilde{Y} :

$$0 \leq \mathrm{Var}[ilde{X} + ilde{Y}] \ = \ \mathrm{Var}[ilde{X}] + \mathrm{Var}[ilde{Y}] + 2\mathrm{Cov}[ilde{X}, ilde{Y}]$$

• Simplify:

$$\gg \gg 1 + 1 + 2 ext{Cov}[ilde{X}, ilde{Y}] \geq 0$$
 $\gg \gg 1 + ext{Cov}[ilde{X}, ilde{Y}] \geq 0$

• Notice effect of standardization:

$$\mathrm{Cov}[ilde{X}, ilde{Y}] \quad = \quad
ho[X,Y]$$

• Therefore $\rho[X, Y] \ge -1$.

5. Modify and reapply variance sum rule.

• Change to $\tilde{X} - \tilde{Y}$:

$$0 \leq \mathrm{Var}[ilde{X} - ilde{Y}] \; = \; \mathrm{Var}[ilde{X}] + \mathrm{Var}[- ilde{Y}] + 2\mathrm{Cov}[ilde{X}, \, - ilde{Y}]$$

• Simplify:

$$\gg \gg 1+1-2{
m Cov}[ilde{X}, ilde{Y}]\geq 0$$
 $\gg \gg 1-{
m Cov}[ilde{X}, ilde{Y}]\geq 0$

06 Illustration

Exercise - Covariance rules

Simplify:

$$Cov[2X + 5Y + 1, Z + 8W + X + 9]$$

\blacksquare Exercise - Independent variables are uncorrelated

Let X be given with possible values $\{-1, 0, +1\}$ and PMF given uniformly by $P_X(k) = 1/3$ for all three possible k. Let $Y = X^2$.

Show that X and Y are dependent but uncorrelated.

Hint: To speed the calculation, notice that $X^3 = X$.

\equiv Variance of sum of indicators

An urn contains 3 red balls and 2 yellow balls.

Suppose 2 balls are drawn without replacement, and *X* counts the number of red balls drawn.

Find Var(X).

Solution

Let X_1 indicate (one or zero) whether the first ball is red, and X_2 indicate whether the second ball is red, so $X = X_1 + X_2$.

Then X_1X_2 indicates whether both drawn balls are red; so it is Bernoulli with success probability $\frac{3}{5}\frac{2}{4} = \frac{3}{10}$. Therefore $E[X_1X_2] = \frac{3}{10}$.

We also have $E[X_1] = E[X_2] = \frac{3}{5}$.

The variance sum rule gives:

$$\begin{aligned} \operatorname{Var}[X] &= \operatorname{Var}[X_1] + \operatorname{Var}[X_2] + 2\operatorname{Cov}[X_1, X_2] \\ &\gg \gg \quad E[X_1^2] - E[X_1]^2 + E[X_2^2] - E[X_2]^2 + 2(E[X_1X_2] - E[X_1]E[X_2]) \\ &\gg \gg \quad \frac{3}{5} - \left(\frac{3}{5}\right)^2 + \frac{3}{5} - \left(\frac{3}{5}\right)^2 + 2\left(\frac{3}{10} - \frac{3}{5} \cdot \frac{3}{5}\right) \quad \gg \gg \quad \frac{9}{25} \end{aligned}$$