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W08 - Examples
Simple divergence test
Simple divergence test: examples

Consider: 
∞

∑
n=1

n

4n + 1

Consider: 
∞

∑
n=1

(−1)n−1 n

n + 1

Positive series
p-series examples

By finding p and applying the p-series convergence properties:

We see that ∑∞
n=1

1
n1.1  converges: p = 1.1 so p > 1

But ∑∞
n=1

1
√n

 diverges: p = 1/2 so p ≤ 1

Integral test - pushing the envelope of convergence

Does 
∞

∑
n=2

1

n lnn
 converge?

Does 
∞

∑
n=2

1

n(lnn)2
 converge?

Notice that lnn grows very slowly with n, so 1
n lnn  is just a little smaller than 1

n  for large n,
and similarly 1

n(lnn)2  is just a little smaller still.

Solution

This diverges by the SDT because an → 1
4  and not 0.

This diverges by the SDT because limn→∞ an = DNE.
We can say the terms “converge to the pattern +1, −1, +1, −1, … ,” but that is not a
limit value.

1. 

2. 
Clearly f(x) and g(x) are both continuous, positive, decreasing functions on x ∈ [2, ∞]

.
3. 

Integrate f(x):

∫
∞

2

1

x lnx
dx ⨠⨠ ∫

∞

u=ln 2

1

u
du

⨠⨠ lim
R→∞

lnu
R

ln 1
⨠⨠ ∞∣ The two series lead to the two functions f(x) = 1

x lnx
 and g(x) = 1

x(lnx)2 .

 Check applicability.

 Apply the integral test to f(x).
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Direct comparison test: rational functions

The series 
∞

∑
n=1

1

√n 3n
 converges by the DCT.

The series 
∞

∑
n=1

cos2 n

n3
 converges by the DCT.

The series 
∞

∑
n=1

n

n3 + 1
 converges by the DCT.

The series 
∞

∑
n=2

1

n − 1
 diverges by the DCT.

Limit comparison test examples

The series 
∞

∑
n=1

1

2n − 1
 converges by the LCT.

4. 
5. 

Integrate g(x):

∫
∞

2

1

x(lnx)2
dx ⨠⨠ ∫

∞

u=ln 2

1

u2
du

⨠⨠ lim
R→∞

−u−1
R

ln 2
⨠⨠

1

ln 2∣6. 

Choose: an = 1
√n 3n

 and bn = 1
3n

Check: 0 < 1
√n 3n

≤ 1
3n

Observe: ∑ 1
3n  is a convergent geometric series

Choose: an = cos2 n

n3  and bn = 1
n3 .

Check: 0 ≤ cos2 n
n3 ≤ 1

n3

Observe: ∑ 1
n3  is a convergent p-series

Choose: an = n
n3+1  and bn = 1

n2

Check: 0 ≤ n
n3+1

≤ 1
n2  (notice that n

n3+1
≤ n

n3 )
Observe: ∑ 1

n2  is a convergent p-series

Choose: an = 1
n  and bn = 1

n−1

Check: 0 ≤ 1
n

≤ 1
n−1

Observe: ∑ 1
n

 is a divergent p-series

Choose: an = 1
2n−1  and bn = 1

2n .
Compare in the limit:

lim
n→∞

an

bn
⨠⨠ lim

n→∞

2n

2n − 1
⨠⨠ 1 =: L

Observe: ∑ 1
2n  is a convergent geometric series

 Conclude: ∑∞
n=2

1
n lnn

 diverges.
 Apply the integral test to g(x).

 Conclude: ∑∞
n=2

1
n(lnn)2  converges.
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The series 
∞

∑
n=1

2n2 + 3n

√5 + n5
 diverges by the LCT.

The series 
∞

∑
n=2

n2

n4 − n − 1
 converges by the LCT.

Alternating series
Alternating series test: basic illustration

(a) 
∞

∑
n=1

(−1)n−1

√n
 converges by the AST.

(b) 
∞

∑
n=1

cosnπ

n2
 converges by the AST.

Approximating π

The Taylor series for tan−1 x is given by:

tan−1 x = x −
x3

3
+

x5

5
−

x7

7
+ ⋯

Use this series to approximate π with an error less than 0.001.

Solution
The main idea is to use tan π

4 = 1 and thus tan−1 1 = π
4 . Therefore:

π

4
= 1 −

1

3
+

1

5
−

1

7
+ ⋯

and thus:

Choose: an = 2n2+3n
√5+n5

, bn = n−1/2

Compare in the limit:

lim
n→∞

an

bn
⨠⨠ lim

n→∞

(2n2 + 3n)√n

√5 + n5

(2n2 + 3n)√n

√5 + n5

n→∞
⟶

2n5/2

n5/2
→ 2 =: L

Observe: ∑n−1/2 is a divergent p-series

Choose: an = n2

n4−n−1
 and bn = n−2

Compare in the limit:

lim
n→∞

an

bn
⨠⨠ lim

n→∞

n4

n4 − n − 1
⨠⨠ 1 =: L

Observe: ∑∞
n=2 n

−2 is a converging p-series

Notice that ∑ 1
√n

 diverges as a p-series with p = 1/2 < 1.

Therefore the first series converges conditionally.

Notice the funny notation: cosnπ = (−1)n.
This series converges absolutely because cosnπ

n2 = 1
n2 , which is a p-series with p = 2 > 1.∣ ∣
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π = 4 −
4

3
+

4

5
−

4

7
+ ⋯

Write En for the error of the approximation, meaning En = S − Sn.

By the AST error formula, we have |En| < an+1.

We desire n such that |En| < 0.001. Therefore, calculate n such that an+1 < 0.001, and then
we will know:

|En| < an+1 < 0.001

The general term is an = 4
2n−1 . Plug in n + 1 in place of n to find an+1 = 4

2n+1 . Now solve:

We conclude that at least 2000 terms are necessary to be confident (by the error formula)
that the approximation of π is accurate to within 0.001.

an+1 =
4

2n + 1
< 0.001

⨠⨠
4

0.001
< 2n + 1

⨠⨠ 3999 < 2n

⨠⨠ 2000 ≤ n
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