
W14 Notes
Polar curves
Videos, Organic Chemistry Tutor

01 Theory - Polar points, polar curves

Polar coordinates are pairs of numbers (r, θ) which identify points in the plane in terms of
distance to origin and angle from +x-axis:

Polar coordinates have many redundancies: unlike Cartesian which are unique!

Polar coordinates cannot be added: they are not vector components!

⚠ The transition formulas Cartesian → Polar require careful choice of θ.

Polar coordinates intro
Graphing polar curves

Converting Polar ↔ Cartesian

Polar → Cartesian

x = r cos θ

y = r sin θ

Cartesian → Polar

r = √x2 + y2

tan θ =
y

x
(x ≠ 0)

For example: (r, θ) = (r, θ + 2π)

And therefore also (r, θ) = (r, θ − 2π) (negative θ can happen)
For example: (−r, θ) = (r, θ + π) for every r, θ

For example: (0, θ) = (0, 0) for any θ

For example (5,π/3) + (2,π/6) ≠ (7,π/2)

Whereas Cartesian coordinates can be added: (1, 4) + (2, −2) = (3, 2)

The standard definition of tan−1 ( y

x
) sometimes gives wrong θ

This is because it uses the restricted domain θ ∈ (−π/2,π/2); the polar interpretation is:
only points in Quadrant I and Quadrant IV (SAFE QUADRANTS)

Therefore: check signs of x and y to see which quadrant, maybe need π-correction!
Quadrant I or IV: polar angle is tan−1 ( y

x )
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Equations (as well as points) can also be converted to polar.

For Cartesian → Polar, look for cancellation from cos2 θ + sin2 θ = 1.

For Polar → Cartesian, try to keep θ inside of trig functions.

02 Illustration

 polar angle is tan−1 ( y

x
) + πQuadrant II or III:

For example:

r = sin2 θ ⨠⨠ √x2 + y2 = ( y

√x2 + y2
)

2

Converting to polar: π-correction

Compute the polar coordinates of (− 1
2 , + √3

2 ) and of (+ √2
2 , − √2

2 ).

Solution

For (− 1
2 , √3

2 ) we observe first that it lies in Quadrant II.

Next compute:

tan−1(
√3/2

−1/2
) ⨠⨠ tan−1 (−√3) ⨠⨠ − π/3

This angle is in Quadrant IV. We add π to get the polar angle in Quadrant II:

θ = π − π/3 ⨠⨠ 2π/3

The radius is of course 1 since this point lies on the unit circle. Therefore polar coordinates
are (r, θ) = (1, 2π/3).

For (+ √2
2

, − √2
2
) we observe first that it lies in Quadrant IV. (No extra π needed.)

Next compute:

tan−1(
−√2/2

+√2/2
) ⨠⨠ tan−1(−1) ⨠⨠ − π/4

So the point in polar is (1, −π/4).
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03 Theory - Polar limaçons

To draw the polar graph of some function, it can help to first draw the Cartesian graph of the
function. (In other words, set y = r and x = θ, and draw the usual graph.) By tracing through the
points on the Cartesian graph, one can visualize the trajectory of the polar graph.

This Cartesian graph may be called a graphing tool for the polar graph.

A limaçon is the polar graph of r(θ) = a + b cos θ.

Any limaçon shape can be obtained by adjusting c in this function (and rescaling):

r = 1 + c cos θ

Limaçon satisfying r(θ) = 1: unit circle.

Limaçon satisfying r(θ) = 2 + cos θ: ‘outer loop’ circle with ‘dimple’:

Limaçon satisfying r(θ) = 1 + cos θ: ‘cardioid’ = ‘outer loop’ circle with ‘dimple’ that creates a cusp:

Shifted circle in polar

For example, let’s convert a shifted circle to polar. Say we have the Cartesian equation:

x2 + (y − 3)2 = 9

Then to find the polar we substitute x = r cos θ and y = r sin θ and simplify:

So this shifted circle is the polar graph of the polar function r(θ) = 6 sin θ.

x2 + (y − 3)2 = 9

⨠⨠ r2 cos2 θ + (r sin θ − 3)2 = 9

⨠⨠ r2 cos2 θ + r2 sin2 θ − 6r sin θ + 9 = 9

⨠⨠ r2(sin2 θ + cos2 θ) − 6r sin θ = 0

⨠⨠ r2 − 6r sin θ = 0 ⨠⨠ r = 6 sin θ
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Limaçon satisfying r(θ) = 1 + 2 cos θ: ‘dimple’ pushes past cusp to create ‘inner loop’:

Limaçon satisfying r(θ) = cos θ: ‘inner loop’ only, no outer loop exists:

Limaçon satisfying r(θ) = 1 + 2 sin θ: ‘inner loop’ and ‘outer loop’ and rotated ↺ 90∘:

Transitions between limaçon types, r(θ) = 1 + c sin θ:
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Notice the transition points at |c| = 0.5 and |c| = 1:

The flat spot occurs when c = ±0.5

The cusp occurs when c = ±1

04 Theory - Polar roses

Roses are polar graphs of this form:

r = cos(θ), r = sin(2θ), r = sin(3θ), r = sin(4θ)

The pattern of petals:

Calculus with polar curves

05 Theory - Polar tangent lines, arclength

Smaller c gives convex shape

Smaller c gives dimple (assuming |c| > 0.5)
Larger c gives inner loop

n = 2k (even): obtain 2n petals
These petals traversed once

n = 2k + 1 (odd): obtain n petals
These petals traversed twice

Either way: total-petal-traversals: always 2n

Polar arclength formula

The arclength of the polar graph of r(θ), for θ ∈ [θ0, θ1]:

L = ∫
θ1

θ0

√r′(u)2 + r(u)2 du
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To derive this formula, convert to Cartesian with parameter θ:

r = r(θ) ⨠⨠ (x, y) = (r cos θ, r sin θ)

From here you can apply the familiar arclength formula with θ in the place of t.

06 Illustration

Extra - Derivation of polar arclength formula

Let r = r(θ) and convert to parametric Cartesian, so x(θ) = r cos θ and y(θ) = r sin θ.

Then:

Therefore:

Therefore:

ds = √(x′)2 + (y′)2 dθ ⨠⨠ √r′2 + r2 dθ

Therefore:

L = ∫
θ1

θ0

√r′(u)2 + r(u)2 du

ds = √(x′)2 + (y′)2 dθ

x′ = (r cos θ)′ ⨠⨠ r′ cos θ − r sin θ

y′ = (r sin θ)′ ⨠⨠ r′ sin θ + r cos θ

(x′)2 + (y′)2 ⨠⨠ r′2 cos2 θ − 2rr′ cos θ sin θ + r2 sin2 θ

+ r′2 sin2 θ + 2rr′ sin θ cos θ + r2 cos2 θ

= r′2 + r2

Finding vertical tangents to a limaçon

Let us find the vertical tangents to the limaçon (the cardioid) given by r = 1 + sin θ.

1. 
 Plug r(θ) into x = r cos θ and y = r sin θ:

r(θ) = 1 + sin θ ⨠⨠ (x, y) = ((1 + sin θ) cos θ, (1 + sin θ) sin θ)

2. 
 Derivatives of both coordinates:

(x′, y′) ⨠⨠

( cos θ cos θ + (1 + sin θ)(− sin θ), cos θ sin θ + (1 + sin θ) cos θ)

Simplify:

⨠⨠ ( cos2 θ − sin2 θ − sin θ, cos θ (1 + 2 sin θ))

3. 
 Set equation: x′ = 0:

x′(θ) = 0 ⨠⨠ cos2 θ − sin2 θ − sin θ = 0

 Convert to Cartesian parametric.

 Compute x′ and y′.

 The vertical tangents occur when x′(θ) = 0.
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 Convert to only sin θ:

⨠⨠ (1 − sin2 θ) − sin2 θ − sin θ = 0

Substitute A = sin θ and simplify:

⨠⨠ 1 − 2A2 − A = 0 ⨠⨠ 2A2 + A − 1 = 0

Solve:

A =
−b ± √b2 − 4ac

2a
⨠⨠

−1 ± √1 − 4 ⋅ 2 ⋅ (−1)

2 ⋅ 2
⨠⨠

1

2
, −1

Solve for θ:

A = sin θ ⨠⨠ sin θ =
1
2

, −1

⨠⨠ θ =
π

6
,

5π
6

(for 1/2) and θ =
3π
2

(for  − 1)

4. 
 In polar coordinates, the final points are:

(r, θ) = (1 + sin θ, θ)
θ= π

6 , 5π
6 , 3π

2

⨠⨠ ( 3

2
,
π

6
), ( 3

2
,

5π

6
), (0,

3π

2
)∣In Cartesian coordinates:

 For θ = π
6 :

(x, y)
θ= π

6

⨠⨠ ((1 + sin θ) cos θ, (1 + sin θ) sin θ)
θ= π

6

⨠⨠ ((1 +
1

2
)

√3

2
, (1 +

1

2
) 1

2
) ⨠⨠ ( 3√3

4
,

3

4
)∣ ∣For θ = 5π

6
:

(x, y)
θ= 5π

6

⨠⨠ ((1 + sin θ) cos θ, (1 + sin θ) sin θ)
θ= 5π

6

⨠⨠ ((1 +
1
2
) −√3

2
, (1 +

1
2
) 1

2
) ⨠⨠ (−

3√3
4

,
3
4
)∣ ∣For θ = 3π

2 :

(x, y)
θ= 3π

2

⨠⨠ ((1 + sin θ) cos θ, (1 + sin θ) sin θ)
θ= 3π

2

⨠⨠ ((1 − 1) ⋅ 0, (1 − 1) ⋅ (−1)) ⨠⨠ (0, 0)∣ ∣5. 
 The point (0, 0) at θ = 3π

2
 is on the cardioid, but the curve is not smooth there, this is a

cusp.

 Solve equation.

 Compute final points.

 Correction: (0, 0) is a cusp.
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07 Theory - Polar area

The “area under the curve” concept for graphs of functions in Cartesian coordinates translates to
a “sectorial area” concept for polar graphs. To compute this area using an integral, we divide the
region into Riemann sums of small sector slices.

To obtain a formula for the whole area, we need a formula for the area of each sector slice.

Still, the left- and right-sided tangents exists and are equal, so in a sense we can still
say the curve has vertical tangent at θ = 3π

2
.

Length of the inner loop

Consider the limaçon given by r(θ) = 1
2 + cos θ. How long is its inner loop? Set up an integral

for this quantity.

Solution

The inner loop is traced by the moving point when 2π
3 ≤ θ ≤ 4π

3 . This can be seen from the
graph:

Therefore the length of the inner loop is given by this integral:

L = ∫
4π/3

2π/3

√(− sin θ)2 + ( 1

2
+ cos θ)

2

dθ ⨠⨠ ∫
4π/3

2π/3

√5/4 + cos θ dθ

Sectorial area from polar curve

A = ∫
β

α

1

2
r(θ)2 dθ
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Now use dθ and r(θ) for an infinitesimal sector slice, and integrate these to get the total area
formula:

A = ∫
β

α

1
2
r(θ)2 dθ

One easily verifies this formula for a circle.

Let r(θ) = R be a constant. Then:

Area of circle = ∫
2π

0

1

2
R2 dθ ⨠⨠

1

2
R2θ

2π

0

⨠⨠ R2π

The sectorial area between curves:

08 Illustration

Area of sector slice

Let us verify that the area of a sector slice is 1

2
r2θ.

Take the angle θ in radians and divide by 2π to get the fraction of the whole disk.

Then multiply this fraction by πr2 (whole disk area) to get the area of the sector slice.

θ

2π
⋅ πr2 ⨠⨠

1

2
r2θ ∣Sectorial area between polar curves

A = ∫
β

α

1

2
(r1(θ)2 − r0(θ)2) dθ

Subtract after squaring, not before!

This aspect is not similar to the Cartesian version: ∫ f − g dx

Area between circle and limaçon

Find the area of the region enclosed between the circle r0(θ) = 1 and the limaçon
r1(θ) = 1 + cos θ.

Solution
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First draw the region:

The two curves intersect at θ = ± π
2 . Therefore the area enclosed is given by integrating over

− π
2 ≤ θ ≤ + π

2 :

A = ∫
b

a

1

2
(r2

1 − r2
0) dθ ⨠⨠ ∫

π/2

−π/2

1

2
((1 + cos θ)2 − 12) dθ

⨠⨠
1

2
∫

π/2

−π/2
2 cos θ + cos2 θ dθ ⨠⨠ ∫

π/2

−π/2
cos θ +

1

4
(1 + cos(2θ)) dθ

⨠⨠ sin θ +
θ

4
+

1

8
sin(2θ)

π/2

−π/2
⨠⨠ 2 +

π

4∣Area of small loops

Consider the following polar graph of r(θ) = 1 + 2 cos(4θ):

Find the area of the shaded region.

Solution

1. 
 Lower left loop occurs first.

This loop when 1 + 2 cos(4θ) ≤ 0.
Solve this:

1 + 2 cos(4θ) ≤ 0 ⨠⨠ cos(4θ) ≤ −
1

2

⨠⨠ 2π
3

≤ 4θ ≤
4π
3

⨠⨠ π

6
≤ θ ≤

π

3

2. 

 Bounds for one small loop.

 Area integral.
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 Arrange and expand area integral:

A = 4 ∫
β

α

1

2
r(θ)2 dθ ⨠⨠ 4 ∫

π/3

π/6

1

2
(1 + 2 cos(4θ))2

dθ

⨠⨠ 2 ∫
π/3

π/6
1 + 4 cos(4θ) + 4 cos2(4θ) dθ

Simplify integral using power-to-frequency: cos2 A ⇝
1
2 (1 + cos(2A)) with A = 4θ:

⨠⨠ 2 ∫
π/3

π/6

1 + 4 cos(4θ) + 4 ⋅
1

2
(1 + cos(8θ)) dθ

Compute integral:

⨠⨠ 6θ + 2 sin(4θ) +
1
4

sin(8θ)
π/3

π/6

⨠⨠ π −
3√3

2 ∣Overlap area of circles

Compute the area of the overlap between crossing circles. For concreteness, suppose one of
the circles is given by r(θ) = sin θ and the other is given by r(θ) = cos θ.

Solution

Here is a drawing of the overlap:

1. 
2. 
3. 
 Area formula applied to r(θ) = sin θ:

A = ∫
β

α

1

2
r(θ)2 dθ ⨠⨠ ∫

π/4

0

1

2
sin2 θ dθ

Power-to-frequency: sin2 θ ⇝
1
2 (1 − cos(2θ)):

⨠⨠ ∫
π/4

0

1
4
(1 − cos(2θ)) dθ

⨠⨠
1

4
θ −

1

8
sin(2θ)

π/4

0
⨠⨠

π

16
−

1

8∣ Notice: total overlap area = 2× area of red region.
 Bounds: 0 ≤ θ ≤ π

4 .
 Apply area formula for the red region.
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Double the result to include the black region:

⨠⨠
π

8
−

1

4
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