W05 - Examples

Hydrostatic force

15 - Fluid force on a triangular plate

Find the total force on the submerged *vertical* plate with the following shape: Equilateral triangle, sides 2m, top vertex at the surface, liquid is oil with density $\rho = 900 \text{kg/m}^3$.

Solution

1. \equiv Establish coordinate system: height *y* increases going *down*.

2. $\models =$ Compute width function w(y).

- Drop a perpendicular from top vertex to the base.
- Pythagorean Theorem: vertical height is $\sqrt{3}$.
- Similar triangles: ratio w(y)/y must equal ratio $2/\sqrt{3}$.
- Solve for w(y):

$$w(y)=2y/\sqrt{3}$$

 $3. \equiv$ Write integral using width function.

- Bounds: shallowest: y = 0; deepest: $y = \sqrt{3}$.
- Integral formula:

$$F =
ho g \int_{0}^{\sqrt{3}} y \, w(y) \, dy = 900 \cdot 9.8 \int_{0}^{\sqrt{3}} y \cdot 2 y / \sqrt{3} \, dy$$

4. \Rightarrow Compute integral.

• Simplify constants:

$$900 \cdot 9.8 \cdot rac{2}{\sqrt{3}} pprox 10184.5$$

• Compute integral without constants:

$$\int_{0}^{\sqrt{3}}y^{2}\,dy=rac{y^{3}}{3}\Big|_{0}^{\sqrt{3}}=\sqrt{3}$$

• Combine for the final answer: $10184.5 \cdot \sqrt{3} = 17640$

Moments and center of mass

17 - CoM of a parabolic plate

Find the CoM of the region depicted:

Solution

1. \equiv Compute the total mass.

• Area under the curve with density factor ρ :

$$M=\int_0^2
ho\,x^2\,dx\quad\gg\gg~
ho\,rac{x^3}{3}igg|_0^2\quad\gg\gg~rac{8
ho}{3}$$

2. \Rightarrow Compute M_y .

• Formula:

$$M_y = \int_a^b
ho \, x \, dA$$

• Interpret and calculate:

$$egin{aligned} M_y &= \int_0^2
ho \, x f(x) \, dx & \gg \gg &
ho \int_0^2 x^3 \, dx \ &\gg \gg & 4
ho = M_y \end{aligned}$$

3. \mathbf{E} Compute M_x .

• Formula:

$$M_x = \int_c^d
ho \, y \, dA$$

• Width of horizontal strips between the curves:

$$w(y) = 2 - \sqrt{y}$$

• Interpret *dA*:

$$dA = (2 - \sqrt{y}) \, dy$$

• Plug data into integral:

$$M_x = \int_c^d
ho \, y \, dA \quad \gg \gg \quad \int_0^d
ho \, y (2 - \sqrt{y}) \, dy$$

• Calculate integral:

$$egin{aligned} &\int_{0}^{4}
ho\,y(2-\sqrt{y})\,dy &\gg &\int_{0}^{4}
ho\,2y\,dy -\int_{0}^{4}
ho\,y^{3/2}\,dy \ &\gg & rac{16
ho}{5} = M_{x} \end{aligned}$$

4. \equiv Compute CoM coordinates from moments.

• CoM formulas:

$$ar{x}=rac{M_y}{M}, \qquad ar{y}=rac{M_x}{M}$$

• Insert data:

$$\bar{x} = \frac{4\rho}{8\rho/3} \quad \gg \gg \quad \frac{3}{2}$$
$$\bar{y} = \frac{16\rho/5}{8\rho/3} \quad \gg \gg \quad \frac{6}{5}$$

• Therefore CoM is located at $(\bar{x}, \bar{y}) = (\frac{3}{2}, \frac{6}{5})$.

18 - Computing CoM using only vertical strips

Find the CoM of the region:

Solution

1. \equiv Compute the total mass *M*.

• Area under the curve times density ρ :

$$\int_0^{\pi/2}
ho\,\cos x\,dx =
ho\sin x \Big|_0^{\pi/2} =
ho$$

2. \Rightarrow Compute M_y using vertical strips.

• Plug $f(x) = \cos x$ into formula:

$$M_y = \int_a^b
ho \, x \, f(x) \, dx \quad \gg \gg \quad \int_0^{\pi/2}
ho \, x \cos x \, dx$$

• Integration by parts.

- Set $u = x, v' = \cos x$; then $u' = 1, v = \sin x$.
- IBP formula:

$$\int_a^b uv'\,dx = uv\Big|_a^b - \int_a^b u'v\,dx$$

• Plug in data:

$$\int_0^{\pi/2} \rho \, x \cos x \, dx = \rho \, x \sin x \Big|_0^{\pi/2} - \rho \, \int_0^{\pi/2} \sin x \, dx$$

• Evaluate:

$$\gg \gg \qquad rac{\pi
ho}{2} \cdot 1 -
ho \left(-\cos rac{\pi}{2} - -\cos 0
ight) =
ho \left(rac{\pi}{2} - 1
ight)$$

3. $\models \exists$ Compute M_x also using vertical strips.

• Plug $f_2(x) = f(x) = \cos x$ and $f_1(x) = 0$ into formula:

$$M_x = \int_0^{\pi/2}
ho \, rac{1}{2} f_2^2 \, dx \quad \gg \gg \quad \int_0^{\pi/2}
ho \, rac{1}{2} \cos^2 x \, dx$$

• Integration by 'power to frequency conversion':

• Use
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$
:
$$\int_0^{\pi/2} \rho \, \frac{1}{2} \cos^2 x \, dx = \frac{\rho}{4} \int_0^{\pi/2} (1 + \cos 2x) \, dx$$

• Integrate:

$$\gg \gg \qquad rac{
ho}{4}x\Big|_0^{\pi/2}+rac{
ho\sin 2x}{8}\Big|_0^{\pi/2}=rac{\pi
ho}{8}$$

$4. \equiv \text{Compute CoM}.$

• CoM via moment formulas:

$$ar{x}=rac{M_y}{M}, \qquad ar{y}=rac{M_x}{M}$$

• Plug in data:

$$ar{x}=rac{
ho(\pi/2-1)}{
ho}$$
 >>> $rac{\pi}{2}-1$

• Plug in data:

$$ar{y}=rac{\pi
ho/8}{
ho}$$
 >>> $rac{\pi}{8}$

• CoM is given by $(\bar{x}, \bar{y}) = \left(\frac{\pi}{2} - 1, \frac{\pi}{8}\right)$.

19 - CoM of region between line and parabola

Compute the CoM of the region below y=x and above $y=x^2$ with $x\in [0,1].$

Solution

- $1.\equiv$ Name the functions: $f_1(x)=x^2$ (lower) and $f_2(x)=x$ (upper) over $x\in [0,1].$
- 2. \equiv Compute the mass M.
 - Area between curves times density:

$$M=\int_0^1
ho\left(f_2-f_1
ight)dx \quad\gg\gg
ho\int_0^1x-x^2\,dx=rac{
ho}{6}$$

3. \Rightarrow Compute M_y using vertical strips.

• Plug into formula:

$$M_y = \int_0^1
ho \, x \, (f_2 - f_1) \, dx =
ho \int_0^1 x (x - x^2) \, dx = rac{
ho}{12}$$

4. \Rightarrow Compute M_x also using vertical strips.

• Plug into formula:

$$M_x = \int_0^1
ho \, rac{1}{2} \left(f_2^2 - f_1^2
ight) dx \quad \gg \gg \quad
ho \int_0^1 rac{1}{2} (x^2 - x^4) \, dx = rac{2
ho}{30}$$

5. \equiv Compute CoM.

• Using CoM via moment formulas:

$$\bar{x} = \frac{\rho/12}{\rho/6} \quad \gg \gg \quad \frac{1}{2}$$
$$\bar{y} = \frac{2\rho/30}{\rho/6} \quad \gg \gg \quad \frac{2}{5}$$

• CoM is given by $(\bar{x}, \bar{y}) = (\frac{1}{2}, \frac{2}{5}).$

20 - Center of mass using moments and symmetry

Find the center of mass of the region below.

Solution

1. \equiv Symmetry: CoM on *y*-axis.

- Because the region is symmetric in the *y*-axis, the CoM must lie on that axis.
- Therefore $\bar{x} = 0$.

2. 🛆 Additivity of moments.

- Write M_x for the total x-moment (distance measured to the x-axis from above).
- Write M_x^{tri} and M_x^{circ} for the *x*-moments of the triangle and circle.
- Additivity of moments equation:

$$M_x = M_x^{
m tri} + M_x^{
m circ}$$

3. $\models \exists$ Find moment of the circle M_x^{circ} .

- By symmetry we know $ar{x}^{
 m circ}=0.$
- By symmetry we know $ar{y}^{
 m circ}=5.$
- Area of circle with r = 2 is $A = 4\pi$, so total mass is $M = 4\pi\rho$.
- Centroid-from-moments equation:

$$ar{y}^{ ext{circ}} = rac{M_x^{ ext{circ}}}{M}$$

• \triangle Solve the equation for M_x^{circ} .

• Solve:

$$ar{y}^{ ext{circ}} = rac{M_x^{ ext{circ}}}{M} \quad \gg \gg \quad 5 = rac{M_x^{ ext{circ}}}{4\pi
ho}$$

$$\gg M_x^{
m circ} = 20\pi\rho$$

4. $\models =$ Find moment of the triangle M_x^{tri} using integral formula

• Similar triangles:

• Similarity equation:

$$rac{\ell(y)}{h-y} = rac{b}{h} \quad \gg \gg \quad \ell(y) = b - rac{b}{h}y$$

• Integral formula:

$$M_x^{ ext{tri}} =
ho \int_0^h y \ell(y) \, dy =
ho \int_0^h y \, \left(b - rac{b}{h} y
ight) dy$$

• Perform integral:

$$ho \int_0^h y \, \left(b - rac{b}{h} y
ight) dy \quad \gg \gg \quad
ho \left(rac{by^2}{2} - rac{by^3}{3h}
ight) \Big|_0^h = rac{
ho bh^2}{6}$$

• Conclude:

$$M_x^{ ext{tri}}=rac{
ho bh^2}{6}=rac{
ho 4\cdot 3^2}{6}=6
ho$$

5. \implies Apply additivity.

• Additivity formula:

$$M_x = M_x^{\mathrm{tri}} + M_x^{\mathrm{circ}} =
ho(20\pi + 6)$$

 $6. \equiv$ Total mass of region.

- Area of circle is 4π .
- Area of triangle is $\frac{1}{2} \cdot 4 \cdot 3 = 6$.
- Thus $M = \rho A = \rho (4\pi + 6)$.

7. \equiv Compute center of mass \bar{y} from total M_x and total M.

- We have $M_x =
 ho(20\pi + 6)$ and $M =
 ho(4\pi + 6)$.
- Plug into formula:

$$ar{y} = rac{M_x}{M} = rac{
ho(20\pi+6)}{
ho(4\pi+6)} pprox 3.71$$

8. \equiv Final answer is $(\bar{x}, \bar{y}) = (0, 3.71)$.

21 - Center of mass - two part region

Find the center of mass of the region which combines a rectangle and triangle (as in the figure) by computing separate moments. What are those separate moments? Assume the mass density is $\rho = 1$.

Solution

- 1. \triangle By symmetry, the center of mass of the rectangle is located at (-1, 2).
 - Thus $ar{x}^{ ext{rect}} = -1$ and $ar{y}^{ ext{rect}} = 2$.
- 2. \Rightarrow Find moments of the rectangle.
 - Total mass of rectangle = $M^{\text{rect}} = \rho \times \text{area} = 1 \cdot 8 = 8.$
 - Apply moment relation:

$$ar{x}^{ ext{rect}} = rac{M_y^{ ext{rect}}}{M^{ ext{rect}}} \qquad \gg \gg \qquad M_y^{ ext{rect}} = -8$$
 $ar{y}^{ ext{rect}} = rac{M_x^{ ext{rect}}}{M^{ ext{rect}}} \qquad \gg \gg \qquad M_x^{ ext{rect}} = 16$

3. $\models =$ Find moments of the triangle.

- Area of vertical slice = $(4 \frac{4}{4}x) dx$.
- Distance from y-axis = x.
- Total M_y^{tri} integral:

$$egin{aligned} M_y^{ ext{tri}} &= \int_0^4
ho x \left(4 - rac{4}{4} x
ight) dx \ &= \int_0^4 1 \cdot (4 - x) x \, dx = rac{32}{3} \end{aligned}$$

• Total M_x^{tri} integral:

$$egin{aligned} M_x^{ ext{tri}} &= \int_0^4
ho rac{1}{2} f(x)^2 \, dx = \int_0^4
ho rac{1}{2} igg(4-rac{4}{4}xigg)^2 \, dx \ &= 1 \cdot rac{1}{2} \int_0^4 (16-8x+x^2) \, dx = rac{32}{3} \end{aligned}$$

4. \mathbf{E} Add up total moments.

- General formulas: $M_x = M_x^{\text{tri}} + M_x^{\text{rect}}$ and $M_y = M_y^{\text{tri}} + M_y^{\text{rect}}$
- Plug in data: $M_x = \frac{32}{3} + 16 = \frac{80}{3}$ and $M_y = \frac{32}{3} 8 = \frac{8}{3}$

5. E Find center of mass from moments.

- Total mass of triangle $= M^{\mathrm{tri}} =
 ho imes \mathrm{area} = 1 \cdot rac{1}{2} \cdot 4 \cdot 4 = 8.$
- Total combined mass $= M = M^{\text{tri}} + M^{\text{rect}} = 8 + 8 = 16.$
- Apply moment relation:

$$ar{x} = rac{M_y}{M} = rac{8/3}{16} = rac{1}{6}$$
 $ar{y} = rac{M_x}{M} = rac{80/3}{16} = rac{5}{3}$

• Therefore, center of mass is $(\bar{x}, \bar{y}) = (\frac{1}{6}, \frac{5}{3}).$