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Problem 11.2.1 Solution

For the MAP test, we must choose acceptance regions A0 and A1 for the two
hypotheses H0 and H1. From Theorem 11.2, the MAP rule is

n ∈ A0 if
PN |H0

(n)

PN |H1
(n)
≥ P [H1]

P [H0]
; n ∈ A1 otherwise. (1)

Since PN |Hi
(n) = λni e

−λi/n!, the MAP rule becomes

n ∈ A0 if

(
λ0
λ1

)n
e−(λ0−λ1) ≥ P [H1]

P [H0]
; n ∈ A1 otherwise. (2)

By taking logarithms and assuming λ1 > λ0 yields the final form of the MAP rule

n ∈ A0 if n ≤ n∗ =
λ1 − λ0 + ln(P [H0] /P [H1])

ln(λ1/λ0)
; n ∈ A1 otherwise. (3)

From the MAP rule, we can get the ML rule by setting the a priori probabilities
to be equal. This yields the ML rule

n ∈ A0 if n ≤ n∗ =
λ1 − λ0

ln(λ1/λ0)
; n ∈ A1 otherwise. (4)

Problem 11.2.2 Solution

Hypotheses H0 and H1 have a priori probabilities P[H0] = 0.8 and P[H1] = 0.2
and likelihood functions

fT |H0
(t) =

{
(1/3)e−t/3 t ≥ 0,

otherwise,

fT |H1
(t) =

{
(1/µD)e−t/µD t ≥ 0,

otherwise.
(1)

The acceptance regions are A0 = {t|T ≤ t0} and A1 = {t|t > t0}.
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(a) The false alarm probability is

PFA = P [A1|H0] =

∫ ∞
t0

fT |H0
(t) dt = e−t0/3. (2)

(b) The miss probability is

PMISS = P [A0|H1] =

∫ t0

0
fT |H1

(t) dt = 1− e−t0/µD . (3)

(c) From Theorem 11.6, the maximum likelihood decision rule is

t ∈ A0 if
fT |H0

(t)

fT |H1
(t)
≥ 1; t ∈ A1 otherwise. (4)

After some algebra, this rule simplifies to

t ∈ A0 if t ≤ tML =
ln(µD/3)

1/3− 1/µD
; t ∈ A1 otherwise. (5)

When µD = 6 minutes, tML = 6 ln 2 = 4.16 minutes. When µD = 10 minutes,
tML = (30/7) ln(10/3) = 5.16 minutes.

(d) The ML rule is the same as the MAP rule when P[H0] = P[H1]. When
P[H0] > P[H1], the MAP rule (which minimizes the probability of an error)
should enlarge the A0 acceptance region. Thus we would expect tMAP > tML.

(e) From Theorem 11.2, the MAP rule is

t ∈ A0 if
fT |H0

(t)

fT |H1
(t)
≥ P [H1]

P [H0]
=

1

4
; t ∈ A1 otherwise. (6)

This rule simplifies to

t ∈ A0 if t ≤ tMAP =
ln(4µD/3)

1/3− 1/µD
; t ∈ A1 otherwise. (7)

When µD = 6 minutes, tMAP = 6 ln 8 = 12.48 minutes. When µD = 10
minutes, tML = (30/7) ln(40/3) = 11.1 minutes.
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(f) For a given threshold t0, we learned in parts (a) and (b) that

PFA = e−t0/3, PMISS = 1− e−t0/µD . (8)

The Matlab program rocvoicedataout graphs both receiver operating curves.
The program and the resulting ROC are shown here.

t=0:0.05:30;

PFA= exp(-t/3);

PMISS6= 1-exp(-t/6);

PMISS10=1-exp(-t/10);

plot(PFA,PMISS6,PFA,PMISS10);

legend(’\mu_D=6’,’\mu_D=10’);

xlabel(’\itP_{\rmFA}’);

ylabel(’\itP_{\rmMISS}’);
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As one might expect, larger µD resulted in reduced PMISS for the same PFA.

Problem 11.2.4 Solution

(a) Given H0, X is Gaussian (0, 1). Given H1, X is Gaussian (4, 1). From
Theorem 11.2, the MAP hypothesis test is

x ∈ A0 if
fX|H0

(x)

fX|H1
(x)

=
e−x

2/2

e−(x−4)2/2 ≥ P [H1]

P [H0]

; x ∈ A1 otherwise. (1)

Since a target is present with probability P[H1] = 0.01, the MAP rule sim-
plifies to

x ∈ A0 if x ≤ xMAP; x ∈ A1 otherwise (2)

where

xMAP = 2− 1

4
ln

(
P [H1]

P [H0]

)
= 3.15. (3)

3



The false alarm and miss probabilities are

PFA = P [X ≥ xMAP|H0] = Q(xMAP) = 8.16× 10−4, (4)

PMISS = P [X < xMAP|H1]

= Φ(xMAP − 4) = 1− Φ(0.85) = 0.1977. (5)

The average cost of the MAP policy is

E [CMAP] = C10PFA P [H0] + C01PMISS P [H1]

= (1)(8.16× 10−4)(0.99) + (104)(0.1977)(0.01)

= 19.77. (6)

(b) The cost of a false alarm is C10 = 1 unit while the cost of a miss is C01 = 104

units. From Theorem 11.3, we see that the Minimum Cost test is the same as
the MAP test except the P[H0] is replaced by C10 P[H0] and P[H1] is replaced
by C01 P[H1]. Thus, we see from the MAP test that the minimum cost test
is

x ∈ A0 if x ≤ xMC; x ∈ A1 otherwise. (7)

where

xMC = 2− 1

4
ln

(
C01 P [H1]

C10 P [H0]

)
= 0.846. (8)

The false alarm and miss probabilities are

PFA = P [X ≥ xMC|H0] = Q(xMC) = 0.1987, (9)

PMISS = P [X < xMC|H1]

= Φ(xMC − 4) = 1− Φ(3.154) = 8.06× 10−4. (10)

The average cost of the minimum cost policy is

E [CMC] = C10PFA P [H0] + C01PMISS P [H1]

= (1)(0.1987)(0.99) + (104)(8.06× 10−4)(0.01)

= 0.2773. (11)

Because the cost of a miss is so high, the minimum cost test greatly reduces
the miss probability, resulting in a much lower average cost than the MAP
test.
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