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Problem 10.1.1 Solution

Recall that X1, X2 . . . Xn are independent exponential random variables with mean
value µX = 5 so that for x ≥ 0, FX(x) = 1− e−x/5.

(a) Using Theorem 10.1, σ2Mn(x)
= σ2X/n. Realizing that σ2X = 25, we obtain

Var[M9(X)] =
σ2X
9

=
25

9
. (1)

(b)

P [X1 ≥ 7] = 1− P [X1 ≤ 7]

= 1− FX (7)

= 1− (1− e−7/5) = e−7/5 ≈ 0.247. (2)

(c) First we express P[M9(X) > 7] in terms of X1, . . . , X9.

P [M9(X) > 7] = 1− P [M9(X) ≤ 7]

= 1− P [(X1 + . . .+X9) ≤ 63] . (3)

Now the probability that M9(X) > 7 can be approximated using the Central
Limit Theorem (CLT).

P [M9(X) > 7] = 1− P [(X1 + . . .+X9) ≤ 63]

≈ 1− Φ

(
63− 9µX√

9σX

)
= 1− Φ(6/5). (4)

Consulting with Table 4.2 yields P[M9(X) > 7] ≈ 0.1151.
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Problem 10.1.3 Solution

This problem is in the wrong section since the standard error isn’t defined until
Section 10.4. However is we peek ahead to this section, the problem isn’t very
hard. Given the sample mean estimate Mn(X), the standard error is defined as
the standard deviation en =

√
Var[Mn(X)]. In our problem, we use samples Xi

to generate Yi = X2
i . For the sample mean Mn(Y ), we need to find the standard

error

en =
√

Var[Mn(Y )] =

√
Var[Y ]

n
. (1)

Since X is a uniform (0, 1) random variable,

E [Y ] = E
[
X2
]

=

∫ 1

0
x2 dx = 1/3, (2)

E
[
Y 2
]

= E
[
X4
]

=

∫ 1

0
x4 dx = 1/5. (3)

Thus Var[Y ] = 1/5 − (1/3)2 = 4/45 and the sample mean Mn(Y ) has standard
error

en =

√
4

45n
. (4)

Problem 10.1.4 Solution

(a) Since Yn = X2n−1 +(−X2n), Theorem 9.1 says that the expected value of the
difference is

E [Y ] = E [X2n−1] + E [−X2n] = E [X]− E [X] = 0. (1)

By Theorem 9.2, the variance of the difference between X2n−1 and X2n is

Var[Yn] = Var[X2n−1] + Var[−X2n] = 2 Var[X]. (2)
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(b) Each Yn is the difference of two samples of X that are independent of the
samples used by any other Ym. Thus Y1, Y2, . . . is an iid random sequence.
By Theorem 10.1, the mean and variance of Mn(Y ) are

E [Mn(Y )] = E [Yn] = 0, (3)

Var[Mn(Y )] =
Var[Yn]

n
=

2 Var[X]

n
. (4)

Problem 10.2.1 Solution

If the average weight of a Maine black bear is 500 pounds with standard deviation
equal to 100 pounds, we can use the Chebyshev inequality to upper bound the
probability that a randomly chosen bear will be more then 200 pounds away from
the average.

P [|W − E [W ] | ≥ 200] ≤ Var[W ]

2002
≤ 1002

2002
= 0.25. (1)

Problem 10.2.3 Solution

The arrival time of the third elevator is W = X1+X2+X3. Since each Xi is uniform
(0, 30), E[Xi] = 15 and Var[Xi] = (30 − 0)2/12 = 75. Thus E[W ] = 3 E[Xi] = 45,
and Var[W ] = 3 Var[Xi] = 225.

(a) By the Markov inequality,

P [W > 75] ≤ E [W ]

75
=

45

75
=

3

5
. (1)

(b) By the Chebyshev inequality,

P [W > 75] = P [W − E [W ] > 30]

≤ P [|W − E [W ]| > 30]

≤ Var [W ]

302
=

1

4
. (2)
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Problem 10.3.1 Solution

X1, X2, . . . are iid random variables each with mean 75 and standard deviation 15.

(a) We would like to find the value of n such that

P [74 ≤Mn(X) ≤ 76] = 0.99. (1)

When we know only the mean and variance of Xi, our only real tool is the
Chebyshev inequality which says that

P [74 ≤Mn(X) ≤ 76] = 1− P [|Mn(X)− E [X]| ≥ 1]

≥ 1− Var [X]

n
= 1− 225

n
≥ 0.99. (2)

This yields n ≥ 22,500.

(b) If each Xi is a Gaussian, the sample mean, Mn(X) will also be Gaussian with
mean and variance

E [Mn′(X)] = E [X] = 75, (3)

Var [Mn′(X)] = Var [X] /n′ = 225/n′ (4)

In this case,

P [74 ≤Mn′(X) ≤ 76] = Φ

(
76− µ
σ

)
− Φ

(
74− µ
σ

)
= Φ(

√
n′/15)− Φ(−

√
n′/15)

= 2Φ(
√
n′/15)− 1 = 0.99. (5)

Thus, n′ = 1,521.

Since even under the Gaussian assumption, the number of samples n′ is so large
that even if the Xi are not Gaussian, the sample mean may be approximated by
a Gaussian. Hence, about 1500 samples probably is about right. However, in the
absence of any information about the PDF of Xi beyond the mean and variance, we
cannot make any guarantees stronger than that given by the Chebyshev inequality.
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Problem 10.3.2 Solution

(a) Since XA is a Bernoulli (p = P[A]) random variable,

E [XA] = P [A] = 0.8, Var[XA] = P [A] (1− P [A]) = 0.16. (1)

(b) Let XA,i to denote XA on the ith trial. Since

P̂n(A) = Mn(XA) =
1

n

n∑
i=1

XA,i, (2)

is a sum of n independent random variables,

Var[P̂n(A)] =
1

n2

n∑
i=1

Var[XA,i] =
P [A] (1− P [A])

n
. (3)

(c) Since P̂100(A) = M100(XA), we can use Theorem 10.5(b) to write

P
[∣∣∣P̂100(A)− P [A]

∣∣∣ < c
]
≥ 1− Var[XA]

100c2

= 1− 0.16

100c2
= 1− α. (4)

For c = 0.1, α = 0.16/[100(0.1)2] = 0.16. Thus, with 100 samples, our
confidence coefficient is 1− α = 0.84.

(d) In this case, the number of samples n is unknown. Once again, we use
Theorem 10.5(b) to write

P
[∣∣∣P̂n(A)− P [A]

∣∣∣ < c
]
≥ 1− Var[XA]

nc2

= 1− 0.16

nc2
= 1− α. (5)

For c = 0.1, we have confidence coefficient 1−α = 0.95 if α = 0.16/[n(0.1)2] =
0.05, or n = 320.
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