
W11 - Examples
Power series as functions
Geometric series: algebra meets calculus

Consider the geometric series as a power series functions:

1
1 − x

= 1 + x + x2 + x3 + ⋯

Take the derivative of both sides of the function:

d

dx
( 1

1 − x
) ⨠⨠

1
(1 − x)2

⨠⨠ ( 1
1 − x

)
2

This means f satisfies the identity:

f ′ = f 2

Now compute the derivative of the series:

1 + x + x2 + x3 + ⋯
d
dx

⨠⨠ 1 + 2x + 3x2 + 4x3 + ⋯

On the other hand, compute the square of the series:

(1 + x + x2 + x3 + ⋯ )
2 ⨠⨠ 1 + 2x + 3x2 + 4x3 + ⋯

So we find that the same relationship holds, namely f ′ = f 2, for the closed formula and the series
formula for this function.

Manipulating geometric series: algebra

Find power series that represent the following functions:

(a) 1
1 + x

  (b) 1
1 + x2

  (c) x3

x + 2
  (d) 3x

2 − 5x

Solution

(a) 1
1 + x

1. 
Introduce double negative:

1
1 + x

=
1

1 − (−x)

Choose u = −x.
2. 

Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = −x:

⨠⨠ 1 + (−x) + (−x)2 + (−x)3 + ⋯

Simplify:

⨠⨠ 1 − x + x2 − x3 + ⋯

 Rewrite in format 1
1−u .

 Plug u = −x into geometric series.
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(b) 1
1 + x2

(c) x3

x + 2

Final answer:

1
1 + x

= 1 − x + x2 − x3 + ⋯

1. 
Rewrite:

1
1 + x2

=
1

1 − (−x2)

Choose u = −x2.
2. 

Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = −x2:

⨠⨠ 1 + (−x2) + (−x2)2 + (−x2)3 + ⋯ ⨠⨠ 1 − x2 + x4 − x6 + ⋯

Final answer:

1
1 + x

= 1 − x2 + x4 − x6 + ⋯

1. 
Rewrite:

x3

x + 2
⨠⨠ x3 ⋅

1
2 + x

⨠⨠ x3 ⋅
1

2 (1 + x
2 )

⨠⨠
1
2
x3 ⋅

1
1 + x

2
⨠⨠

1
2
x3 ⋅

1

1 − (− x
2 )

Choose u = − x
2 . Here Ax3 = 1

2 x
3.

2. 
Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = − x
2 :

⨠⨠ 1 + (− x
2 ) + (− x

2 )2 + (− x
2 )3 + ⋯

⨠⨠ 1 −
1
2
x +

1
4
x2 −

1
8
x3 + ⋯

Obtain:

1

1 − (− x
2 )

= 1 −
1
2
x +

1
4
x2 −

1
8
x3 + ⋯

3. 

 Rewrite in format 1
1−u .

 Plug u = −x2 into geometric series.

 Rewrite in format Ax3 ⋅ 1
1−u .

 Plug u = −x2 into geometric series.

 Multiply by 1
2 x

3.
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(d) 3x
2 − 5x

Manipulating geometric series: calculus

Find a power series that represents ln(1 + x).

Solution

Distribute:

1
2
x3 ⋅

1

1 − (− x
2 )

⨠⨠
1
2
x3 −

1
4
x4 +

1
8
x5 −

1
16

x6 + ⋯

Final answer:

x3

x + 2
=

1
2
x3 −

1
4
x4 +

1
8
x5 −

1
16

x6 + ⋯

1. 
Rewrite:

3x
2 − 5x

⨠⨠ 3x ⋅
1

2 − 5x

⨠⨠ 3x ⋅
1

2 (1 − 5x
2 )

⨠⨠
3
2
x ⋅

1

1 − 5x
2

Choose u = 5x
2 . Here Ax = 3

2 x.
2. 

Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = 5x
2 :

⨠⨠ 1 + ( 5x
2 ) + ( 5x

2 )2 + ( 5x
2 )3 + ⋯

⨠⨠ 1 +
5
2
x +

25
4
x2 +

125
8

x3 + ⋯

Obtain:

1

1 − 5x
2

= 1 +
5
2
x +

25
4
x2 +

125
8

x3 + ⋯

3. 
Distribute:

3
2
x ⋅

1

1 − 5x
2

⨠⨠
3
2
x +

15
4
x2 +

75
8
x3 +

375
16

x4 + ⋯

Final answer:

3x
2 − 5x

=
3
2
x +

15
4
x2 +

75
8
x3 +

375
16

x4 + ⋯

1. 
Differentiate ln(1 + x):

d

dx
ln(1 + x) =

1
1 + x

⨠⨠ 1
1 − (−x)

2. 

 Rewrite in format Ax ⋅ 1
1−u

.

 Plug u = 5x
2  into geometric series.

 Multiply by 3
2 x.

 Differentiate to obtain similarity to geometric sum formula.

 Find power series of differentiated function.
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Recognizing and manipulating geometric series: Part I

(a) Evaluate 
∞

∑
n=1

(−1)n−1 1
n

.

(Hint: consider the series of ln(1 − x).)

(b) Find a series approximation for ln(2/3).

Solution

(a) Evaluate 
∞

∑
n=1

(−1)n−1 1
n

. (Hint: consider the series of ln(1 − x).)

(b) Find a series approximation for ln(2/3).

Power series by modifying 1
1−u

 with u = −x:

1
1 − (−x)

= 1 − x + x2 − x3 + x4 − ⋯

3. 
Integrate both sides:

∫ 1
1 − (−x)

dx = ∫ 1 − x + x2 − x3 + x4 − ⋯ dx

ln(1 + x) = D + x −
1
2
x2 +

1
3
x3 −

1
4
x4 + ⋯

Use known point to solve for D:

ln(1 + 0) = D + 0 + 0 + ⋯ ⨠⨠ 0 = D

Final answer:

ln(1 + x) = x −
1
2
x2 +

1
3
x3 −

1
4
x4 + ⋯

1. 

We know the series of −1
1−x :

−1
1 − x

= −(1 + x + x2 + ⋯) = −1 − x − x2 − ⋯

Notice that ∫ −1
1−x

dx = ln(1 − x) + C; this is the desired function when C = 0.
Integrate the series term-by-term:

∫ −1
1 − x

dx = ∫ −1 − x − x2 − ⋯ dx ⨠⨠ ln(1 − x) = D − x −
x2

2
−

x3

3
− ⋯

Solve for D using ln(1 − 0) = 0, so 0 = D − 0 − 0 − ⋯ and thus D = 0. So:

ln(1 − x) = −x −
x2

2
−

x3

3
− ⋯ =

∞

∑
n=1

−
xn

n!

2. 
The series formula ∑∞

n=1 − xn

n!  looks similar to the formula ∑∞
n=1(−1)n−1 1

n .
3. 

We obtain equality by setting x = −1 because −(−1)n = (−1)n+1 = (−1)n−1.
4. 

 Integrate series to find original function.

 Find the series representation of ln(1 − x) following the hint.
 Notice that d

dx
ln(1 − x) = −1

1−x
.

 Notice the similar formula.

 Choose x = −1 to recreate the desired series.

 Final answer is ln(1 − −1) = ln 2.
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Recognizing and manipulating geometric series: Part II

(a) Find a series representing tan−1(x) using differentiation.

(b) Find a series representing ∫ dx

1 + x4
.

Solution

(a) Find a series representing tan−1(x).

1. 
Therefore we can use the series ln(1 − x) = −x − x2

2 − x3

3 − ⋯

2. 
Plug in and simplify:

ln(2/3) = ln(1 − 1/3) = −1/3 −
(1/3)2

2
−

(1/3)3

3
− ⋯

= −
1
3

−
1

32 ⋅ 2
−

1
33 ⋅ 3

− ⋯

1. 
2. 

Let u = −x2:

1
1 + x2

⨠⨠ 1
1 − u

= 1 + u + u2 + ⋯

⨠⨠ 1 − x2 + x4 − x6 + x8 − ⋯

3. 
Set up the strategy. We know:

∫ 1
1 + x2

dx = tan−1(x) + C

and:

1
1 + x2 = 1 − x2 + x4 − x6 + x8 − ⋯

Integrate term-by-term:

⨠⨠ ∫ 1 − x2 + x4 − x6 + x8 − ⋯ dx

⨠⨠ D + x −
x3

3
+

x5

5
−

x7

7
+ ⋯

Conclude that:

tan−1(x) + C = D + x −
x3

3
+

x5

5
−

x7

7
+ ⋯

4. 
Plugging in, obtain:

tan−1(0) = D − C + 0 + ⋯ + 0

so D − C = 0.
5. 

 Observe that ln(2/3) = ln(1 − 1/3).

 Plug x = 1/3 into the series for ln(1 − x).

 Notice that d
dx tan−1(x) = 1

1+x2 .
 Obtain the series for 1

1+x2 .

 Integrate the series for 1
1+x2  by terms.

 Solve for D − C by testing at tan−1(0) = 0.

 Final answer is tan−1(x) = x − x3

3 + x5

5 − x7

7 + ⋯.
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(b) Find a series representing ∫ dx

1 + x4
.

Taylor and Maclaurin series
Maclaurin series of ex

What is the Maclaurin series of f(x) = ex?

Solution

Because d

dx
ex = ex, we find that f (n)(x) = ex for all n.

So f (n)(0) = e0 = 1 for all n. Therefore an =
1
n!

 for all n by the Derivative-Coefficient identity.

Thus:

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ⋯ =

∞

∑
n=0

xn

n!

Maclaurin series of cos x

Find the Maclaurin series representation of cosx.

Solution
Use the Derivative-Coefficient Identity to solve for the coefficients:

an =
f (n)(0)
n!

n f (n)(x) f (n)(0) an

0 cosx 1 1

1 − sinx 0 0

2 − cosx −1 −1/2

3 sinx 0 0

4 cosx 1 1/24

5 − sinx 0 0

⋮ ⋮ ⋮ ⋮

1. 
Integrand is 1

1+x4 .
Rewrite integrand in format of geometric series sum:

1
1 + x4

⨠⨠
1

1 − (−x4)
⨠⨠

1
1 − u

, u = −x4

Write the series:

1
1 − u

= 1 + u + u2 + u3 + ⋯ ⨠⨠ 1 − x4 + x8 − x12 + x16 − ⋯ =
∞

∑
n=0

(−1)nx4n

2. 
Integrate term-by-term:

∫ 1 − x4 + x8 − x12 + x16 − ⋯ dx ⨠⨠ C + x −
x5

5
+

x9

9
−

x13

13
+

x17

17
− ⋯

This is our final answer.

 Find a series representing the integrand.

 Integrate the integrand series by terms.
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By studying the generating pattern of the coefficients, we find for the series:

cosx = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n

(2n)!

Maclaurin series from other Maclaurin series

(a) Find the Maclaurin series of sinx using the Maclaurin series of cosx.

(b) Find the Maclaurin series of f(x) = x2e−5x using the Maclaurin series of ex.

(c) Using (b), find the value of f (22)(0).

Solution

(a)

(b)

(c)

1. 
2. 

Differentiate term-by-term:

1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ ⨠⨠ 0 − 2

x1

2!
+ 4

x3

4!
− 6

x5

6!
+ ⋯

= −
x1

1!
+

x3

3!
−

x5

5!
− ⋯

Take negative because sinx = − d
dx

cosx:

⨠⨠ x −
x3

3!
+

x5

5!
−

x7

7!
+ ⋯

3. 

1. 
2. 

Set u = −5x:

1 +
u1

1!
+

u2

2!
+

u3

3!
+ ⋯ ⨠⨠ 1 +

(−5x)
1!

+
(−5x)2

2!
+

(−5x)3

3!
+ ⋯

3. 
Product of series:

x2e−5x ⨠⨠ x2 (1 +
(−5x)

1!
+

(−5x)2

2!
+

(−5x)3

3!
+ ⋯)

⨠⨠ x2 − 5x3 +
25
2
x4 −

125
3!

x5 + ⋯

⨠⨠
∞

∑
n=0

(−1)n
5nxn+2

n!

1. 
Suppose we know the series f(x) = a0 + a1x + a2x

2 + a3x
3 + ⋯

Then f (n)(0) = n! ⋅ an.

 Remember that d
dx cosx = − sinx

 Differentiate cosx = 1 − x2

2! + x4

4! − x6

6! + ⋯

 Final answer is sinx = x − x3

3! + x5

5! − ⋯

 Recall the series eu = 1 + u1

1! + u2

2! + u3

3! + ⋯

 Compute the series for e−5x.

 Compute the product.

 Derivatives at x = 0 are calculable from series coefficients.
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Computing a Taylor series

Find the first five terms of the Taylor series of f(x) = √x + 1 centered at c = 3.

Solution
A Taylor series is just a Maclaurin series that isn’t centered at c = 0.

The general format looks like this:

f(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + ⋯

The coefficients satisfy an = f (n)(c)
n! . (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at x = 3:

By dividing by n! we can write out the first terms of the series:

f(x) = √x + 1 = 2 +
1
4

(x − 3) −
1

64
(x − 3)2 +

1
512

(x − 3)3 −
5

16, 384
(x − 3)4 + ⋯

Applications of Taylor series
Taylor polynomial approximations

Let f(x) = sinx and let Tn(x) be the Taylor polynomials expanded around c = 0.

It may be easier to compute an for a given f(x) than to compute the derivative functions
f (n)(x) and then evaluate them.

2. 
Write the series such that it reveals the coefficients:

∞

∑
n=0

(−1)n
5nxn+2

n!
⨠⨠

∞

∑
n=0

((−1)n
5n

n!
)xn+2

⟹ an+2 = (−1)n
5n

n!

Compute a22:

a22 = (−1)20 520

20!
⨠⨠ 520 1

20!

3. 
Use Derivative-Coefficient Identity:

f (22)(0) = 22! ⋅ a22

⨠⨠ 520 ⋅
22!
20!

⨠⨠ 520 ⋅ 22 ⋅ 21

f(x) = (x + 1)1/2, f(3) = 2

f ′(x) =
1
2

(x + 1)−1/2, f ′(3) =
1
4

f ′′(x) = −
1
4

(x + 1)−3/2, f ′′(3) = −
1

32

f ′′′(x) =
3
8

(x + 1)−5/2, f ′′′(3) =
3

256

f (4)(x) = −
15
16

(x + 1)−7/2, f (4)(3) = −
15

2048

 Compute a22.

 Coefficient with an+2 corresponds to the term with xn+2, not necessarily the (n + 2)th

term (e.g. if the first term is x2 as here).

 Compute f (22)(0).
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By considering the alternating series error bound, find the first n for which Tn(0.02) must have
error less than 10−6.

Solution

Taylor polynomials to approximate a definite integral

Approximate ∫
0.3

0
e−x2

dx using a Taylor polynomial with an error no greater than 10−5.

Solution

1. 
Alternating sign, odd function:

sinx = x −
x3

3!
+

x5

5!
−

x7

7!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n+1

(2n + 1)!

2. 
AST error bound formula is:

|En| ≤ an+1

Here the series is S = a0 − a1 + a2 − a3 + ⋯  and En = S − Sn is the error.

3. 
Find n such that an+1 ≤ 10−6, and therefore by the AST error bound formula:

|En| ≤ an+1 ≤ 10−6

Plug in x = 0.02.
From the series of sinx we obtain for a2n+1:

a2n+1 =
0.022n+1

(2n + 1)!

We seek the first time it happens that a2n+1 ≤ 10−6.
4. 

Equations to solve:

0.022n+1

(2n + 1)!
≤ 10−6 but:

0.022(n−1)+1

(2(n − 1) + 1)!
≰ 10−6

Method: list the values:

0.021

1!
= 0.02,

0.023

3!
≈ 1.33 × 10−6,

0.025

5!
≈ 2.67 × 10−11, …

The first time a2n+1 is below 10−6 happens when 2n + 1 = 5.
5. 

When 2n + 1 = 5, the term x2n+1

(2n + 1)!
 at x = 0.02 is less than 10−6.

Therefore the sum of prior terms is accurate to an error of less than 10−6.
The sum of prior terms equals T4(0.02).
Since T4(x) = T3(x) because there is no x4 term, the same sum is T3(0.02).
The final answer is n = 3.

1. 

 Write the Maclaurin series of sinx because we are expanding around c = 0.

 Notice this series is alternating, so AST error bound formula applies.

 Notice that x = 0.02 is part of the terms ai in this formula.
 Implement error bound to set up equation for n.

 Solve for the first time a2n+1 ≤ 10−6.

 Interpret result and state the answer.

 It would be wrong to infer at the beginning that the answer is 5, or to solve 2n + 1 = 5 to
get n = 2.

 Write the series of the integrand.
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Plug u = −x2 into the series of eu:

eu = 1 +
u

1!
+

u2

2!
+ ⋯ ⨠⨠ e−x2

= 1 −
1
2!
x2 +

1
4!
x4 −

1
6!
x6 + ⋯

2. 
Antiderivative by terms:

∫ 1 −
1
2!
x2 +

1
4!
x4 −

1
6!
x6 + ⋯ dx ⨠⨠ x −

1
3!
x3 +

1
5!
x5 −

1
7!
x7 + ⋯

Plug in bounds for definite integral:

∫
0.3

0
e−x2

dx ⨠⨠ x −
1
3!
x3 +

1
5!
x5 −

1
7!
x7 + ⋯

0.3

0

⨠⨠ 0.3 −
0.33

3!
+

0.35

5!
−

0.37

7!
+ ⋯∣3. 

Compute some terms:

0.33

3!
≈ 0.0045,

0.35

5!
≈ 2.0 × 10−5,

0.37

7!
≈ 4.34 × 10−8

So we can guarantee an error less than 4.34 × 10−5 by summing the first terms through
0.35

5! .

4. 

 Compute definite integral by terms.

 Notice AST, apply error formula.

 Final answer is 0.3 −
0.33

3!
+

0.35

5!
≈ 0.291243.
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