Summary of Sequence and Series

Sequences

- The sequence $\{a_n\}$:
 - converges to L if $\lim_{n\to\infty} a_n = L$ (where L is finite)
 - diverges to ∞ (or $-\infty$) if L is ∞ (or $-\infty$).
- The sequence $\{r^n\}$:
 - converges to 0 for -1 < r < 1,
 - converges to 1 for r = 1,
 - diverges otherwise.
- Monotonically increasing: $a_{n+1} \ge a_n$ for all n.
- Monotonically decreasing: $a_{n+1} \leq a_n$ for all n.
- Bounded above: if there exists a M > 0 such that $a_n \leq M$ for all n
- Bounded bellow: if there exists a N > 0 such that $N \leq a_n$ for all n
- Bounded sequence: if there exists a M>0 and a N>0 such that $N\leq a_n\leq M$ for all n
- Theorem: If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.
- Theorem: A monotonic bounded sequence converges.
- Squeeze Theorem: If $a_n \leq b_n \leq c_n$ for all $n \geq n_0$, and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L,$$

then $\lim_{n\to\infty} b_n = L$.

Series

- A series is the sum of the terms of an infinite sequence
- Partial sum , $s_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n$

- Note: Series have two associated sequences:
 - The sequence of terms, $\{a_n\}$.
 - The sequence of partial sums, $\{s_n\}$.
- If $\lim_{n\to\infty} s_n = s$ where s is a real number \implies The series $\sum a_n$ converges. Otherwise, diverges.
- $\sum_{n=1}^{\infty} a_n = s$ (sum of the series).
- If $\sum_{n=1}^{\infty} a_n$ converges $\implies \lim_{n \to \infty} a_n = 0$.
- Absolutely convergence: Both $\sum a_n$ and $\sum |a_n|$ converges
- Conditional convergence: $\sum a_n$ converges but $\sum |a_n|$ diverges
- $\sum |a_n|$ converges $\implies \sum a_n$ converge
- Harmonic series $\sum \frac{1}{n}$ diverges but alternating harmonic series $\sum (-1)^n \frac{1}{n}$ converges conditionally.

Alternating Series Estimation Theorem:

If $s = \sum_{n=1}^{\infty} (-1)^n b_n$ convergent by alternating series test then

$$|Error| = |s - s_n| \le b_{n+1}$$

In other words, the absolute error is less than or equal to the first omitted term in the series.

Function growth rate comparison chart at $n \to \infty$

 $constant < log(n) < n^k < a^n < n! < f(n)^n < a^{b^n}$

where constants a > 1, b > 1 and k > 0.

Test Name	Conditions	Result	Comments
Divergence Test	$\sum a_n$	$\lim_{n\to\infty} a_n \neq 0 \implies \sum a_n \text{ diverges}$	Cannot ever be used to deter- mine convergence, only diver- gence.
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	$ r < 1 \implies$ converges. $ r \ge 1 \implies$ diverges. Sum, $s = \frac{a}{1-r}$	
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	$p > 1 \implies$ converges. $p \le 1 \implies$ diverges.	Useful in conjunction with com- parison tests.
Integral Test	$a_n > 0$, continuous and decreasing	Converges or diverges with $\int_1^\infty a_n dn$	Don't use if a_n difficult to integrate
Comparison Test (CT)	$a_n \ge 0$	If $0 \le a_n \le b_n$, if $\sum b_n$ converges $\implies \sum a_n$ converges if $\sum a_n$ diverges $\implies \sum b_n$ diverges	Series that closely resemble p - series or geometric series
Limit Com- parison Test (LCT)	$a_n \ge 0$	If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ then: If $c > 0$ and finite, both series converge or both diverge.	$\sum b_n \rightarrow$ series of your choice (usually <i>p</i> -series or geometric), for which you already know con- vergence or divergence.
Alternating Series Test	Alternating series: $\sum_{n=1}^{\infty} (-1)^n b_n,$ $b_n > 0$ and decreasing for all n	If $\lim_{n\to\infty} b_n = 0 \implies$ converges.	Useful if the series converges but does not converge absolutely. Other tests may be easier if se- ries converges absolutely.
Ratio Test	Series involving $n!, n^n, a^n$ or expressions like $1 \cdot 3 \cdot 5 \cdots (2n-1)$	If $\lim_{n\to\infty} \frac{ a_{n+1} }{ a_n } = L$ then: If $L < 1 \implies$ converges absolutely . If $L > 1$ or $\infty \implies$ diverges. $L = 1 \implies$ no conclusion (Test fails)	If test fails use another test. If the series has terms alternating in sign, try the Alternating Series Test.
Root Test	$ a_n = [f(n)]^n$	If $\lim_{n\to\infty} \sqrt[n]{ a_n } = L$ then: If $L < 1 \implies$ converges absolutely . If $L > 1$ or $\infty \implies$ diverges. $L = 1 \implies$ no conclusion (Test fails)	If test fails use another test.

Table 1: Series Tests and Convergence Criteria