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Week 08 notes
Functions on two random variables
01 Theory

One can then compute the PDF of W  by differentiation:

fW (w) =
d

dw
FW (w)

02 Illustration

PMF of any function of two variables

Suppose W = g(X,Y ) and X,Y  are discrete RVs.

The PMF of W :

PW (w) = ∑
(x,y) s.t.

g(x,y)=w

PX,Y (x, y)

CDF of continuous function of two variables

Suppose W = g(X,Y ) and X,Y  are continuous RVs, and g is a continuous function.

The CDF of W :

FW (w) = P [W ≤ w] = ∬
g(x,y)≤w

fX,Y (x, y) dxdy

Example - PDF of a quotient

Suppose the joint PDF of X and Y  is given by:

fX,Y (x, y) = {

Find the PDF of W = Y /X.

λμe−(λx+μy) x, y ≥ 0
0 otherwise

1. 
 Convert to event form:

FW (w) = P [Y /X ≤ w]

Re-express:

⨠⨠ P [Y ≤ wX]

 Find the CDF using logic.
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Diagram:

Compute:

P [Y ≤ wX] = ∫
∞

0

∫
wx

0

fX,Y (x, y) dy dx

⨠⨠ ∫
∞

0
λe−λx ∫

wx

0
μe−μy dy dx

⨠⨠ ∫
∞

0
λe−λx (−e−μwx + 1)dx

⨠⨠ 1 −
λ

λ + μw

2. 
 Compute d

dw
FW (w):

fW (w) =

⎧⎪⎨⎪⎩ λμ

(λ + μw)2
w ≥ 0

0 otherwise

 Differentiate to find PDF.

Exercise - PMF of XY 2 from chart

Suppose the joint PMF of X and Y  is given by this chart:

Y ↓ X → 1 2

−1 0.2 0.2

0 0.35 0.1

1 0.05 0.1

Define W = XY 2.

(a) Find the PMF PW (w).
(b) Find the expectation E[W ].

Example - Max and Min from joint PDF

Suppose the joint PDF of X and Y  is given by:

fX,Y (x, y) = {
3
2 (x2 + y2) x, y ∈ [0, 1]
0 otherwise
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Find the PDFs:

Solution
(a)

(b)

(a) W = Max(X,Y )

(b) W = Min(X,Y )

1. 
 Convert to event form:

FW (w) = P[Max(X,Y ) ≤ w]

Interpret:

⨠⨠ P[X ≤ w and Y ≤ w]

Integrate PDF over the region, assuming w ∈ [0, 1]:

∫
w

−∞
∫

w

−∞
fX,Y (x, y) dx dy

Insert PDF formula:

∫
w

0
∫

w

0

3
2 (x2 + y2) dx dy ⨠⨠ w4

2. 
 fW = d

dw FW (w):

fW (w) = {4w3 w ∈ [0, 1]
0 otherwise

1. 
 Convert to event form:

FW (w) = P[Min(X,Y ) ≤ w]

Consider complement event to interpret:

⨠⨠ 1 − P[Min(X,Y ) > w] ⨠⨠ 1 − P [X > w and Y > w]

Integrate PDF over the region:

P [X > w and Y > w] ⨠⨠ ∫
1

w

∫
1

w

3
2 (x2 + y2) dx dy

Compute integral:

⨠⨠ w4 − w3 − w + 1

Therefore:

FW (w) = w + w3 − w4

2. 

 Compute CDF of W .

 Differentiate to find fW (w).

 Compute CDF of W .

 Differentiate to find fW (w).
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Sums of random variables
03 Theory

The special case where g(X,Y ) = X + Y  is very useful to study in further depth.

04 Illustration

 fW = d
dw

FW (w):

fW (w) = {1 + 3w2 − 4w3 w ∈ [0, 1]
0 otherwise

THEOREM: Continuous PDF of a sum

Suppose fX,Y (x, y) is the joint PDF for continuous RVs X and Y .

Then the PDF fW (w) of W = X + Y  is given by the formula:

fW (w) = ∫
+∞

−∞
fX,Y (w − x,x) dx

When X and Y  are independent, so fX,Y = fXfY , the formula turns into the
convolution of fX and fY :

fW (w) = fX ∗ fY = ∫
+∞

−∞
fX(w − x)fY (x) dx

Equally valid to write: fW (w) = ∫ +∞
−∞ fX,Y (x,w − x) dx

Extra - Derivation of continuous PDF of a sum

The joint CDF of X + Y  is given by:

FX+Y (w) = P [X + Y ≤ w] = ∬
x+y≤w

fX,Y (x, y) dx dy

From this we can find fX+Y  by taking the derivative:

fX+Y (w) =
d

dw
FX+Y (w) ⨠⨠ d

dw
∬

x+y≤w

fX,Y (x, y) dx dy

In order to calculate this derivative, we change variables by setting x = x and s = x + y.
The Jacobian is 1, so dx dy becomes dx dw, and we have:

⨠⨠ d

dw
∫

w

−∞

∫
+∞

−∞

fX,Y (x, s − x) dx ds ⨠⨠ ∫
+∞

−∞

fX,Y (x,w − x) dx

Example - Sum of parabolic random variables

Suppose X is an RV with PDF given by:

3

 There is no particular reason to choose the x-slot for w − x.
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fX(x) = {

Let Y  be an independent copy of X. So fY = fX, but Y  is independent of X.

Find the PDF of X + Y .

Solution
The graph of fX(w − x) matches the graph of fX(x) except (i) flipped in a vertical
mirror, (ii) shifted by w to the left.

When w ∈ [−2, 0], the integrand is nonzero only for x ∈ [−1,w + 1]:

When w ∈ [0, +2], the integrand is nonzero only for x ∈ [w − 1, +1]:

Final result is:

fX+Y (w) =

3
4 (1 − x2) x ∈ [−1, 1]
0 otherwise

fX+Y (w) = (
3

4
)

2

∫
w+1

−1
(1 − (w − x)2)(1 − x2) dx

=
9

16
(
w5

30
−

2w3

3
−

4w2

3
+

16

15
)

fX+Y (w) = ( 3

4
)

2

∫
+1

w−1

(1 − (w − x)2)(1 − x2) dx

=
9

16
(−

w5

30
+

2w3

3
−

4w2

3
+

16

15
)

⎧⎪⎨⎪⎩ 9

16
(
w5

30
−

2w3

3
−

4w2

3
+

16

15
) w ∈ [−2, 0]

9

16
(−

w5

30
+

2w3

3
−

4w2

3
+

16

15
) w ∈ [0, 2]

0 otherwise

THEOREM: Discrete PMF of a sum

Suppose PX,Y (k, ℓ) is the joint PMF for discrete RVs X and Y .F

Assume that the possible value pairs are (k, ℓ) with k, ℓ ∈ Z (integers only).

Then the PMF of W = X + Y  is given by the formula:

PX+Y (j) = PW (j) =
+∞

∑
i=−∞

PX,Y (j − i, i)

PMF of X + Y  for discrete variables
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05 Theory

For more example calculations, look at 9.6.1 and 9.6.2 at this page.

Applications of convolution

Prove the discrete formula for the PMF of a sum.
(Apply the general formula for the PMF of g(X,Y ).)

Convolution

The convolution of two continuous functions f(x) and g(x) is defined by:

(f ∗ g)(x) = ∫
+∞

−∞
f(x − t)g(t) dt

Convolutional neural networks (machine learning theory: translation invariant NN, low
pre-processing)
Image processing: edge detection, blurring
Signal processing: smoothing and interpolation estimation
Electronics: linear translation-invariant (LTI) system response: convolution with
impulse function

Extra - Convolution

Geometric meaning of convolution
Convolution does not have a neat and precise geometric meaning, but it does have an
imprecise intuitive sense.

The product of two quantities tends to be large when both quantities are large; when
one of them is small or zero, the product will be small or zero. This behavior is different
from the behavior of a sum, where one summand being large is sufficient for the sum to
be large. A large summand overrides a small co-summand, whereas a large factor is
scaled down by a small cofactor.

The upshot is that a convolution will be large when two functions have similar overall
shape. (Caveat: one function must be flipped in a vertical mirror before the overlay is

https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics/9.06%3A_The_Convolution_Operation
af://h3-12
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06 Illustration

07 Theory

Some pairs of density functions have convolutions that can be described neatly in terms of
the densities of known distributions, and sometimes this relationship has its own
interpretation in the applied context of a probability model.

considered.) The argument value where the convolution is largest will correspond to the
horizontal offset needed to get the closest overlay of the functions.

Algebraic properties of convolution

The last of these is not the typical Leibniz rule for derivatives of products!

All of these properties can be checked by simple calculations with iterated integrals.

Convolution in more variables
Given f, g : Rn → R, their convolution at x is defined by integrating the shifted products
over the whole domain:

(f ∗ g)(x) = ∭
Rn

f(x − y)g(y) dy

f ∗ g = g ∗ f

f ∗ (g ∗ h) = (f ∗ g) ∗ h

f ∗ (g + h) = f ∗ g + f ∗ h

a(f ∗ g) = (af) ∗ g = f ∗ (ag)

(f ∗ g)′ = f ′ ∗ g = f ∗ g′

Exercise - Convolution practice

Find the PDF of X + Y . Sketch the graph of this PDF.

Suppose X is an RV with density:

fX = {2x x ∈ [0, 1]
0 otherwise

Suppose Y  is uniform on [0, 1].

Bernoulli plus Binomial

Suppose Xi ∼ Ber(p) for i = 1, 2, 3, … are independent Bernoulli variables.

Define Sn = X1 + ⋯ + Xn, and notice that Sn ∼ Bin(n, p).

Then Sn + Xn+1 ∼ Sn+1 where Sn+1 ∼ Bin(n + 1, p).

In other words: adding a Bernoulli to a Binomial creates a bigger Binomial.

Extra - Proof of Bernoulli sum rule

af://h3-13
af://h3-15
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08 Illustration

For the PMF of Xn+1, we have PXn+1(k) = pk(1 − p)1−k for k = 0, 1, and PXn+1(k) = 0 for
other k.

For the PMF of Sn we have PSn
(k) = (n

k
)pk(1 − p)n−k for k = 0, … ,n and PSn

(k) = 0 for
other k.

We seek the discrete convolution (PSn
∗ PXn+1

)(ℓ).

The factor PXn+1(ℓ − k) in the convolution is nonzero only when k = ℓ or k = ℓ − 1. So we
have:

This is the PMF of Sn+1, so we are done.

+∞

∑
k=−∞

PSn
(k)PXn

(ℓ − k)

= PSn
(ℓ)(1 − p) + PSn

(ℓ − 1)p

=
n!

ℓ!(n − ℓ!)
pℓ(1 − p)n−ℓ+1 +

n!

(ℓ − 1)!(n − ℓ + 1)!
pℓ(1 − p)n−ℓ+1

=
n!(n − ℓ + 1) + n!ℓ

ℓ!(n − ℓ + 1)!
pℓ(1 − p)n−ℓ+1

=
(n + 1)!

ℓ!(n + 1 − ℓ)!
pℓ(1 − p)n+1−ℓ

= (
n + 1

ℓ
)pℓ(1 − p)n+1−ℓ

Binomial sum rule

Suppose X ∼ Bin(n, p) and Y ∼ Bin(m, p) are independent RVs with the given binomial
distributions (same p, different numbers of trials).

Then X + Y ∼ Bin(n + m, p).

Extra - Proof of binomial sum rule

Of course, X + Y  measures the number of successes in n + m independent trials, each
with success probability p.

Exercise - Vandermonde’s identity from the binomial sum rule

Show that this “Vandermonde identity” holds for positive integers n, m, ℓ:

∑
j+k=ℓ

(
n

j
)(

m

k
) = (

n + m

ℓ
)

Hint: The binomial sum rule is:

af://h3-16
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09 Theory

Recall that a Poisson variable counts ‘arrivals’ in a fixed time window. It applies to events
like phone calls per hour or Uranium decays per second. Each interval is independent of the
others, and the rate of occurrences is proportional to the size of the interval.

An implication of this meaning of the Poisson variable is a sum rule. If you divide a Poisson
interval into subintervals, the distribution corresponding to each subinterval should still be
Poisson, and the distribution of arrivals in each subinterval should add up to give the
distribution of arrivals for the total interval.

Recall that in a Bernoulli process:

Since the wait times between successes are independent, we expect that the sum of
geometric distributions is a Pascal distribution. This is true!

“Bin(n, p) + Bin(m, p) ∼ Bin(n + m, p)

Set p = q = 1/2. Compute the PMF of the left side using convolution. Compute the PMF
of the right side directly. Set these PMFs equal.

Poisson sum rule

Suppose X ∼ Pois(λ) and Y ∼ Pois(μ) and X and Y  are independent.

Then X + Y ∼ Pois(λ + μ).

Extra - Proof of Poisson sum rule

Write pX(k) = e−λ λk

k!  and pY (k) = e−μ μk

k! . Then:

PX+Y (n) = P [X + Y = n]

=
+∞

∑
k=−∞

PX(k)PY (n − k)

=
n

∑
k=0

e−(λ+μ) λkμn−k

k!(n − k)!

=
e−(λ+μ)

n!

n

∑
k=0

(
n

k
)λkμn−k

= e−(λ+μ) (λ + μ)n

n!

An RV measuring the discrete wait time until one success has a geometric distribution.
An RV measuring discrete wait time until ℓth success has a Pascal distribution.

Pascal Sum Rule

af://h3-18


Week 08 notes

10 / 12

The Pascal Sum Rule can be justified in two ways:

Recall that in a Poisson process:

Since the wait times between arrivals are independent, we expect that the sum of
exponential distributions is an Erlang distribution. This is true!

Specify a given Bernoulli process with success probability p. Suppose that:

Then X + Y ∼ Pascal(r + s, p).

X ∼ Pascal(r, p)

Y ∼ Pascal(s, p)

X and Y  are independent

Geom plus Geom is Pascal

Recall that Pascal(1, p) ∼ Geom(p). So we could say:

“Geom(p) + Geom(p) = Pascal(2, p)”

And:

“Geom(p) + Pascal(r, p) = Pascal(r + 1, p)”

(1) by directly computing the discrete convolution of two Pascal variables
(2) by observing that the sum X + Y  counts the trials until exactly r + s successes

Waiting for r successes and then waiting for s successes is the same as waiting for
r + s successes

An RV measuring continuous wait time until one arrival has an exponential
distribution.
An RV measuring continuous wait time until ℓth arrival has an Erlang distribution.

Erlang sum rule

Specify a given Bernoulli process with success probability p. Suppose that:

Then X + Y ∼ Erlang(r + s,λ).

X ∼ Erlang(r,λ)

Y ∼ Erlang(s,λ)

X and Y  are independent

Exp plus Exp is Erlang

Recall that Erlang(1,λ) ∼ Exp(λ). So we could say:

“Exp(λ) + Exp(λ) = Erlang(2,λ)”
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10 Illustration

By repeated iteration of the above formula, starting with ℓ = 1, one can derive the PMF for
any Erlang variable as the sum of exponential variables:

“

ℓ terms

Exp(λ) + ⋯ + Exp(λ) = Erlang(ℓ,λ)”

This fully explains the formula for the Erlang PDF.

11 Theory

And:

“Exp(λ) + Erlang(ℓ,λ) = Erlang(ℓ + 1,λ)”

Example - Exp plus Exp equals Erlang

Let us verify this formula by direct calculation:

“Exp(λ) + Exp(λ) = Erlang(2,λ)”

Solution
Let X, Y ∼ Exp(λ) be independent RVs.

Therefore:

fX = fY = {

Now compute the convolution:

This is the Erlang PDF:

fX(t) =
λℓ

(ℓ − 1)!
tℓ−1e−λt

ℓ=2

λe−λx x ≥ 0
0 otherwise

fX+Y (w) = ∫
+∞

−∞
fX(w − x)fY (x) dx

⨠⨠ ∫
w

0

λ2e−λ(w−x)e−λx dx ⨠⨠ λ2 ∫
w

0

e−λw dx ⨠⨠ λ2we−λw∣Exercise - Erlang induction step

By direct computation with PDFs and convolution, derive the formula:

“Exp(λ) + Erlang(ℓ,λ) = Erlang(ℓ + 1,λ)”



Normal sum rule

Suppose we know:

X ∼ N (μX,σ2
X)

af://h3-19
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Recall that aX + b is normal if X is normal; more specifically aX + b ∼ N (aμX + b, a2σ2
X

)

when X ∼ N (μX,σ2
X).

This fact, combined with the sum rule, implies that W = aX + bY + c is normal when X and
Y  are independent normals. Then E[W ] and Var[W ] are easily computed using the linearity
rules:

μW = aμX + b μY + c, σ2
W = (a σX)2 + (b σY )2

12 Illustration

Then:

X + Y ∼ N (μX + μY , σ2
X + σ2

Y )

Y ∼ N (μY ,σ2
Y )

X and Y  are independent

Combining normals

Suppose X ∼ N (40, 16), Y ∼ N (15, 9). Find the probability that X ≥ 2Y .

Solution
Define W = X − 2Y . Using the formulas above, we see W ∼ N (10, 52), or
W ∼ √52Z + 10 for a standard normal Z. Then:

P [X ≥ 2Y ] ⨠⨠ P [W ≥ 0] ⨠⨠ P [Z ≥ −10
√52
]

⨠⨠ P [Z ≤ 1.39] ⨠⨠ ≈ 0.918

af://h3-23
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