
The rider’s maximum possible speed is V = 3000/60 = 50 km/hr while the rider’s
minimum speed is V = 3000/75 = 40 km/hr. For 40 ≤ v ≤ 50,

FV (v) = P

[
3000

T
≤ v
]

= P

[
T ≥ 3000

v

]
=

∫ 75

3000/v

1

15
dt =

t

15

∣∣∣∣75
3000/v

= 5− 200

v
. (2)

Thus the CDF, and via a derivative, the PDF are

FV (v) =


0 v < 40,

5− 200/v 40 ≤ v ≤ 50,

1 v > 50,

fV (v) =


0 v < 40,

200/v2 40 ≤ v ≤ 50,

0 v > 50.

(3)

Problem 6.2.5 Solution

SinceX is non-negative, W = X2 is also non-negative. Hence for w < 0, fW(w) = 0.
For w ≥ 0,

FW (w) = P [W ≤ w] = P
[
X2 ≤ w

]
= P [X ≤ w]

= 1− e−λ
√
w. (1)

Taking the derivative with respect to w yields fW(w) = λe−λ
√
w/(2

√
w). The

complete expression for the PDF is

fW (w) =

{
λe−λ

√
w

2
√
w

w ≥ 0,

0 otherwise.
(2)

Problem 6.4.1 Solution

Since 0 ≤ X ≤ 1, and 0 ≤ Y ≤ 1, we have 0 ≤ V ≤ 1. This implies FV(v) = 0 for

2



v < 0 and FV(v) = 1 for v ≥ 1. For 0 ≤ v ≤ 1,

FV (v) = P [max(X,Y ) ≤ v] = P [X ≤ v, Y ≤ v]

=

∫ v

0

∫ v

0
6xy2 dx dy

=

(∫ v

0
2x dx

)(∫ v

0
3y2 dy

)
= (v2)(v3) = v5. (1)

The CDF and (by taking the derivative) PDF of V are

FV (v) =


0 v < 0,

v5 0 ≤ v ≤ 1,

1 v > 1,

fV (v) =

{
5v4 0 ≤ v ≤ 1,

0 otherwise.
(2)

Problem 6.4.2 Solution

Since 0 ≤ X ≤ 1, and 0 ≤ Y ≤ 1, we have 0 ≤W ≤ 1. This implies FW(w) = 0 for
w < 0 and FW(w) = 1 for w ≥ 1. For 0 ≤ w ≤ 1,

FW (w) = P [min(X,Y ) ≤ w]

= 1− P [min(X,Y ) ≥ w] = 1− P [X ≥ w, Y ≥ w] . (1)

Now we calculate

P [X ≥ w, Y ≥ w] =

∫ 1

w

∫ 1

w
6xy2 dx dy

=

(∫ 1

w
2x dx

)(∫ 1

w
3y2 dy

)
= (1− w2)(1− w3) = 1− w2 − w3 + w5. (2)

The complete expression for the CDF of W is

FW (w) = 1− P [X ≥ w, Y ≥ w]

=


0 w < 0,

w2 + w3 − w5 0 ≤ w ≤ 1,

1 w > 1.

(3)
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Taking the derivative of the CDF, we obtain the PDF

fW (w) =

{
2w + 3w2 − 5w4 0 ≤ w ≤ 1,

0 otherwise.
(4)

Problem 6.4.4 Solution

(a) The minimum value of W is W = 0, which occurs when X = 0 and Y = 0.
The maximum value of W is W = 1, which occurs when X = 1 or Y = 1.
The range of W is SW = {w|0 ≤ w ≤ 1}.

(b) For 0 ≤ w ≤ 1, the CDF of W is
Y

X

1w

1

w W<w
FW (w) = P [max(X,Y ) ≤ w]

= P [X ≤ w, Y ≤ w]

=

∫ w

0

∫ w

0
fX,Y (x, y) dy dx. (1)

Substituting fX,Y(x, y) = x+ y yields

FW (w) =

∫ w

0

∫ w

0
(x+ y) dy dx

=

∫ w

0

(
xy +

y2

2

∣∣∣∣y=w
y=0

)
dx =

∫ w

0
(wx+ w2/2) dx = w3. (2)

The complete expression for the CDF is

FW (w) =


0 w < 0,

w3 0 ≤ w ≤ 1,

1 otherwise.

(3)

The PDF of W is found by differentiating the CDF.

fW (w) =
dFW (w)

dw
=

{
3w2 0 ≤ w ≤ 1,

0 otherwise.
(4)
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Problem 6.4.5 Solution

(a) Since the joint PDF fX,Y(x, y) is nonzero only for 0 ≤ y ≤ x ≤ 1, we observe
that W = Y −X ≤ 0 since Y ≤ X. In addition, the most negative value of
W occurs when Y = 0 and X = 1 and W = −1. Hence the range of W is
SW = {w| − 1 ≤ w ≤ 0}.

(b) For w < −1, FW(w) = 0. For w > 0, FW(w) = 1. For −1 ≤ w ≤ 0, the CDF
of W is

Y

X

1-w

½

1

Y=X+w

FW (w) = P [Y −X ≤ w]

=

∫ 1

−w

∫ x+w

0
6y dy dx

=

∫ 1

−w
3(x+ w)2 dx

= (x+ w)3
∣∣1
−w = (1 + w)3. (1)

Therefore, the complete CDF of W is

FW (w) =


0 w < −1,

(1 + w)3 −1 ≤ w ≤ 0,

1 w > 0.

(2)

By taking the derivative of fW(w) with respect to w, we obtain the PDF

fW (w) =

{
3(w + 1)2 −1 ≤ w ≤ 0,

0 otherwise.
(3)

Problem 6.5.2 Solution

The key to the solution is to draw the triangular region where the PDF is nonzero:
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X

Y

1

1

For the PDF of W = X + Y , we could use the usual procedure to derive the CDF
of W and take a derivative, but it is much easier to use Theorem 6.4 to write

fW (w) =

∫ ∞
−∞

fX,Y (x,w − x) dx. (1)

For 0 ≤ w ≤ 1,

fW (w) =

∫ w

0
2 dx = 2w. (2)

For w < 0 or w > 1, fW(w) = 0 since 0 ≤W ≤ 1. The complete expression is

fW (w) =

{
2w 0 ≤ w ≤ 1,

0 otherwise.
(3)

Problem 6.5.3 Solution

The joint PDF of X and Y is

fX,Y (x, y) =

{
2 0 ≤ x ≤ y ≤ 1,

0 otherwise.
(1)

We wish to find the PDF of W where W = X + Y . First we find the CDF of
W , FW(w), but we must realize that the CDF will require different integrations for
different values of w.
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Y

X

Y=X

X+Y=w

w

w

Area of
Integration

For values of 0 ≤ w ≤ 1 we look to integrate the shaded
area in the figure to the right.

FW (w) =

∫ w
2

0

∫ w−x

x
2 dy dx =

w2

2
. (2)

Y

X

Y=X

X+Y=w

w

w

Area of
Integration

For values of w in the region 1 ≤ w ≤ 2 we look
to integrate over the shaded region in the graph
to the right. From the graph we see that we can
integrate with respect to x first, ranging y from 0
to w/2, thereby covering the lower right triangle of
the shaded region and leaving the upper trapezoid,
which is accounted for in the second term of the
following expression:

FW (w) =

∫ w
2

0

∫ y

0
2 dx dy +

∫ 1

w
2

∫ w−y

0
2 dx dy

= 2w − 1− w2

2
. (3)

Putting all the parts together gives the CDF

FW (w) =


0 w < 0,
w2

2 0 ≤ w ≤ 1,

2w − 1− w2

2 1 ≤ w ≤ 2,

1 w > 2,

(4)

and (by taking the derivative) the PDF

fW (w) =


w 0 ≤ w ≤ 1,

2− w 1 ≤ w ≤ 2,

0 otherwise.

(5)
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Problem 6.5.4 Solution

The joint PDF of X and Y is

fX,Y (x, y) =

{
1 0 ≤ x, y ≤ 1,

0 otherwise.
(1)

Proceeding as in Problem 6.5.3, we must first find FW(w) by integrating over the
square defined by 0 ≤ x, y ≤ 1. Again we are forced to find FW(w) in parts as
we did in Problem 6.5.3 resulting in the following integrals for their appropriate
regions. For 0 ≤ w ≤ 1,

FW (w) =

∫ w

0

∫ w−x

0
dx dy = w2/2. (2)

For 1 ≤ w ≤ 2,

FW (w) =

∫ w−1

0

∫ 1

0
dx dy +

∫ 1

w−1

∫ w−y

0
dx dy = 2w − 1− w2/2. (3)

The complete CDF is

FW (w) =


0 w < 0,

w2/2 0 ≤ w ≤ 1,

2w − 1− w2/2 1 ≤ w ≤ 2,

1 otherwise.

(4)

The corresponding PDF, fW(w) = dFW(w)/dw, is

fW (w) =


w 0 ≤ w ≤ 1,

2− w 1 ≤ w ≤ 2,

0 otherwise.

(5)

Problem 6.5.5 Solution

By using Theorem 6.9, we can find the PDF of W = X + Y by convolving the two
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exponential distributions. For µ 6= λ,

fW (w) =

∫ ∞
−∞

fX (x) fY (w − x) dx

=

∫ w

0
λe−λxµe−µ(w−x) dx

= λµe−µw
∫ w

0
e−(λ−µ)x dx

=

{
λµ
λ−µ

(
e−µw − e−λw

)
w ≥ 0,

0 otherwise.
(1)

When µ = λ, the previous derivation is invalid because of the denominator term
λ− µ. For µ = λ, we have

fW (w) =

∫ ∞
−∞

fX (x) fY (w − x) dx

=

∫ w

0
λe−λxλe−λ(w−x) dx

= λ2e−λw
∫ w

0
dx

=

{
λ2we−λw w ≥ 0,

0 otherwise.
(2)

Note that when µ = λ, W is the sum of two iid exponential random variables and
has a second order Erlang PDF.
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