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11.7 Strategy for Testing Series
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the series > (—1)" 37 converges by the Alternating Series Test. By Exercise 9, 5 g diverges, so the series
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15. Let f(z) = — Then f is positive, continuous, and decreasing on [2, 00), so we can apply the Integral Test.
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19. 2—31 (F + 3—n> = 'Z_:l = + z_:l (5) . The first series converges since it is a p-series with p = 3 > 1 and the second

series converges since it is geometric with |r| = % < 1. The sum of two convergent series is convergent.
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Alternating Series Test.
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31. Using the Limit Comparison Test with a,, = tan (l) and b, = l, we have
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because it is a constant multiple of a p-series with p = % <1
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35. Use the Ratio Test. lim o Jim REE | Jim, enZtentlpl Jim T 0<1s0 nZ::l =
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3r. fz ?dw = t]_l’n;lc [f - ;} . [using integration by parts] = 1. So nz::l —7 converges by the Integral Test, and since
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(see Exercise 6.8.63 [ET 4.4.63), so the series > = diverges by comparison with the divergent harmonic series.
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