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Week 05 notes
Discrete families: summary
01 Theory

Bernoulli: X ∼ Ber(p)

Binomial: X ∼ Bin(n, p)

Geometric: X ∼ Geom(p)

Pascal: X ∼ Pasc(ℓ, p)

Poisson: X ∼ Pois(λ)

Function on a random variable
02 Theory

Memorize this info!

Indicates a win.
PX(1) = p, PX(0) = q

E[X] = p

Var[X] = pq

Counts number of wins.
PX(k) = (n

k
)pkqn−k

E[X] = np

Var[X] = npq

These are n times the Bernoulli numbers.

Counts discrete wait time until first win.
PX(k) = qk−1p

E[X] = 1
p

Var[X] =
q

p2

Counts discrete wait time until ℓth win.
PX(k) = (k−1

ℓ−1)q
k−ℓpℓ

E[X] = ℓ
p

Var[X] = ℓq
p2

These are ℓ times the Geometric numbers.

Counts “arrivals” during time interval.
PX(k) = e−λ λk

k!

E[X] = λ

Var[X] = λ

af://h1-0
af://h2-1
af://h3-2
af://h2-3
af://h3-4


2 / 10

By composing any function g : R → R with a random variable X : S → R we obtain a new
random variable g ∘ X. The new one is called a derived random variable.

The proofs of these formulas are not trivial, since one must relate the PDF or PMF of X
to that of g(X).

Expectation of derived variables

Discrete case:

E[g(X)] = ∑
k

g(k) ⋅ PX(k)

(Here the sum is over all possible values k of X.)

Continuous case:

E[g(X)] = ∫
+∞

−∞

g(x) ⋅ fX(x) dx

k is the output of X
g(k) is the output of g ∘ X

Proof - Discrete case - Expectation of derived variable

E[g(X)] = ∑
y

y ⋅ Pg(X)(y)

= ∑
y

y ⋅ ∑
k∈g−1(y)

PX(k)

= ∑
y

∑
k∈g−1(y)

g(k) ⋅ PX(k)

= ∑
k

g(k) ⋅ PX(k)

Linearity of expectation

For constants a and b:

E[aX + b] = aE[X] + b

For any X and Y  on the same probability model:

E[X + Y ] = E[X] + E[Y ]

Exercise - Linearity of expectation

 Write g(X) for this derived random variable g ∘ X.

 Notice: when applied to outcome s ∈ S:
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Thus variance ignores the offset and squares the scale factor. It is not linear!

Using the definition of expectation, verify both linearity formulas for the discrete
case.

Be careful!

Usually E[g(X)] ≠ g(E[X]).

For example, usually E[X ⋅ X] ≠ E[X] ⋅ E[X]. We distribute E over sums but not
products.

Variance squares the scale factor

For constants a and b:

Var[aX + b] = a2 Var[X]

Proof - Variance squares the scale factor

Var[aX + b] = E[(aX + b − E[aX + b])2]

= E[(aX + b − aμX − b)2]

= E[(aX − aμX)2]

= E[a2(X − μX)2]

= a2 E[(X − μX)2]

= a2 Var[X]

Extra - Moments

The nth moment of X is defined as the expectation of Xn:

Discrete case:

E[Xn] = ∑
k

kn ⋅ p(k)

Continuous case:

E[Xn] = ∫
+∞

−∞

xn ⋅ f(x) dx

A central moment of X is a moment of the variable X − E[X]:

E[(X − E[X])n]
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The data of all the moments collectively determines the probability distribution. This
fact can be very useful! In this way moments give an analogue of a series representation,
and are sometimes more useful than the PDF or CDF for encoding the distribution.

03 Illustration

Example - Function given by chart

Suppose that g : R → R in such a way that g : 1 ↦ 4 and g : 2 ↦ 1 and g : 3 ↦ 87 and
no other values are mapped to 4, 1, 87.

X : 1 2 3
PX(k) : 1/7 2/7 4/7

Y : 4 1 87

Then:

E[X] = 1 ⋅
1

7
+ 2 ⋅

2

7
+ 3 ⋅

4

7
⨠⨠

17

7

And:

E[Y ] = 4 ⋅
1

7
+ 1 ⋅

2

7
+ 87 ⋅

4

7
⨠⨠

354

7

Therefore:

E[5X + 2Y + 3] ⨠⨠ 5 ⋅
17

7
+ 2 ⋅

354

7
+ 3 ⨠⨠

814

7

Variance of uniform random variable

The uniform random variable X on [a, b] has distribution given by
P[c ≤ X ≤ d] = d−c

b−a
 when a ≤ c ≤ d ≤ b.

Solution
(a)

(a) Find Var[X] using the shorter formula.
(b) Find Var[3X] using “squaring the scale factor.”
(c) Find Var[3X] directly.

1. 
 The density for X is:

fX(x) = {
1

b−a
for x ∈ [a, b]

0 otherwise

2. 

 Compute density.

 Compute E[X] and E[X 2] directly using integral formulas.

af://h3-5


5 / 10

(b)

(c)

 Compute E[X]:

E[X] = ∫
b

a

x

b − a
dx =

b + a

2

Now compute E[X 2]:

E[X 2] = ∫
b

a

x2

b − a
dx ⨠⨠ 1

3
(b2 + ba + a2)

3. 
 Plug in:

Var[X] = E[X 2] − E[X]2

⨠⨠ 1

3
(b2 + ab + a2) − ( b + a

2
)

2

⨠⨠
(b − a)2

12

“Squaring the scale factor” formula:

Var[aX + b] = a2Var[X]

Plugging in:

Var[3X] ⨠⨠ 9Var[X] ⨠⨠
9

12
(b − a)2

1. 
 The variable 3X will have 1/3 the density spread over the interval [3a, 3b].

Density is then:

fX(x) = {
1

3b−3a
on [3a, 3b]

0 otherwise

2. 
 Use a ⇝ 3a and b ⇝ 3b.

Get variance:

Var[3X] =
(3b − 3a)2

12

Simplify:

⨠⨠
(3(b − a))2

12
⨠⨠

9

12
(b − a)2

 Find variance using short formula.

 Density.

 Plug into prior variance formula.

Exercise - Probabilities via CDF
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04 Theory
Suppose we are given the PDF fX(x) of X, a continuous RV.

What is the PDF fg(X), the PDF of the derived variable given by composing X with
g : R → R?

Therefore, if we know fX(x), we can find fg(X)(x) using a 3-step process:

Suppose the CDF of X is given by FX(x) = 1
1+e−x . Compute:

Solution

(a) P [X ≤ 1]

(b) P [X < 1]

(c) P [−0.5 ≤ X ≤ 0.2]

(d) P [−2 ≤ X]

PDF of derived

The PDF of g(X) is not (usually) equal to g ∘ fX(x).

Relating PDF and CDF

When the CDF of X is differentiable, we have:

FX(x) = ∫
x

−∞

fX(t) dt ⟹ fX(x) =
d

dx
FX(x)

Fg(X)(x) = ∫
x

−∞

fg(X)(t) dt ⟹ fg(X)(x) =
d

dx
Fg(X)(x)

1. 
Compute ∫ x

−∞
fX(t) dt.

Now remember that FX(x) = P [X ≤ x].
2. 

When g is monotone increasing, we have equivalent conditions:

g(X) ≤ x ⟺ X ≤ g−1(x)

Therefore:

P [g(X) ≤ x] = P [X ≤ g−1x]

By definition of CDFs:

Fg(X)(x) = FX(g−1(x))

3. 
Use fX(x) = d

dx
Fg(X)(x).

 Find FX(x), the CDF of X, by integration.

 Find Fg(X)(x), the CDF of g(X), by direct comparison to FX(x).

 Find fg(X)(x), the PDF of g(X), by differentiation.

af://h3-9
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05 Illustration

Continuous wait times
06 Theory

Example - PDF of derived from CDF

Suppose that FX(x) = 1
1+e−x .

Solution
(a)

(b)

(a) Find the PDF of X.
(b) Find the PDF of eX.

Formula:

FX(x) = ∫
x

−∞

fX(t) dt ⟹ fX(x) =
d

dx
FX(x)

Plug in:

fX(x) =
d

dx
(1 + e−x)−1 ⨠⨠ − (1 + e−x)−2 ⋅ (−e−x)

⨠⨠
e−x

(1 + e−x)2

By definition:

FeX(x) = P [eX ≤ x]

Since eX is increasing, we know:

eX ≤ a ⟺ X ≤ ln a

Therefore:

FeX(x) = FX(lnx)

⨠⨠
1

1 + e− lnx
⨠⨠

1

1 + x−1

Then using differentiation:

feX(x) =
d

dx
( 1

1 + x−1
)

⨠⨠ −(1 + x−1)−2 ⋅ (−x−2) ⨠⨠
1

(x + 1)2
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07 Illustration

Exponential variable

A random variable X is exponential, written X ∼ Exp(λ), when X measures the
wait time until first arrival in a Poisson process with rate λ.

Exponential PDF:

fX(t) = {λe
−λt t ≥ 0

0 t < 0

The exponential distribution is the continuous counterpart of the geometric
distribution.

Analogous to how the Poisson distribution is a like a continuous binomial.
Notice that:

∫
∞

0

e−λt dt ⨠⨠ − λ−1(e−λ⋅∞ − 1) ⨠⨠ λ−1

so the coefficient of λ in fX is there to ensure that P [−∞ ≤ X ≤ ∞] = 1.

Compute the improper integral to find this.

Erlang variable

A random variable X is Erlang, written X ∼ Erlang(ℓ,λ), when X measures the wait
time until ℓth arrival in a Poisson process with rate λ.

Erlang PDF:

fX(t) =
λℓ

(ℓ − 1)!
tℓ−1e−λt

The Erlang distribution is the continuous counterpart of the Pascal distribution.

Example - Earthquake wait time

Suppose the San Andreas fault produces major earthquakes modeled by a Poisson
process, with an average of 1 major earthquake every 100 years.

Solution
(a)
Since the average wait time is 100 years, we set λ = 0.01 earthquakes per year. Set

(a) What is the probability that there will not be a major earthquake in the next
20 years?
(b) What is the probability that three earthquakes will strike within the next 20
years?

 Notice also that the “tail probability” P [X > t] is given by e−λt, an exponential
decay.

af://h3-14
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08 Theory

X ∼ Exp(0.01) and compute:

P [X > 20] = e−λ⋅20 ⨠⨠ e−0.01⋅20 ⨠⨠ ≈ 0.82

(b)
The same Poisson process has the same λ = 0.01 earthquakes per year. Set
X ∼ Erlang(3, 0.01), so:

and compute:

fX(t) =
λℓ

(ℓ − 1)!
tℓ−1e−λt

⨠⨠
(0.01)3

(3 − 1)!
t3−1e−0.01⋅t ⨠⨠

10−6

2
t2e−0.01⋅t

P [X ≤ 20] = ∫
20

0

fX(x) dx

⨠⨠ ∫
20

0

10−6

2
t2e−0.01⋅t dt ⨠⨠ ≈ 0.00115

The memoryless distribution is exponential

The exponential distribution is memoryless. This means that knowledge that
an event has not yet occurred does not affect the probability of its occurring in future
time intervals:

P [X > t + s ∣ X > t] = P [X > s].

This is easily checked using the PDF: e−λ(t+s)/e−λt = e−λs.

No other continuous distribution is memoryless. This means any other
(continuous) memoryless distribution agrees in probability with the exponential
distribution. The reason is that the memoryless property can be rewritten as
P [X > t + s] = P [X > t]P [X > s]. Consider P [X > x] as a function of x, and notice
that this function converts sums into products. Only the exponential function can do
this.

The geometric distribution is the discrete memoryless one.

and by substituting n + k, we also know P [X > n + k] = qn+k.

P [X > n] ⨠⨠
∞

∑
k=n+1

qk−1p ⨠⨠ qnp(1 + q + q2 + …)

⨠⨠ qn
p

1 − q
⨠⨠ qn

af://h3-16
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Then:

P [X = n + k ∣ X > n] ⨠⨠
P [X = n + k]

P [X > n]
⨠⨠

qn+k−1p

qn

⨠⨠ qk−1p ⨠⨠ P [X = k]

Extra - Inversion of decay rate factor in exponential

For constants a and λ:

Exp(aλ) ∼ 1
a Exp(λ)

Derivation
Let X ∼ Exp(λ) and observe that P [X > t] = e−λt (the “tail probability”).

Now observe that:

P [a−1X > t] = P [X > at] = e−λat

Let Y ∼ Exp(aλ). So we see that:

P [a−1X > t] = P [Y > t]

Since the tail event is complementary to the cumulative event, these two
distributions have the same CDF, and therefore they are equal.

Extra - Geometric limit to exponential

Divide the waiting time into small intervals. Let p = λ
n

 be the probability of at least
one success in the time interval [a, a + 1

n ] for any a. Assume these events are
independent.

A random variable Tn measuring the end time of the first interval [ k−1
n , k

n ]

containing a success would have a geometric distribution with k
n

 in place of k:

P [Tn =
k

n
] = (1 −

λ

n
)

k−1
λ

n

By taking the sum of a geometric series, one finds:

P [Tn > x] = (1 −
λ

n
)
⌊nx⌋

Thus P [Tn > x] → e−λx as n → ∞.
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