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Week 02 notes
Bayes’ Theorem
10 Theory

The main application of Bayes’ Theorem is to calculate P [A ∣ B] when it is easy to calculate
P [B ∣ A] from the problem setup. Often this occurs in multi-stage experiments where event A
describes outcomes of an intermediate stage.

Note: these notes use alphabetical order A, B as a mnemonic for temporal or logical order, i.e.
that A comes first in time, or that otherwise that A is the prior conditional from which it is
easier to calculate B.

11 Illustration

Bayes’ Theorem

For any events A and B:

P [B ∣ A] = P [B] ⋅
P [A ∣ B]

P [A]

Bayes’ Theorem - Derivation

Start with the observation that AB = BA, or event “A AND B” equals event “B AND A”.

Apply the multiplication rule to each of order:

Equate them and rearrange:

P [AB] = P [A] ⋅ P [B ∣ A]

P [BA] = P [B] ⋅ P [A ∣ B]

P [AB] = P [BA] ⨠⨠ P [A] ⋅ P [B ∣ A] = P [B] ⋅ P [A ∣ B]

⨠⨠ P [B ∣ A] = P [B] ⋅
P [A ∣ B]

P [A]

Example - Bayes’ Theorem - COVID tests

Assume that 0.5% of people have COVID. Suppose a COVID test gives a (true) positive on
96% of patients who have COVID, but gives a (false) positive on 2% of patients who do not
have COVID. Bob tests positive. What is the probability that Bob has COVID?

Solution

1. 
 Event AP : Bob is actually positive for COVID

Event AN : Bob is actually negative; note AN = Ac
P

Event TP : Bob tests positive

 Label events.

 Bayes’ Theorem is sometimes called Bayes’ Rule.
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Event TN : Bob tests negative; note TN = T c
P

2. 
 Know: P [TP ∣ AP ] = 96%

Know: P [TP ∣ AN ] = 2%

Know: P [AP ] = 0.5% and therefore P [AN ] = 99.5%

We seek: P [AP ∣ TP ]

3. 
 Using A = TP  and B = AP  in the formula:

P [AP ∣ TP ] = P [AP ] ⋅
P [TP ∣ AP ]

P [TP ]

We know all values on the right except P [TP ]

4. 
 Observe:

TP = TP ∩ AP ⋃ TP ∩ AN

Division into Cases yields:

P [TP ] = P [AP ] ⋅ P [TP ∣ AP ] + P [AN ] ⋅ P [TP ∣ AN ]

 It is a common element of Bayes’ Theorem application problems.
It is frequently needed for the denominator.

Plug in data and compute:

⨠⨠ P [TP ] =
5

1000
⋅

96

100
+

995

1000
⋅

2

100
⨠⨠ ≈ 0.0247

5. 
 Plug in and compute:

P [AP ∣ TP ] = P [AP ] ⋅
P [TP ∣ AP ]

P [TP ]

⨠⨠ 0.96 ⋅
0.005

0.0247
⨠⨠ ≈ 19%

 Identify knowns.

 Translate Bayes’ Theorem.

 Use Division into Cases.

 Important to notice this technique!

 Compute answer.

Intuition - COVID testing

Some people find the low number surprising. In order to repair your intuition, think about
it like this: roughly 2.5% of tests are positive, with roughly 2% coming from false positives,
and roughly 0.5% from true positives. The true ones make up only 1/5 of the positive
results!

(This rough approximation is by assuming 96% = 100%.)

If two tests both come back positive, the odds of COVID are now 98%.

If only people with symptoms are tested, so that, say, 20% of those tested have COVID, that
is, P [AP ∣ TP ] = 20%, then one positive test implies a COVID probability of 92%.

Exercise - Bayes’ Theorem and Multiplication: Inferring bin from marble
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Independence
12 Theory

Two events are independent when information about one of them does not change our
probability estimate for the other. Mathematically, there are three ways to express this fact:

13 Illustration

There are marbles in bins in a room:

Your friend goes in the room, shuts the door, and selects a random bin, then draws a
random marble. (Equal odds for each bin, then equal odds for each marble in that bin.) He
comes out and shows you a red marble.

What is the probability that this red marble was taken from Bin 1?

Solution

Bin 1 holds 7 red and 5 green marbles.
Bin 2 holds 4 red and 3 green marbles.

Independence

Events A and B are independent when these (logically equivalent) equations hold:

P [B ∣ A] = P [B]

P [A ∣ B] = P [A]

P [BA] = P [B] ⋅ P [A]

Check: BA = AB  and P [B] ⋅ P [A] = P [A] ⋅ P [B]

This symmetric version is the preferred definition of the concept.

Multiple-independence

A collection of events A1, … , An is mutually independent when every subcollection
Ai1 , … , Aik

 satisfies:

P [Ai1 ⋯ Aik
] = P [Ai1 ] ⋯ P [Aik

]

A potentially weaker condition for a collection A1, … , An is called pairwise
independence, which holds when all 2-member subcollections are independent:

P [AiAj] = P [Ai] ⋅ P [Aj] for all i ≠ j

One could also define 3-member independence, or n-member independence. Plain
‘independence’ means any-member independence.

Exercise - Independence and complements

Prove that these are logically equivalent statements:

 The last equation is symmetric in A and B.
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Make sure you demonstrate both directions of each equivalency.

Solution

A and B are independent
A and Bc are independent
Ac and Bc are independent

Example - Checking independence by hand

A bin contains 4 red and 7 green marbles. Two marbles are drawn.

Let R1 be the event that the first marble is red, and let G2 be the event that the second
marble is green.

Solution
(a) With replacement.

(b) Without replacement.

(a) Show that R1 and G2 are independent if the marbles are drawn with replacement.
(b) Show that R1 and G2 are not independent if the marbles are drawn without
replacement.

1. 
 Know: P [R1] = 4

11

Know: P [G2] = 7
11

2. 
 Relation is P [R1G2] = P [R1] ⋅ P [G2]

Right side is 4
11 ⋅ 7

11

For P [R1G2], have 4 ⋅ 7 ways to get R1G2, and 112 total outcomes.
So left side is 4⋅7

112 , which equals the right side.

1. 
 Know: P [R1] = 4

11  and therefore P [Rc
1] = 7

11

We seek: P [G2] and P [R1G2]

2. 
 Division into cases:

G2 = G2 ∩ R1 ⋃ G2 ∩ Rc
1

Therefore:

P [G2] = P [R1] ⋅ P [G2 ∣ R1] + P [Rc
1] ⋅ P [G2 ∣ Rc

1]

Find these by counting and compute:

⨠⨠ P [G2] =
4

11
⋅

7

10
+

7

11
⋅

6

10
⨠⨠ 70

110

3. 
 Multiplication rule (implicitly used above already):

P [R1G2] = P [R1] ⋅ P [G2 ∣ R1] ⨠⨠ 4

11
⋅

7

10
⨠⨠ 28

110

 Identify knowns.

 Compute both sides of independence relation.

 Identify knowns.

 Find P [G2] using Division into Cases.

 Find P [R1G2] using Multiplication rule.
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Tree diagrams
14 Theory

A tree diagram depicts the components of a multi-stage experiment. Nodes, or branch
points, represent sources of randomness.

An outcome of the experiment is represented by a pathway taken from the root (left-most node)
to a leaf (right-most node). The branch chosen at a given node junction represents the outcome
of the “sub-experiment” constituting that branch point. So a pathway encodes the outcomes of
all sub-experiments.

Each branch from a node is labeled with a probability number. This is the probability that the
sub-experiment of that node has the outcome of that branch.

One can also use a tree diagram to remember quickly how to calculate certain probabilities.

For example, what is P [A] in the diagram?
Answer: add up the pathway probabilities (leaf numbers) terminating in A. That makes
0.24 + 0.36 + 0.18 = 0.78

For example, what is P [B1 ∣ N ]?
Answer: divide the leaf probability of B1N  by the total probability of N . That makes:

P [B1 ∣ N ] =
0.06

0.06 + 0.04 + 0.12
≈ 0.27

15 Illustration

4. 
 Left side: P [R1G2] = 28

110

Whereas, right side:

P [R1] ⋅ P [G2] =
4

11
⋅

70

110
=

28

121

But 28
110 ≠ 28

121  so P [R1G2] ≠ P [R1] ⋅ P [G2] and they are not independent.

 Compare both sides.

The probability label on some branch is the conditional probability of that branch,
assuming the pathway from root to prior node.

In the example: 0.8 = P [A ∣ B1].
Therefore, branch labels from given node sum to 1. (Law of Total Probability)

The probability of a given (overall) outcome is the product of the probabilities on each
branch of the pathway to that outcome.

Makes sense, because (e.g.): P [AB1] = P [A] ⋅ P [B1 ∣ A]

More generally: remember that (e.g.): P [ABCD] = P [ABC] ⋅ P [D ∣ ABC]

This overall outcome probability may be written at the leaf.

Example - Tree diagrams: Marble transferred, marble drawn
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Counting
16 Theory

Setup:

Experiment:

Questions:

Solution

Bin 1 holds five red and four green marbles.
Bin 2 holds four red and five green marbles.

You take a random marble from Bin 1 and put it in Bin 2 and shake Bin 2.
Then you draw a random marble from Bin 2 and look at it.

(a) What is the probability you draw a red marble?
(b) Supposing that you drew a red marble, what is the probability that a red marble
was transferred?

1. 
 Identify sub-experiments, label events, compute probabilities:

2. 
 Add up leaf numbers for DR at leaf:

P [DR] =
25

90
+

16

90
=

41

90

3. 
 Conditional probability:

P [TR ∣ DR] =
P [TRDR]

P [DR]

Plug in data and compute:

⨠⨠
25/90

41/90
⨠⨠ 25

41

Interpretation: mass of desired pathway over mass of possible pathways.

 Construct the tree diagram.

 For (a), compute P [DR].

 For (b), compute P [TR ∣ DR].
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In many “games of chance”, it is assumed by symmetry principles that all outcomes are equally
likely. From this assumption we infer the rule for P [−]:

P [A] =
|A|

|S|

In words: the probability of event A is the number of outcomes in A divided by the number of
possible outcomes.

When this formula applies, it is important to be able to count total outcomes, as well as
outcomes satisfying various conditions.

To see where this comes from:
There are n choices for the first item, then n − 1 for the second, then ... then n − r + 1 for the rth

item. So the number is n(n − 1)(n − 2) ⋯ (n − r + 1). Observe:

This formula can be derived from the formula for permutations. The possible permutations can
be partitioned into combinations: each combination gives a set, and by specifying an ordering of
elements in the set, we get a permutation. For a set of r elements taken from n items, there are
r! ways to put them into a specific order. So the number of permutations must be a factor of r!

greater than the number of combinations.

This notation, (n

r
), is also called the binomial coefficient because it provides the coefficients

of a binomial expansion:

(x + y)n =
n

∑
i=1

(
n

i
)xn−iyi

For example:

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

Permutations

Permutations count the number of ordered lists one can form from some items. For a list
of r items taken from a total collection of n, the number of permutations is:

n!

(n − r)!

n!

(n − r)!
=

n(n − 1)(n − 2) ⋯ (n − r + 1)(n − r)(n − r − 1) ⋯ 1

(n − r)(n − r − 1) ⋯ 1

⨠⨠ n(n − 1)(n − 2) ⋯ (n − r + 1)

Combinations, binomial coefficient

Combinations count the number of sets (ignoring order) one can form from some items.
We define a notation for it like this:

(
n

r
) =

n!

r!(n − r)!

This counts the number of sets of r distinct elements taken from a total collection of n
items.

Another name for combinations is the binomial coefficient.
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There are also ‘higher’ combinations:

Notice that ( 5

3, 2
) = (5

3
) so we already defined these values (k = 2) with binomial coefficients.

But with k > 2, we have new values. They correspond to the coefficients in multinomial
expansions. For example k = 3 gives coefficients for (x + y + z)n.

17 Illustration

Multinomial coefficient

The general multinomial coefficient is defined by the formula:

(
n

r1, r2, … , rk

) =
n!

r1!r2! ⋯ rk!

where ri ∈ N and r1 + r2 + ⋯ + rk = n.

The multinomial coefficient measures the number of ways to partition n items into sets
with sizes r1, r2, … , rk, respectively.

Exercise - Combinations: Counting teams with Cooper

A team of 3 student volunteers is formed at random from a class of 40. What is the
probability that Cooper is on the team?

Solution

Example - Combinations: Groups with Haley and Hugo

The class has 40 students. Suppose the professor chooses 3 students Wednesday at random,
and again 3 on Friday. What is the probability that Haley is chosen today and Hugo on
Friday?

Solution

1. 
 Have (40

3 ) possible groups chosen Wednesday.
Have (40

3 ) possible groups chosen Friday.
Therefore (40

3 ) × (40
3 ) possible groups in total.

2. 
 Groups of 3 with Haley are same as groups of 2 taken from others.

Therefore have (39
2 ) groups that contain Haley.

Have (39
2 ) groups that contain Hugo.

Therefore (39
2 ) × (39

2 ) total desired outcomes.
3. 
 Let E label the desired event.

Use formula:

P [E] =
|E|

|S|

 Count total outcomes.

 Count desired outcomes.

 Compute probability.
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Therefore:

P [E] ⨠⨠
(39

2 ) × (39
2 )

(40
3 ) × (40

3 )

⨠⨠ (
39⋅38

2!
40⋅39⋅38

3!

)
2

⨠⨠ ( 3

40
)

2

Example - Counting VA license plates

A VA license plate has three letters (with no I, O, or Q) followed by four numerals. A
random plate is seen on the road.

Solution
(a)

(b)

(a) What is the probability that the numerals are in increasing order?
(b) What is the probability that at least one number is repeated?

1. 
 Any four distinct numerals have a single order that’s increasing.

There are (10

4
) ways to choose 4 numerals from 10 options.

2. 
 26 total letters, 3 excluded, thus 23 options.

Repetition allowed, thus 23 ⋅ 23 ⋅ 23 = 233 possibilities.
3. 
 Multiply the options:

233 ⋅ (
10

4
)

4. 
 Have 23 ⋅ 23 ⋅ 23 options for letters.

Have 10 ⋅ 10 ⋅ 10 ⋅ 10 options for numbers.
Thus 233 ⋅ 104 possible plates.

5. 
 Let E label the event that a plate has increasing numerals.

Use the formula:

P [E] =
|E|

|S|

Therefore:

P [E] ⨠⨠
233 ⋅ (10

4 )

233 ⋅ 104
⨠⨠

10!
4!6!

10000
⨠⨠

21

1000

1. 
 

 Count ways to have 4 numerals in increasing order.

 Count ways to have 3 letters in order except I, O, Q.

 Count total plates with increasing numerals.

 Count total plates.

 Compute probability.

 Count plates with at least one number repeated.
 “At least” is hard! Try complement: “no repeats”.
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Let E c be event that no numbers are repeated. All distinct.
Count possibilities:

|E c| = 23 ⋅ 23 ⋅ 23 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7

Total license plates is still 233 ⋅ 104.
Therefore, license plates with at least one number repeated:

|E| = |S| − |E|

⨠⨠ 233 ⋅ 104 − 233 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7 ⨠⨠ 60348320

2. 
 Desired outcomes over total outcomes:

|E|

|S|
⨠⨠ 60348320

233 ⋅ 104
⨠⨠ 0.496

 Compute probability.

Counting out 3 teams

A board game requires 4 teams of players. How many configurations of teams are there out
of a total of 17 players if the number of players per team is 4, 4, 4, 5, respectively.

Solutions
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