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Week 01 notes
Events and outcomes
01 Theory

All outcomes are events. An event is usually a partial description. Outcomes are events given
with a complete description.

Here ‘complete’ and ‘partial’ are within the context of the probability model.

Notice:

When an event happens, the fact that it has happened constitutes information.

Using this notation, we can consider an outcome itself as an event by considering the “singleton”
subset {ω} ⊂ S which contains that outcome alone.

02 Illustration

Events and outcomes – informally

An event is a description of something that can happen.
An outcome is a complete description of something that can happen.

‘Observations’ occur in the real world, while ‘outcomes’ occur in the model.
To the extent the model is a good one, and the observation conveys complete
information, we can say ‘outcome’ for the observation.

Events and outcomes – mathematically

The sample space is the set of possible outcomes, so it is the set of the complete
descriptions of everything that can happen.
An event is a subset of the sample space, so it is a collection of outcomes.

Notation

Write S for the set of possible outcomes, s ∈ S for a single outcome in S.
Write A, B, C, ⋯ ⊂ S or A1, A2, A3, ⋯ ⊂ S for some events, subsets of S.
Write F  for the collection of all events. This is frequently a huge set!
Write |A| for the cardinality or size of a set A, i.e. the number of elements it contains.

Example - Coin flipping

 It can be misleading to say that an ‘outcome’ is an ‘observation’.

 Because outcomes are complete, no two distinct outcomes could actually happen in a run
of the experiment being modeled.

 For mathematicians: some “wild” subsets are not valid events. Problems with infinity
and the continuum...

af://h1-0
af://h2-1
af://h3-2
af://h3-3


2 / 10

03 Theory

Flip a fair coin two times and record both results.

With this setup, we may combine events in various ways to generate other events:

Outcomes: sequences, like HH or TH.
Sample space: all possible sequences, i.e. the set S = {HH, HT , TH, TT}.
Events: for example:

 A = {HH, HT} = “first was heads”

B = {HT , TH} = “exactly one heads”

C = {HT , TH, HH} = “at least one heads”

Complex events: for example:
 A ∩ B = {HT}, or in words:

“first was heads” AND “exactly one heads” = “heads-then-tails”

Notice that the last one is a complete description, namely the outcome HT .
A ∪ B = {HH, HT , TH}, or in words:

“first was heads” OR “exactly one heads”

= “starts with heads, else it’s tails-then-heads”

Exercise - Coin flipping: counting subsets

Flip a fair coin five times and record the results.

How many elements are in the sample space? (How big is S?)
How many events are there? (How big is F?)

Solution

New events from old

Given two events A and B, we can form new events using set operations:

We also use these terms for events A and B:

A ∪ B ⟷ “event A  OR  event B”

A ∩ B ⟷ “event A  AND  event B”

Ac
⟷ not event A

They are mutually exclusive when A ∩ B = ∅, that is, they have no elements in
common.
They are collectively exhaustive A ∪ B = S, that is, when they jointly cover all
possible outcomes.

 In probability texts, sometimes A ∩ B is written “A ⋅ B” or even (frequently!) “AB”.
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Probability models
04 Theory

Rules for sets

Algebraic rules

De Morgan’s Laws

Associativity: (A ∪ B) ∪ C = A ∪ (B ∪ C). Analogous to (A + B) + C = A + (B + C).
Distributivity: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). Analogous to A(B + C) = AB + AC.

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

In other words: you can distribute “ c ” but must simultaneously do a switch ∩ ↔ ∪.

Axioms of probability

A probability measure is a function P : F → R satisfying:

Kolmogorov Axioms:

Axiom 1: P [A] ≥ 0 for every event A
(probabilities are not negative!)
Axiom 2: P [S] = 1

(probability of “anything” happening is 1)
Axiom 3: additivity for any countable collection of mutually exclusive events:

P [A1 ∪ A2 ∪ A3 ∪ ⋯] = P [A1] + P [A2] + P [A3] + ⋯

when: Ai ∩ Aj = ∅ for all  i ≠ j

%& Notation: we write P [A] instead of P(A), even though P  is a function, to emphasize the
fact that A is a set.

Probability model

A probability model or probability space consists of a triple (S,F , P):

S  the sample space
F  the set of valid events, where every A ∈ F  satisfies A ⊂ S

P : F → R  a probability measure satisfying the Kolmogorov Axioms

Finitely many exclusive events

It is a consequence of the Kolmogorov Axioms that additivity also works for finite
collections of mutually exclusive events:

P [A ∪ B] = P [A] + P [B]

P [A1 ∪ ⋯ ∪ An] = P [A1] + ⋯ + P [An]
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05 Illustration

Inferences from Kolmogorov

A probability measure satisfies these rules.
They can be deduced from the Kolmogorov Axioms.

Negation: Can you find P [Ac] but not P [A]? Use negation:

P [A] = 1 − P [Ac]

Monotonicity: Probabilities grow when outcomes are added:

A ⊂ B ⨠⨠ P [A] ≤ P [B]

Inclusion-Exclusion: A trick for resolving unions:

P [A ∪ B] = P [A] + P [B] − P [A ∩ B]

(even when A and B are not exclusive!)

Inclusion-Exclusion

The principle of inclusion-exclusion generalizes to three events:

The same pattern works for any number of events!

The pattern goes: “include singles” then “exclude doubles” then “include triples” then ...

Include, exclude, include, exclude, include, ...

P [A ∪ B ∪ C] =

P [A] + P [B] + P [C] − P [A ∩ B] − P [A ∩ C] − P [B ∩ C] + P [A ∩ B ∩ C]

Example - Lucia is Host or Player

The professor chooses three students at random for a game in a class of 40, one to be Host,
one to be Player, one to be Judge. What is the probability that Lucia is either Host or
Player?

Solution

1. 
 Label the students 1 to 40. Write L for Lucia’s number.

Outcomes: assignments such as (H, P , J) = (2, 5, 8)

These are ordered triples with distinct entries in 1, 2, … , 40.
Sample space: S is the collection of all such distinct triples
Events: any subset of S
Probability measure: assume all outcomes are equally likely, so
P [(i, j, k)] = P [(r, l, p)] for all i, j, k, r, l, p

In total there are 40 ⋅ 39 ⋅ 38 triples of distinct numbers.
Therefore P [(i, j, k)] = 1

40⋅39⋅38  for any specific outcome (i, j, k).
Therefore P [A] =

|A|
40⋅39⋅38  for any event A. (Recall |A| is the number of outcomes in

A.)
2. 

 Set up the probability model.

 Define the desired event.
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 Want to find P [“Lucia is Host or Player”]

Define A = “Lucia is Host” and B = “Lucia is Player”. Thus:

A = {(L, j, k) ∣ any j, k}, B = {(i, L, k) ∣ any i, k}

So we seek P [A ∪ B].
3. 
 Importantly, A ∩ B = ∅ (mutually exclusive).

There are no outcomes in S in which Lucia is both Host and Player.
By additivity, we infer P [A ∪ B] = P [A] + P [B].
Now compute P [A].

 There are 39 ⋅ 38 ways to choose j and k from the students besides Lucia.
Therefore |A| = 39 ⋅ 38.
Therefore:

P [A] ⨠⨠
|A|

40 ⋅ 39 ⋅ 38
⨠⨠ 39 ⋅ 38

40 ⋅ 39 ⋅ 38
⨠⨠ 1

40

Now compute P [B]. It is similar: P [B] = 1
40 .

Finally compute that P [A] + P [B] = 1
20 , so the answer is:

P [A ∪ B] ⨠⨠ P [A] + P [B] ⨠⨠ 1

20

 Compute the desired probability.

Example - iPhones and iPads

At Mr. Jefferson’s University, 25% of students have an iPhone, 30% have an iPad, and 60%
have neither.

What is the probability that a randomly chosen student has some iProduct? (Q1)

What about both? (Q2)

Solution

1. 
 A student is chosen at random: an outcome is the chosen student.

Sample space S is the set of all students.
Write O = “has iPhone” and A = “has iPad” concerning the chosen student.
All students are equally likely to be chosen: therefore P [E] =

|E|
|S|  for any event E.

Therefore P [O] = 0.25 and P [A] = 0.30.
Furthermore, P [OcAc] = 0.60. This means 60% have “not iPhone AND not iPad”.

2. 
 Q1: desired event = O ∪ A

Q2: desired event = OA

3. 
 We do not believe O and A are exclusive.

Try: apply inclusion-exclusion:

P [O ∪ A] = P [O] + P [A] − P [OA]

We know P [O] = 0.25 and P [A] = 0.30. So this formula, with given data, RELATES
Q1 and Q2.

 Set up the probability model.

 Define the desired event.

 Compute the probabilities.
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Conditional probability
06 Theory

This conditional probability P [B ∣ A] represents the probability of event B taking place given the
assumption that A took place. (All within the given probability model.)

By letting the actuality of event A be taken as a fixed hypothesis, we can define a conditional
probability measure by plugging events into the slot of B:

P [− ∣ A] =
P [− ∩ A]

P [A]

It is possible to verify each of the Kolmogorov axioms for this function, and therefore P [− ∣ A]

itself defines a bona fide probability measure.

Notice the complements in OcAc and try Negation.
Negation:

P [(OA)c] = 1 − P [OA]

DOESN’T HELP.
Try again: Negation:

P [(OcAc)c] = 1 − P [OcAc]

And De Morgan (or a Venn diagram!):

(OcAc)c ⨠⨠ O ∪ A

Therefore:

P [O ∪ A] ⨠⨠ P [(OcAc)c]

⨠⨠ 1 − P [OcAc] ⨠⨠ 1 − 0.6 = 0.4

We have found Q1: P [O ∪ A] = 0.40.
Applying the RELATION from inclusion-exclusion, we get Q2:

P [O ∪ A] = P [O] + P [A] − P [OA]

⨠⨠ 0.40 = 0.25 + 0.30 − P [OA]

⨠⨠ P [OA] = 0.15

Conditional probability

The conditional probability of “B given A” is defined by:

P [B ∣ A] =
P [B ∩ A]

P [A]

Conditioning

What does it really mean?

Conceptually, P [B ∣ A] corresponds to creating a new experiment in which we run the old
experiment and record data only those times that A happened. Or, it corresponds to finding
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The definition of conditional probability can also be turned around and reinterpreted:

This principle generalizes to any events in sequence:

07 Illustration

ourselves with knowledge or data that A happened, and we seek our best estimates of the
likelihoods of other events, based on our existing model and the actuality of A.

Mathematically, P [B ∣ A] corresponds to restricting the probability function to outcomes in
A, and renormalizing the values (dividing by p[A]) so that the total probability of all the
outcomes (in A) is now 1.

Multiplication rule

P [AB] = P [A] ⋅ P [B ∣ A]

“The probability of A AND B equals the probability of A times the probability of B-given-A.”

Generalized multiplication rule

P [A1A2A3] = P [A1] ⋅ P [A2 ∣ A1] ⋅ P [A3 ∣ A1A2]

P [A1 ⋯ An] = P [A1] ⋅ P [A2 ∣ A1] ⋅ P [A3 ∣ A1A2] ⋯ P [An ∣ A1 ⋯ An−1]

The generalized rule can be verified like this. First substitute A2 for B and A1 for A in the
original rule. Now repeat, substituting A3 for B and A1A2 for A in the original rule, and
combine with the first one, and you find the rule for triples. Repeat again with A4 and
A1A2A3, combine with the triples, and you get quadruples.

Exercise - Simplifying conditionals

Let A ⊂ B. Simplify the following values:

P [A ∣ B], P [A ∣ Bc], P [B ∣ A], P [B ∣ Ac]

Solution

Example - Coin flipping: at least 2 heads

Flip a fair coin 4 times and record the outcomes as sequences, like HHTH.

Let A≥2 be the event that there are at least two heads, and A≥1 the event that there is at
least one heads.

First let’s calculate P [A≥2].

Define A2, the event that there were exactly 2 heads, and A3, the event of exactly 3, and A4

the event of exactly 4. These events are exclusive, so:

P [A≥2] = P [A2 ∪ A3 ∪ A4] ⨠⨠ P [A2] + P [A3] + P [A4]

Each term on the right can be calculated by counting:
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Therefore, P [A≥2] = 11
16 .

Now suppose we find out that “at least one heads definitely came up”. (Meaning that we
know A≥1.) For example, our friend is running the experiment and tells us this fact about
the outcome.

Now what is our estimate of likelihood of A≥2?

The formula for conditioning gives:

P [A≥2 ∣ A≥1] =
P [A≥2 ∩ A≥1]

P [A≥1]

Now A≥2 ∩ A≥1 = A≥2. (Any outcome with at least two heads automatically has at least one
heads.) We already found that P [A≥2] = 11

16 . To compute P [A≥1] we simply add the
probability P [A1], which is 4

16 , to get P [A≥1] = 15
16 .

Therefore:

P [A≥2 ∣ A≥1] =
11/16

15/16
⨠⨠

11

15

P [A2] =
|A2|

24
⨠⨠

(4
2)

16
⨠⨠ 6

16

P [A3] =
|A3|

24
⨠⨠

(4
1)

16
⨠⨠ 4

16

P [A4] =
|A4|

24
⨠⨠

(4
0)

16
⨠⨠ 1

16

Example: Flip a coin, then roll dice

Flip a coin. If the outcome is heads, roll two dice and add the numbers. If the outcome is
tails, roll a single die and take that number. What is the probability of getting a tails AND
a number at least 3?

Solution

This “two-stage” experiment lends itself to a solution using the multiplication rule for
conditional probability.

1. 
 Let H and T  be the events that the coin showed heads and tails, respectively.

Let A1, … , A12 be the events that the final number is 1, … , 12, respectively.
The value we seek is P [TA≥3].

2. 
 We know that P [H] = 1

2  and P [T ] = 1
2 .

We know that P [A5 ∣ T ] = 1
6 , for example, or that P [A2 ∣ H] = 1

36 .
3. 
 This rule gives:

P [TA≥3] = P [T ] ⋅ P [A≥3 ∣ T ]

We know P [T ] = 1
2  and can see by counting that P [A≥3 ∣ T ] = 2

3 .

 Label the events of interest.

 Observe known (conditional) probabilities.

 Apply “multiplication” rule.
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08 Theory

Interpretation: event B may be divided along the lines of A, with some of P [B] coming from the
part in A and the rest from the part in Ac.

Therefore P [TA≥3] = 1
3 .

Multiplication: draw two cards

Two cards are drawn from a standard deck (without replacement).

What is the probability that the first is a 3, and the second is a 4?

Solution

This “two-stage” experiment lends itself to a solution using the multiplication rule for
conditional probability.

1. 
 Write T  for the event that the first card is a 3

Write F  for the event that the second card is a 4.
We seek P [TF ].

2. 
 We know P [T ] = 4

52 . (It does not depend on the second draw.)
Easily find P [F ∣ T ].

 If the first is a 3, then there are four 4s remaining and 51 cards.
So P [F ∣ T ] = 4

51 .

3. 
 Multiplication rule:

P [TF ] = P [T ] ⋅ P [F ∣ T ]

P [TF ] =
4

52
⋅

4

51
⨠⨠

4

13 ⋅ 51

Therefore P [TF ] = 4
663

 Label events.

 Write down knowns.

 Apply multiplication rule.

Division into Cases

For any events A and B:

P [B] = P [A] ⋅ P [B ∣ A] + P [Ac] ⋅ P [B ∣ Ac]

Total Probability - Explanation

First divide B itself into parts in and out of A:

B = B ∩ A ⋃ B ∩ Ac

These parts are exclusive, so in probability we have:

P [B] = P [BA] + P [BAc]
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This law can be generalized to any partition of the sample space S. A partition is a collection of
events Ai which are mutually exclusive and jointly exhaustive:

Ai ∩ Aj = ∅, ⋃
i

Ai = S

The generalized formulation of Total Probability for a partition is:

Division into Cases is just the Law of Total Probability after setting A1 = A and A2 = Ac.

09 Illustration

Use the Multiplication rule to break up P [BA] and P [BAc]:

P [BA] ⨠⨠ P [A] ⋅ P [B ∣ A]

P [BAc] ⨠⨠ P [Ac] ⋅ P [B ∣ Ac]

Now substitute in the prior formula:

P [B] ⨠⨠ P [BA] + P [BAc] ⨠⨠ P [A] ⋅ P [B ∣ A] + P [Ac] ⋅ P [B ∣ Ac]

Law of Total Probability

For a partition Ai of the sample space S:

P [B] =∑
i

P [Ai] ⋅ P [B ∣ Ai]

Exercise - Marble transferred, marble drawn

Setup:

Experiment:

What is the probability that the marble you look at is red?

Solution

Bin 1 holds five red and four green marbles.
Bin 2 holds four red and five green marbles.

You take a random marble from Bin 1 and put it in Bin 2 and shake Bin 2.
Then you draw a random marble from Bin 2 and look at it.
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