W04 - Examples

Arc length

12 - Arc length of chain, via position

A hanging chain describes a **catenary** shape. ('Catenary' is to hyperbolic trig as 'sinusoid' is to normal trig.) The graph of the hyperbolic cosine is a catenary:

Let us compute the arc length of this catenary on the portion from x = 0 to x = a.

Solution

1. 🛆 Arc-length formula.

• Give arc length s(a), a function of $a \ge 0$:

$$s(a)=\int_{0}^{a}\sqrt{1+\left(f^{\prime}
ight) ^{2}}\,dx$$

2. \equiv Compute f'(x).

• Hyperbolic trig derivative:

$$rac{d}{dx} {
m cosh}(x) = {
m sinh}(x)$$

3. \equiv Plug into formula.

• Arc length:

$$s(a)=\int_0^a \sqrt{1+\sinh^2(x)}\,dx$$

4. 🕛 Hyperbolic trig identity.

• Fundamental identity:

$$\cosh^2 x - \sinh^2 x = 1$$

• Rearrange:

 $1+\sinh^2 x=\cosh^2 x$

5. \Rightarrow Plug into formula and compute.

• Arc length:

1

$$\int_0^a \sqrt{1+\sinh^2(x)}\,dx \qquad \gg \gg \qquad \int_0^a \sqrt{\cosh^2 x}\,dx \qquad \gg \gg \qquad \int_0^a \cosh x\,dx$$

• Compute integral:

$$\int_0^a \cosh x \, dx = \sinh a$$

• ① The arc length of a catenary curve matches the area under the catenary curve!

13 - Arc length, line segment

Find the arc length of the *straight line* given by the formula y = 3x + 1 over $x \in [0,3]$.

Check your answer using the Pythagorean Theorem.

Surface areas of revolutions - thin bands

14 - Surface area of a sphere

Using the fact that a sphere is given by revolving a semicircle, verify the formula $S = 4\pi r^2$ for the surface area of a sphere.

Solution

- 1. \Rightarrow Sphere as surface of revolution.
 - Sphere of radius *r* given by revolving upper semicircle.
 - Upper semicircle:

$$x^2+y^2=r^2, \qquad y\geq 0$$

• Upper semicircle as function of *x*:

$$y=f(x)=\sqrt{r^2-x^2},\qquad x\in [-r,r]$$

2. \Rightarrow Surface area formula.

- Bounds are x = -r and x = +r.
- Function is $f(x) = \sqrt{r^2 x^2}$
- Plug data into formula:

$$S = \int_{-r}^{+r} 2\pi \sqrt{r^2 - x^2} \sqrt{1 + \left(f'
ight)^2} \, dx$$

3. \equiv Compute $(f')^2$.

• Power rule and chain rule:

$$f'(x)=rac{1}{2}(r^2-x^2)^{-1/2}(-2x)$$

• Algebra:

$$\gg$$
 \gg $-x(r^2-x^2)^{-1/2}$

• Squaring:

$$\left(f'
ight)^2=rac{x^2}{r^2-x^2}$$

4. \Rightarrow Compute integrand.

• Compute $1 + (f')^2$:

$$1 = rac{r^2 - x^2}{r^2 - x^2} \ 1 + ig(f'ig)^2 \qquad \gg \gg \qquad rac{r^2 - x^2}{r^2 - x^2} + rac{x^2}{r^2 - x^2} \qquad \gg \gg \qquad rac{r^2}{r^2 - x^2}$$

• Integrand factors become:

$$\sqrt{r^2-x^2}\sqrt{1+\left(f'
ight)^2} \qquad \gg \gg \qquad \sqrt{r^2-x^2}\sqrt{rac{r^2}{r^2-x^2}} \qquad \gg \gg$$

r

5. \Rightarrow Compute integral.

• Surface area again:

$$S = \int_{-r}^{+r} 2\pi r \, dx$$

= $2\pi r x \Big|_{-r}^{+r} = 2\pi r r - 2\pi r (-r)$
= $4\pi r^2$

• This is the desired surface area formula $S = 4\pi r^2$.