W08 - Examples

Simple divergence test

Simple divergence test: examples

Consider: $\sum_{n=1}^{\infty} \frac{n}{4n+1}$

• This diverges by the SDT because $a_n \rightarrow \frac{1}{4}$ and not 0.

Consider: $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1}$

- This diverges by the SDT because $\lim_{n\to\infty} a_n = \text{DNE}$.
- We can say the terms "converge to the pattern +1, -1, +1, -1, ...," but that is not a limit value.

Positive series

p-series examples

By finding p and applying the p-series convergence properties:

We see that $\sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$ converges: p = 1.1 so p > 1

But $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges: p = 1/2 so $p \leq 1$

Integral test - pushing the envelope of convergence

Does
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 converge?
Does $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converge?

Notice that $\ln n$ grows *very slowly* with n, so $\frac{1}{n \ln n}$ is just a *little* smaller than $\frac{1}{n}$ for large n, and similarly $\frac{1}{n(\ln n)^2}$ is just a little smaller still.

Solution

1. \equiv The two series lead to the two functions $f(x) = \frac{1}{x \ln x}$ and $g(x) = \frac{1}{x(\ln x)^2}$.

- 2. \equiv Check applicability.
 - Clearly f(x) and g(x) are both continuous, positive, decreasing functions on $x \in [2,\infty]$
- 3. \Rightarrow Apply the integral test to f(x).
 - Integrate f(x):

$$egin{array}{lll} \int_2^\infty rac{1}{x\ln x} \; dx & \gg & \int_{u=\ln 2}^\infty rac{1}{u} \; du \ & \gg & & \lim_{R o\infty} \ln u \Big|_{\ln 1}^R & \gg & \infty \end{array}$$

- 4. \equiv Conclude: $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges.
- 5. \Rightarrow Apply the integral test to g(x).
 - Integrate g(x):

$$\begin{split} \int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} \, dx \quad \gg \gg \quad \int_{u=\ln 2}^{\infty} \frac{1}{u^{2}} \, du \\ \gg \gg \quad \lim_{R \to \infty} -u^{-1} \Big|_{\ln 2}^{R} \quad \gg \gg \quad \frac{1}{\ln 2} \end{split}$$

6. \equiv Conclude: $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converges.

Direct comparison test: rational functions

The series
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \, 3^n}$$
 converges by the DCT.

- Choose: $a_n = \frac{1}{\sqrt{n} \, 3^n}$ and $b_n = \frac{1}{3^n}$
- Check: $0 < \frac{1}{\sqrt{n} \, 3^n} \leq \frac{1}{3^n}$
- Observe: $\sum \frac{1}{3^n}$ is a convergent geometric series

The series
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^3}$$
 converges by the DCT.

- Choose: $a_n = \frac{\cos^2 n}{n^3}$ and $b_n = \frac{1}{n^3}$.
- Check: $0 \le \frac{\cos^2 n}{n^3} \le \frac{1}{n^3}$
- Observe: $\sum \frac{1}{n^3}$ is a convergent *p*-series

The series
$$\sum_{n=1}^{\infty} rac{n}{n^3+1}$$
 converges by the DCT.

• Choose: $a_n = \frac{n}{n^3+1}$ and $b_n = \frac{1}{n^2}$

• Check:
$$0 \le \frac{n}{n^3+1} \le \frac{1}{n^2}$$
 (notice that $\frac{n}{n^3+1} \le \frac{n}{n^3}$)

• Observe: $\sum \frac{1}{n^2}$ is a convergent *p*-series

The series
$$\sum_{n=2}^{\infty} \frac{1}{n-1}$$
 diverges by the DCT.

• Choose: $a_n = \frac{1}{n}$ and $b_n = \frac{1}{n-1}$

• Check:
$$0 \leq \frac{1}{n} \leq \frac{1}{n-1}$$

• Observe: $\sum \frac{1}{n}$ is a divergent *p*-series

Limit comparison test examples

The series
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
 converges by the LCT.

- Choose: $a_n = \frac{1}{2^n 1}$ and $b_n = \frac{1}{2^n}$.
- Compare in the limit:

$$\lim_{n
ightarrow\infty}rac{a_n}{b_n}$$
 $\gg\gg$ $\lim_{n
ightarrow\infty}rac{2^n}{2^n-1}$ $\gg\gg$ 1 =: L

• Observe: $\sum \frac{1}{2^n}$ is a convergent geometric series

The series
$$\sum_{n=1}^{\infty} rac{2n^2+3n}{\sqrt{5+n^5}}$$
 diverges by the LCT.

- Choose: $a_n = rac{2n^2 + 3n}{\sqrt{5 + n^5}}, \, b_n = n^{-1/2}$
- Compare in the limit:

$$egin{array}{lll} \lim_{n o\infty}rac{a_n}{b_n} &\gg& \lim_{n o\infty}rac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}} \ rac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}} & \stackrel{n o\infty}{\longrightarrow} & rac{2n^{5/2}}{n^{5/2}} o 2 \ =: \ L \end{array}$$

• Observe: $\sum n^{-1/2}$ is a divergent *p*-series

The series $\sum_{n=2}^{\infty} rac{n^2}{n^4-n-1}$ converges by the LCT.

- Choose: $a_n = \frac{n^2}{n^4 n 1}$ and $b_n = n^{-2}$
- Compare in the limit:

$$\lim_{n
ightarrow\infty}rac{a_n}{b_n} \quad \gg \gg \quad \lim_{n
ightarrow\infty}rac{n^4}{n^4-n-1} \quad \gg \gg \quad 1 \ =: \ L$$

• Observe: $\sum_{n=2}^{\infty} n^{-2}$ is a converging *p*-series

Alternating series

Alternating series test: basic illustration

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$
 converges by the AST

- Notice that $\sum \frac{1}{\sqrt{n}}$ diverges as a *p*-series with p = 1/2 < 1.
- Therefore the first series converges *conditionally*.

(b)
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2}$$
 converges by the AST.

- Notice the funny notation: $\cos n\pi = (-1)^n$.
- This series converges *absolutely* because $\left|\frac{\cos n\pi}{n^2}\right| = \frac{1}{n^2}$, which is a *p*-series with p = 2 > 1.

Approximating π

The Taylor series for $\tan^{-1} x$ is given by:

$$an^{-1}x = x - rac{x^3}{3} + rac{x^5}{5} - rac{x^7}{7} + \cdots$$

Use this series to approximate π with an error less than 0.001.

Solution

The main idea is to use $\tan \frac{\pi}{4} = 1$ and thus $\tan^{-1} 1 = \frac{\pi}{4}$. Therefore:

$$rac{\pi}{4} = 1 - rac{1}{3} + rac{1}{5} - rac{1}{7} + \cdots$$

and thus:

W08 - Examples

$$\pi = 4 - rac{4}{3} + rac{4}{5} - rac{4}{7} + \cdots$$

Write E_n for the error of the approximation, meaning $E_n = S - S_n$.

By the AST error formula, we have $|E_n| < a_{n+1}$.

We desire n such that $|E_n|<$ 0.001. Therefore, calculate n such that $a_{n+1}<$ 0.001, and then we will know:

$$|E_n| < a_{n+1} < 0.001$$

The general term is $a_n = \frac{4}{2n-1}$. Plug in n+1 in place of n to find $a_{n+1} = \frac{4}{2n+1}$. Now solve:

$$a_{n+1} = rac{4}{2n+1} < 0.001$$

 $\gg \gg \quad rac{4}{0.001} < 2n+1$
 $\gg \gg \quad 3999 < 2n$
 $\gg \gg \quad 2000 \le n$

We conclude that at least 2000 terms are necessary to be confident (by the error formula) that the approximation of π is accurate to within 0.001.