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Power series as functions

Geometric series: algebra meets calculus

Consider the geometric series as a power series functions:

1

= l4+z+22+23+-.-
1—=2

Take the derivative of both sides of the function:

41 > > 1 > > e ’
dz \1—-=z (1-=z)2 1-=z

This means f satisfies the identity:

Now compute the derivative of the series:

d
dx
l+z+a?+a®+-- D 1+2+32"+42+---
On the other hand, compute the square of the series:
(Atet+a+a®+--)" »>» 1+22+37 +42+ -

So we find that the same relationship holds, namely f' = f2, for the closed formula and the series
formula for this function.

Manipulating geometric series: algebra

Find power series that represent the following functions:

1 1 x3 3z
b _— d) ——
(a)1+m ()1+w2 (C)w+2 ()2—5w
Solution
1
a
@ 1+
= Rewrite in format 1.
Introduce double negative:
11
1+z 1—(-2)
Choose u = —z.
=+ Plug u = —z into geometric series.

Geometric series in u:
T+utu?+ud+--
Plugin u = —x:
> 1+ (—2) + (—2)% + (—2)3 + -~
Simplify:

> > l-z+z2 -2+

1/10


af://h1-0
af://h2-1
af://h4-2
af://h4-3

W11 - Examples

Final answer:

1
=l-c+a>—a®+...
1+=x
1
®) 14 2
= Rewrite in format Tlu
Rewrite:
11
1+x2  1—(—z2?)
Choose u = —z2.
= Plug u = —z? into geometric series.
Geometric series in u:
T+utu+ud+--
Plug in u = —z2:
»» 1+ (=2 4 (—2?) + (2?3 + - »»  l1-z?+zt—ab+..-
Final answer:
1 2 4 6
=l-z‘+2* -2+ ---
1+=x
3
(©) PO
=+ Rewrite in format Az® - 1.
Rewrite:
§ 3 1 3 1
> > T’ — > > z° s —
T+ 2 2+ 2 (1 + %)
> > L. L >» L.t
—T - —x° -
2 1+% 2 1-(—%)
Choose u = —%. Here Az® = +z°.
= Plug u = —z? into geometric series.

Geometric series in u:

T+utu+u®+---

Pluginu = —%:
»» 1+ (=) F 5+ (=5) +
>»  1-2zt -2’ ~at
2 4 8
Obtain:

= Multiply by %x:’).
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Distribute:
15 1, 4 1 5 p
57 — _%) > > x i 52 TR +
Final answer:
z° 1, + 1 5 6
z+2 Ew_4 +gm 16£B+
3z
d
@ 2—bx
= Rewrite in format Az - ﬁ
Rewrite:
i > > 3 !
2 -5z - 5T
> > 3z _r > > Ea: 1
2(1—4) 27 1- &

Choose u = %’” Here Az = %m

= Plugu = 5—2”” into geometric series.

Geometric series in u:

I+u+u?+ud+---

Pluginu:%’:
>» T4+ (E)+ () + ()P +- -
>» 14zt 2g2y 2By
2" Tyt TR
Obtain:
1 5 25 , 125 ,
1_%@ :1+5w+7m +Taz + e
= Multiply by 2.
Distribute:
3 1 o>y B, 15, T 35,
PR PR S T
Final answer:
3z 3, 18 0 75 4 375
=—z+—z +—x +—z +---
2 -5z 2 4 8 16

Manipulating geometric series: calculus
Find a power series that represents In(1 + z).

Solution

= Differentiate to obtain similarity to geometric sum formula.
Differentiate In(1 + z):

> >

d 1
—In(1 =
dz n(1+z) 1+z 1—(—=z)

= Find power series of differentiated function.
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Power series by modifying - with u = —a:

1

m:1—$+$2—m3+m4—"'

= Integrate series to find original function.

Integrate both sides:

1 _ 2 3 4
/17(7m)dw—/1 T+ o+ dzx

1 1 1
ln(1+m):D+m—5m2+§m3—zm4+--~
Use known point to solve for D:
In(14+0)=D+0+0+--- »>» 0=D
Final answer:
1 1 1
ln(1+m)=w75w2+§w37Zw4+~-~

Recognizing and manipulating geometric series: Part I

n

> 1
(a) Evaluate Z(—l)"fl—.
n=1
(Hint: consider the series of In(1 — z).)
(b) Find a series approximation for In(2/3).

Solution

> 1 . . .
(a) Evaluate Z(—l)"flz. (Hint: consider the series of In(1 — z).)
n=1

t= Find the series representation of In(1 — z) following the hint.
: d — =
Notice that Z-In(1 — z) = —.
We know the series of L :

-1

1—=z

:—(1+m+z2+...):717$7w27...

Notice that [ L dz = In(1 — z) + C; this is the desired function when C = 0.

Integrate the series term-by-term:

-1 9 z?
de=[|-1—-z—2°—- - dzx > > ln(l—x):D—m—T ——————

1—x

Solve for D using In(1 —0) =0,s00 =D —0—0—--- and thus D = 0. So:

Notice the similar formula.

The series formula 3 "o° | — 2 looks similar to the formula 3700, (—1)" L.
= Choose z = —1 to recreate the desired series.

We obtain equality by setting z = —1 because —(—1)" = (—1)""! = (-1)"1,

= Final answerisIn(1 — —1) =In2.

(b) Find a series approximation for In(2/3).
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= Observe that In(2/3) = In(1 — 1/3).

Therefore we can use the series In(1 —z) = —z — & — & — ...
= Plug = = 1/3 into the series for In(1 — z).

Plug in and simplify:

Recognizing and manipulating geometric series: Part 11

(a) Find a series representing tan~!(z) using differentiation.

dz

Find i ti —_—
(b) Find a series represen 1ng/ 1Tt

Solution
(a) Find a series representing tan!(z).

Notice that -=tan~!(z) = —

127
=+ Obtain the series for 1+17
Let u = —2%
1 1
»» ——=1+u+u’+---
1+ 22 1—u

> > 1—2?+a*— b +ab ...

t= Integrate the series for 1+17 by terms.

Set up the strategy. We know:

/ il _:mz dz = tan"!(z) + C

and:

1

122 =1-az*+z*— 28428 ...
T

Integrate term-by-term:

PP /17w2+w47w6+w87~~da¢

2123 .'135 .’L'7
D — _ - 4.
> > +x 3 + 5 z +
Conclude that:
$3 $5 CL‘7
tan~! C=D S T
an~'(z) + te- o+ i

= Solve for D — C by testing at tan1(0) = 0.
Plugging in, obtain:

tan"}(0)=D—-C+0+---+0

soD—-C=0.
Za 25 137

= Final answeristan(z) =0 — & + & — & 4 ...,
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(b) Find a series representing / .
1+ z*
=+ Find a series representing the integrand.

1g —L
Integrand is a7

Rewrite integrand in format of geometric series sum:

1
> > — > >
1+ 24 1—(—=z%) 1-u
Write the series:
1 2 3 4, .8 12
mzl-&—u-ﬁ-u +u' - > > l-z"+zx" -z "+
= Integrate the integrand series by terms.
Integrate term-by-term:
z5
/17w4+m87112+x167--~dx > > C+x7?+

This is our final answer.

Taylor and Maclaurin series
Maclaurin series of e

What is the Maclaurin series of f(z) = e*?

Solution

Because die”” = e”, we find that f(*)(z) = e® for all n.
XL

16 _

7_+77...

13

1
So f™(0) = €° = 1 for all n. Therefore a, = o for all n by the Derivative-Coefficient identity.

Thus:

2 3

x T

er=1+—4 —=—+ =4+ =

1! 2! 3!
Maclaurin series of cosz

Find the Maclaurin series representation of cos z.

Solution

Use the Derivative-Coefficient Identity to solve for the coefficients:

F™(0)

an, = 1
n:

n | f0@ | 0] a
0 cos 1 1
1 —sinx 0 0
2 —cosz -1| —-1/2
3 sinz 0 0
4 cosx 1| 1/24
5 —sinz 0 0
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By studying the generating pattern of the coefficients, we find for the series:

2 4 ﬁ o] 2n
S T I A 1\
cos® 2 Z 2 (2n

n=

Maclaurin series from other Maclaurin series

(a) Find the Maclaurin series of sin z using the Maclaurin series of cos z.

(b) Find the Maclaurin series of f(z) = z2e~5* using the Maclaurin series of e?.
(c) Using (b), find the value of £(22)(0).

Solution

(@

Remember that %cos Tz = —sinz
— . . 2 4 6
= Differentiate cosz =1 — 4§+ & — G + -

Differentiate term-by-term:

22 ozt L0 2! 23 5
175‘#1*54‘"' > > 0— 2?+4T GEJr
B zt b &
- Ttwowmo
Take negative because sinz = — L cos z:
z oz 7

JE— . . 3 5
= Final answer issinz =z — 3 + & — - -~

()
Recall the series e* =1 + % " +1§—+l3‘—?+---
= Compute the series for e 5’.
Set u = —5z:
PR s OUR S ) SO o) P )l
1! 2! 3! 1! 2! 3!
= Compute the product.
Product of series:
2 -5z 2 (-52) (*537)2 (*5‘”)3
T’e > > T <1+ 1 + o + 30 + -
25 125
»» b+ —at - ="+
2 3!
nan+2
> Z n 572
(©)

Derivatives at z = 0 are calculable from series coefficients.
Suppose we know the series f(z) = ag + a1z + asz? + asz® + - - -
Then £ (0) = n! - a,,.
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It may be easier to compute a,, for a given f(z) than to compute the derivative functions
f®(z) and then evaluate them.

= Compute ass.
Write the series such that it reveals the coefficients:

0 57 n+2 o) 5n
(—)n2 »» ) ((71)"—>m"+2
=0

! !
n! — n!

n

Tb5n

— An+2 = (_1) F

@ Coefficient with a2 corresponds to the term with "2, not necessarily the (n + 2)%®
term (e.g. if the first term is 22 as here).

Compute ags:

=(-1)® 57 S
o= 20! 20!
= Compute £?2(0).
Use Derivative-Coefficient Identity:
f@0) = 22'-ayp
22!
> 52‘0.2—0' »>>» 520.22.21

Computing a Taylor series

Find the first five terms of the Taylor series of f(z) = v/ + 1 centered at ¢ = 3.

Solution
A Taylor series is just a Maclaurin series that isn’t centered at ¢ = 0.

The general format looks like this:
f(@) =ao+ai(z—c) +as(z—c)® +az(x —c)® +---

o)
The coefficients satisfy a, = f n!(c) . (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at z = 3:

f@) = @+ 1), /3) =2

Fl@) = % z+1)72 F'®) = %
e R (O R
£(z) = % z+ 1) B3 = %
FO () :_%(zﬂ)’ma F0(3) :_%

By dividing by n! we can write out the first terms of the series:

f@) = Va Tl = 2+%(a373)7L(w73)2+5—12(m‘73)3716’5384(:1373)4+~~

Applications of Taylor series

Taylor polynomial approximations

Let f(z) = sinz and let T},(z) be the Taylor polynomials expanded around ¢ = 0.
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By considering the alternating series error bound, find the first n for which 77,(0.02) must have

error less than 1076,
Solution

= Write the Maclaurin series of sin z because we are expanding around ¢ = 0.

Alternating sign, odd function:

m3 .’L‘S m7 o) m2n+1
1 = —_—— —_—— — e = _ ni
sme = eyt o HZ:O( V' G

Notice this series is alternating, so AST error bound formula applies.

AST error bound formula is:

‘En| < ani1

Here the seriesis S =ay —a; + a3 —a3+--- and E,, = S — S, is the error.
Notice that z = 0.02 is part of the terms a; in this formula.
=+ Implement error bound to set up equation for n.

Find n such that a, 1 <1075, and therefore by the AST error bound formula:
|En‘ <apy1 < 1076

Plug in z = 0.02.

From the series of sinz we obtain for as,1:

0_022n+1

A2n+1 = m

We seek the first time it happens that ag,1 < 1075.
= Solve for the first time ay, ; < 1075,

Equations to solve:

0.02%n+1 0.022(nD+1
Y <10°%  but: —————— £10°°
(2n+1)! 2(n—-1)+1)!
Method: list the values:
0.02! 0.023 6 0.02° T
T =002, 3 ~ 133 x10°°, —p A 267 x 1071,

The first time a,,; is below 10~¢ happens when 2n + 1 = 5.

=+ Interpret result and state the answer.
2n+1
xr

When 2n + 1 = 5, the term - at o = 0.02 is less than 1076,

(@n+1)!
Therefore the sum of prior terms is accurate to an error of less than 1075,

The sum of prior terms equals T4(0.02).

Since Ty(z) = T3(x) because there is no z* term, the same sum is 75(0.02).

The final answer is n = 3.

(O It would be wrong to infer at the beginning that the answer is 5, or to solve 2n + 1 = 5 to
getn = 2.

Taylor polynomials to approximate a definite integral
03
Approximate / e~® dz using a Taylor polynomial with an error no greater than 107°.
0
Solution

= Write the series of the integrand.
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Plug v = —2? into the series of e%:
u | u? g2 1, 1 4 15
e“zl—}—ﬁ-ﬁ-ﬁ-ﬁ--“ > > e‘”:l—am +Zm o + -

=+ Compute definite integral by terms.

Antiderivative by terms:

Lo, b, 1 Lg 1 5 1 4
/1f§a: +Ia:faw + .- dx > > acfaw +§mfﬁm + e
Plug in bounds for definite integral:
0.3 1 1 1 0.3
/ e d »»  r- ottt - T+
0 T T .
0.3 0.3 0.3° 037
>>> 3- =3 + T

= Notice AST, apply error formula.

Compute some terms:

0.3% 0.3° s 0.37 "
T ~ 0.0045, T ~2.0x10 s T ~4.34 x 10

So we can guarantee an error less than 4.34 x 10~° by summing the first terms through

: : 0.3° 0.3°
= Final answer is 0.3 — =T + 3N =~ 0.291243.
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