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Problem 9.1.1 Solution

Let Y = X1 −X2.

(a) Since Y = X1 + (−X2), Theorem 9.1 says that the expected value of the
difference is

E [Y ] = E [X1] + E [−X2] = E [X]− E [X] = 0. (1)

(b) By Theorem 9.2, the variance of the difference is

Var[Y ] = Var[X1] + Var[−X2] = 2 Var[X]. (2)

Problem 9.1.2 Solution

The random variable X33 is a Bernoulli random variable that indicates the result
of flip 33. The PMF of X33 is

PX33 (x) =


1− p x = 0,

p x = 1,

0 otherwise.

(1)

Note that each Xi has expected value E[X] = p and variance Var[X] = p(1 − p).
The random variable Y = X1 + · · ·+X100 is the number of heads in 100 coin flips.
Hence, Y has the binomial PMF

PY (y) =

{(
100
y

)
py(1− p)100−y y = 0, 1, . . . , 100,

0 otherwise.
(2)

Since the Xi are independent, by Theorems 9.1 and 9.3, the mean and variance of
Y are

E [Y ] = 100 E [X] = 100p, Var[Y ] = 100 Var[X] = 100p(1− p). (3)
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Problem 9.1.3 Solution

(a) The PMF of N1, the number of phone calls needed to obtain the correct
answer, can be determined by observing that if the correct answer is given
on the nth call, then the previous n− 1 calls must have given wrong answers
so that

PN1 (n) =

{
(3/4)n−1(1/4) n = 1, 2, . . . ,

0 otherwise.
(1)

(b) N1 is a geometric random variable with parameter p = 1/4. In Theorem 3.5,
the mean of a geometric random variable is found to be 1/p. For our case,
E[N1] = 4.

(c) Using the same logic as in part (a) we recognize that in order for n to be
the fourth correct answer, that the previous n− 1 calls must have contained
exactly 3 correct answers and that the fourth correct answer arrived on the
n-th call. This is described by a Pascal random variable.

PN4 (n4) =

{(
n−1
3

)
(3/4)n−4(1/4)4 n = 4, 5, . . . ,

0 otherwise.
(2)

(d) Using the hint given in the problem statement we can find the mean of N4

by summing up the means of the 4 identically distributed geometric random
variables each with mean 4. This gives E[N4] = 4 E[N1] = 16.

Problem 9.1.5 Solution

We can solve this problem using Theorem 9.2 which says that

Var[W ] = Var[X] + Var[Y ] + 2 Cov [X,Y ] . (1)

The first two moments of X are

E [X] =

∫ 1

0

∫ 1−x

0
2x dy dx =

∫ 1

0
2x(1− x) dx = 1/3, (2)

E
[
X2
]

=

∫ 1

0

∫ 1−x

0
2x2 dy dx =

∫ 1

0
2x2(1− x) dx = 1/6. (3)
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Thus the variance of X is Var[X] = E[X2] − (E[X])2 = 1/18. By symmetry, it
should be apparent that E[Y ] = E[X] = 1/3 and Var[Y ] = Var[X] = 1/18. To find
the covariance, we first find the correlation

E [XY ] =

∫ 1

0

∫ 1−x

0
2xy dy dx =

∫ 1

0
x(1− x)2 dx = 1/12. (4)

The covariance is

Cov [X,Y ] = E [XY ]− E [X] E [Y ] = 1/12− (1/3)2 = −1/36. (5)

Finally, the variance of the sum W = X + Y is

Var[W ] = Var[X] + Var[Y ]− 2 Cov [X,Y ]

= 2/18− 2/36 = 1/18. (6)

For this specific problem, it’s arguable whether it would easier to find Var[W ] by
first deriving the CDF and PDF of W . In particular, for 0 ≤ w ≤ 1,

FW (w) = P [X + Y ≤ w]

=

∫ w

0

∫ w−x

0
2 dy dx

=

∫ w

0
2(w − x) dx = w2. (7)

Hence, by taking the derivative of the CDF, the PDF of W is

fW (w) =

{
2w 0 ≤ w ≤ 1,

0 otherwise.
(8)

From the PDF, the first and second moments of W are

E [W ] =

∫ 1

0
2w2 dw = 2/3, E

[
W 2
]

=

∫ 1

0
2w3 dw = 1/2. (9)

The variance of W is Var[W ] = E[W 2]− (E[W ])2 = 1/18. Not surprisingly, we get
the same answer both ways.
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Problem 9.5.1 Solution

We know that the waiting time, W is uniformly distributed on [0,10] and therefore
has the following PDF.

fW (w) =

{
1/10 0 ≤ w ≤ 10,

0 otherwise.
(1)

We also know that the total time is 3 milliseconds plus the waiting time, that is
X = W + 3.

(a) The expected value of X is E[X] = E[W + 3] = E[W ] + 3 = 5 + 3 = 8.

(b) The variance of X is Var[X] = Var[W + 3] = Var[W ] = 25/3.

(c) The expected value of A is E[A] = 12 E[X] = 96.

(d) The standard deviation of A is σA =
√

Var[A] =
√

12(25/3) = 10.

(e) P[A > 116] = 1− Φ(116−96
10 ) = 1− Φ(2) = 0.02275.

(f) P[A < 86] = Φ(86−96
10 ) = Φ(−1) = 1− Φ(1) = 0.1587.

Problem 9.5.2 Solution

Knowing that the probability that voice call occurs is 0.8 and the probability that
a data call occurs is 0.2 we can define the random variable Di as the number of
data calls in a single telephone call. It is obvious that for any i there are only
two possible values for Di, namely 0 and 1. Furthermore for all i the Di’s are
independent and identically distributed withe the following PMF.

PD(d) =


0.8 d = 0,

0.2 d = 1,

0 otherwise.

(1)

From the above we can determine that

E [D] = 0.2, Var [D] = 0.2− 0.04 = 0.16. (2)

With these facts, we can answer the questions posed by the problem.
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(a) E[K100] = 100 E[D] = 20.

(b) Var[K100] =
√

100 Var[D] =
√

16 = 4.

(c)

P [K100 ≥ 18] = 1− Φ

(
18− 20

4

)
= 1− Φ(−1/2) = Φ(1/2) = 0.6915. (3)

(d)

P [16 ≤ K100 ≤ 24] = Φ

(
24− 20

4

)
− Φ

(
16− 20

4

)
= Φ(1)− Φ(−1)

= 2Φ(1)− 1 = 0.6826. (4)

Problem 9.5.4 Solution

In Theorem 9.7, we learned that a sum of iid Poisson random variables is a Poisson
random variable. Hence Wn is a Poisson random variable with mean E[Wn] =
nE[K] = n. Thus Wn has variance Var[Wn] = n and PMF

PWn (w) =

{
nwe−n/w! w = 0, 1, 2, . . . ,

0 otherwise.
(1)

All of this implies that we can exactly calculate

P [Wn = n] = PWn (n) = nne−n/n! (2)

Since we can perform the exact calculation, using a central limit theorem may seem
silly; however for large n, calculating nn or n! is difficult for large n. Moreover, it’s
interesting to see how good the approximation is. In this case, the approximation
is

P [Wn = n] = P [n ≤Wn ≤ n]

≈ Φ

(
n+ 0.5− n√

n

)
− Φ

(
n− 0.5− n√

n

)
= 2Φ

(
1

2
√
n

)
− 1. (3)
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The comparison of the exact calculation and the approximation are given in the
following table.

P [Wn = n] n = 1 n = 4 n = 16 n = 64

exact 0.3679 0.1954 0.0992 0.0498
approximate 0.3829 0.1974 0.0995 0.0498

(4)

Problem 9.5.7 Solution

Random variable Kn has a binomial distribution for n trials and success probability
P[V ] = 3/4.

(a) The expected number of video packets out of 48 packets is

E [K48] = 48 P [V ] = 36. (1)

(b) The variance of K48 is

Var[K48] = 48 P [V ] (1− P [V ]) = 48(3/4)(1/4) = 9 (2)

Thus K48 has standard deviation σK48 = 3.

(c) Using the ordinary central limit theorem and Table 4.2 yields

P [30 ≤ K48 ≤ 42] ≈ Φ

(
42− 36

3

)
− Φ

(
30− 36

3

)
= Φ(2)− Φ(−2) (3)

Recalling that Φ(−x) = 1− Φ(x), we have

P [30 ≤ K48 ≤ 42] ≈ 2Φ(2)− 1 = 0.9545. (4)

(d) Since K48 is a discrete random variable, we can use the De Moivre-Laplace
approximation to estimate

P [30 ≤ K48 ≤ 42] ≈ Φ

(
42 + 0.5− 36

3

)
− Φ

(
30− 0.5− 36

3

)
= 2Φ(2.16666)− 1 = 0.9687. (5)
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