
W13 Notes
Parametric curves
Videos, Organic Chemistry Tutor

01 Theory

Parametric curves are curves traced by the path of a ‘moving’ point. An independent parameter,
such as t for ‘time’, controls both x and y values through Cartesian coordinate functions x(t)

and y(t). The coordinates of the moving point are (x(t), y(t)).

For example, suppose:

x = t2 − 2t, y = t + 1

The curve traced out is a parabola that opens horizontally:

Given a parametric curve, we can create an equation satisfied by x and y variables by solving for t
in either coordinate function (inverting either f or g) and plugging the result into the other
function.

In the example:

Intro to parametric equations and graphing

Parametric curve

A parametric curve is a function from parameter space R to the plane R2 given in terms of
coordinate functions:

t⟼ (x(t), y(t) )

Other notations

Be aware that sometimes the coordinate functions are written with f and g (or yet other
letters) like this: (x, y) = ( f(t), g(t) )

Or simply equating coordinate letters with functions: x = f(t), y = g(t)

Sometimes a different parameter is used, like s or u.
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This is the equation of a parabola centered at (−1, 2) that opens to the right.

A parametric curve has hidden information that isn’t contained in the image:

We can reparametrize a parametric curve to use a different parameter or different coordinate
functions while leaving the image unchanged.

In the previous example, shift t by 1:

Since the parameter t and the parameter t + 1 both cover the same values for t ∈ (−∞, ∞), the
same curve is traversed. But the moving point in the second, shifted version reaches any given
location one unit earlier in time. (When t = −1 in the second version, the input to x(t) and y(t) is
the same as when t = 0 in the first one.)

02 Illustration

y = t + 1 ⨠⨠ t = y − 1

⨠⨠ x = t2 − 2t ⨠⨠ x = (y − 1)2 − 2(y − 1)

⨠⨠ x = y2 − 4y + 3 ⨠⨠ x = (y − 2)2 − 1

Image of a parametric curve

The image of a parametric curve is the set of output points (x(t), y(t) ) that are traversed by
the moving point.

The time values t when the moving point is found in various locations.
The speed at which the curve is traversed.
The direction in which the curve is traversed.

x = (t + 1)2 − 2(t + 1), y = (t + 1) + 1

⨠⨠ x = t2 − 1, y = t + 2

Example - Parametric circles

The standard equation of a circle of radius R centered at the point (h, k):

(x − h)2 + (y − k)2 = R2

This equation says that the distance from a point (x, y) on the circle to the center point (h, k)

equals R. This fact defines the circle.

Parametric coordinates for the circle:

x = h + R cos t, y = k + R sin t, t ∈ [0, 2π)

For example, the unit circle x2 + y2 = 1 is parametrized by x = cos t and y = sin t.

Example - Parametric lines

Parametric coordinate functions for a line:
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x = a + rt, y = b + st, t ∈ (−∞, +∞)

Compare this to the graph of linear function:

y = mx + b some m, b

Vertical lines cannot be described as the graph of a function. We must use x = a.

Parametric lines can describe all lines equally well, including horizontal and vertical lines.

A vertical line x = a is achieved by setting s = 0 and r ≠ 0.

A horizontal line y = b is achieved by setting r = 0 and s ≠ 0.

A non-vertical line y = mx + b may be achieved by setting s = m and r = 1, and a = 0.

Assuming that r ≠ 0, the parametric coordinate functions describe a line satisfying:

and therefore the slope is m = s
r  and the y-intercept is b − s

r ⋅ a.

The point-slope construction of a line has a parametric analogue:

y = b + s( x − a

r
)

⨠⨠ y =
s

r
⋅ x + (b −

s

r
⋅ a)

point-slope line:

y − a = m(x − b) (x, y) = (a + t, b + mt)

Example - Parametric ellipses

The general equation of an ellipse centered at (h, k) with half-axes a and b is:

( x − h

a
)

2

+ ( y − k

b
)

2

= 1

This equation represents a stretched unit circle:

Parametric coordinate functions for the general ellipse:

by a in the x-axis
by b in the y-axis
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Calculus with parametric curves

03 Theory - Slope, concavity

We can use x(t) and y(t) data to compute the slope of a parametric curve in terms of t.

x = h + a cos t, y = k + b sin t, t ∈ [0, 2π)

Example - Parametric cycloids

The cycloid is the curve traced by a pen attached to the rim of a wheel as it rolls.

It is easy to describe the cycloid parametrically. Consider the geometry of the situation:

The center C of the wheel is moving rightwards at a constant speed of 1, so its position is
(t, 1). The angle is revolving at the same constant rate of 1 (in radians) because the radius is
1.

The triangle shown has base sin t, so the x coordinate is t − sin t. The y coordinate is 1 − cos t.

So the coordinates of the point P = (x, y) are given parametrically by:

x = t − sin t, y = 1 − cos t, t > 0

If the circle has another radius, say R, then the parametric formulas change to:

x = Rt − R sin t, y = R − R cos t, t > 0

Slope formula

Given a parametric curve (x(t), y(t)), its slope satisfies:
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When x′(t0) = y′(t0) = 0 for the same t = t0, we have a stationary point, which might
subsequently progress into pure vertical, pure horizontal, or neither.

04 Illustration

dy

dx
=

y′(t)

x′(t)
(where x′(t) ≠ 0)

Concavity formula

Given a parametric curve (x(t), y(t)), its concavity satisfies the formula:

d2y

dx2
=

d

dt
( y′(t)

x′(t)
) ⋅

1

x′(t)
(where x′(t) ≠ 0)

Extra - Derivation of slope and concavity formulas

For both derivations, it is necessary to view t as a function of x through the inverse
parameter function. For example if x = f(t) is the parametrization, then t = f−1(x) is the
inverse parameter function.

We will need the derivative dt
dx  in terms of t. For this we use the formula for derivative of

inverse functions:

dt

dx
=

1
dx
dt

Given all this, both formulas are simple applications of the chain rule.

For the slope:

For the concavity:

(In the second step we inserted the formula for dydx  from the slope.)

dy

dx
=

dy

dt
⋅
dt

dx
⨠⨠ y′(t) ⋅

1

dx/dt

⨠⨠
y′(t)

x′(t)

d2y

dx2
=

d

dx
( dy

dx
) ⨠⨠

d

dt
( dy

dx
) ⋅

dt

dx

⨠⨠
d

dt
( y′(t)

x′(t)
) ⋅

1

x′(t)

Pure vertical, Pure horizontal movement

In view of the formula dydx = y′(t)
x′(t)

, we see:

Pure vertical: when x′(t) = 0 and yet y′(t) ≠ 0

Pure horizontal: when y′(t) = 0 and yet x′(t) ≠ 0
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Example - Tangent to a cycloid

Find the tangent line (described parametrically) to the cycloid (4t − 4 sin t, 4 − 4 cos t) when
t = π/4.

Solution

Compute x′ and y′.

Find x′(t):

x(t) = 4t − 4 sin t ⨠⨠ x′(t) = 4 − 4 cos t

Find y′(t):

y(t) = 4 − 4 cos t ⨠⨠ y′(t) = 4 sin t

Plug in t = π/4:

x′(π/4) ⨠⨠ 4 − 4 cos(π/4) ⨠⨠ 4 − 2√2

Plug in t = π/4:

y′(π/4) ⨠⨠ 4 sin(π/4) ⨠⨠ 2√2

Apply formula: dy

dx
=

y′

x′
:

Calculate dy
dx

 at t = π/4:

dy

dx
(π/4) =

y′(π/4)

x′(π/4)
⨠⨠

2√2

4 − 2√2

Simplify:

So:

dy

dx t=π/4
= √2 + 1

This is the slope m for our line.

Need the point P  for our line. Find (x, y) at t = π/4.

Plug t = π/4 into parametric formulas:

⨠⨠
2√2

4 − 2√2
⋅

4 + 2√2

4 + 2√2

⨠⨠ 8√2 + 8
16 − 8

⨠⨠ √2 + 1∣(x(t), y(t))
t=π/4

⨠⨠ (4
π

4
− 4 sin(π/4), 4 − 4 cos(π/4))

⨠⨠ (π − 2√2, 4 − 2√2)∣ W13 Notes
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Point-slope formulation of tangent line:

x = a + t, y = b + mt

Inserting our data:

x = (π − 2√2) + t, y = (4 − 2√2) + (√2 + 1)t

Example - Vertical and horizontal tangents of the circle

Consider the circle parametrized by x = cos t and y = sin t. Find the points where the tangent
lines are vertical or horizontal.

Solution

For the points with vertical tangent line, we find where the moving point has x′(t) = 0

(purely vertical motion):

The moving point is at (1, 0) when t = 0, and at (−1, 0) when t = π.

For the points with horizontal tangent line, we find where the moving point has y′(t) = 0

(purely horizontal motion):

The moving point is at (0, 1) when t = π/2, and at (0, −1) when t = 3π/2.

x′(t) = − sin t,

x′(t) = 0 ⨠⨠ − sin t = 0

⨠⨠ t = 0, π

y′(t) = cos t,

y′(t) = 0 ⨠⨠ cos t = 0

⨠⨠ t =
π

2
,

3π

2

Example - Finding the point with specified slope

Consider the parametric curve given by (x, y) = (t2, t3). Find the point where the slope of the
tangent line to this curve equals 5.

Solution

Compute the derivatives:

x′(t) = 2t, y′(t) = 3t2

Therefore the slope of the tangent line, in terms of t:

m =
dy

dx
=

y′(t)

x′(t)

⨠⨠ 3t2

2t
⨠⨠ 3

2
t
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05 Theory - Arclength

Set up equation:

Solve. Obtain t = 10
3 .

Find the point:

(x, y)
t=10/3

⨠⨠ ( 100

9
,

1000

27
)

m = 5

3

2
t = 5∣Arclength formula

The arclength of a parametric curve with coordinate functions x(t) and y(t) is:

L = ∫
b

a

√(x′)2 + (y′)2 dt

This formula assumes the curve is traversed one time as t increases from a to b.

Counts total traversal

This formula applies when the curve image is traversed one time by the moving point.

Sometimes a parametric curve traverses its image with repetitions. The arclength formula
would add length from each repetition!

Extra - Derivation of arclength formula

The arclength of a parametric curve is calculated by integrating the infinitesimal arc
element:

In order to integrate ds in the t variable, as we must for parametric curves, we convert ds to
a function of t:

ds = √dx2 + dy2

L = ∫
b

a

ds

ds = √dx2 + dy2 ⨠⨠ √ 1

dt2
⋅ (dx2 + dy2) ⋅ dt2

⨠⨠ √ dx2

dt2
+

dy2

dt2
⋅ √dt2 ⨠⨠ √( dx

dt
)

2

+ ( dy

dt
)

2

dt

⨠⨠ ds = √x′(t)2 + y′(t)2 dt
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06 Illustration

So we obtain ds = √(x′)2 + (y′)2 dt and the arclength formula follows from this:

L = ∫
b

a

√(x′)2 + (y′)2 dt

Example - Perimeter of a circle

The perimeter of the circle (R cos t,R sin t) is easily found. We have (x′, y′) = (−R sin t,R cos t),
and therefore:

Integrate around the circle:

(x′)2 + (y′)2 = (−R sin t)2 + (R cos t)2

⨠⨠ R2 sin2 t + R2 cos2 t ⨠⨠ R2

ds = √(x′)2 + (y′)2 dt = Rdt

Perimeter = ∫
2π

0
ds ⨠⨠ ∫

2π

0
Rdt

⨠⨠ Rt
2π

0
= 2πR∣Example - Perimeter of an asteroid

Find the perimeter length of the ‘asteroid’ given parametrically by (x, y) = (a cos3 θ, a sin3 θ)
for a = 2.

Solution

Notice: Throughout this problem we use the parameter θ instead of t. This does not mean we
are using polar coordinates!

Compute the derivatives in θ:

(x′, y′) = (3a cos2 θ sin θ, 3a sin2 θ cos θ)

Compute the infinitesimal arc element.
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07 Theory - Distance, speed

Plug into the arc element, simplify:

Bounds of integration?

Easiest to use θ ∈ [0,π/2]. This covers one edge of the asteroid. Then multiply by 4 for the
final answer.

On the interval θ ∈ [0,π/2], the factor 3a sin θ cos θ is positive. So we can drop the absolute
value and integrate directly.

Integrate the arc element:

Finally, multiply by 4 to get the total perimeter: 

(x′)2 + (y′)2 ⨠⨠ 9a2 cos4 θ sin2 θ + 9a2 sin4 θ cos2 θ

⨠⨠ 9a2 sin2 θ cos2 θ (cos2 θ + sin2 θ)

⨠⨠ 9a2 sin2 θ cos2 θ

ds = √(x′)2 + y′)2 dθ

⨠⨠ √9a2 sin2 θ cos2 θ dθ

⨠⨠ ds = 3a sin θ cos θ dθ∣ ∣Absolute values matter!

If we tried to integrate on the whole range θ ∈ [0, 2π], then 3a sin θ cos θ really does
change sign.

To perform integration properly with these absolute values, we’d need to convert to a
piecewise function by adding appropriate minus signs.

∫
π/2

0

ds ⨠⨠ ∫
π/2

0

3a sin θ cos θ dθ

⨠⨠ 3a∫
1

u=0
u du

⨠⨠ 3a
u2

2

1

0

⨠⨠
3a

2∣ (u = sin θ)

L=6a

Distance function

The distance function s(t) returns the total distance traveled by the particle from a chosen
starting time t0 up to the (input) time t:
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We need the dummy variable u so that the integration process does not conflict with t in the
upper bound.

This formula can be explained in either of two ways:

08 Illustration

s(t) = ∫
t

t0

ds = ∫
t

t0

√x′(u)2 + y′(u)2 du

Speed function

The speed of a moving particle is the rate of change of distance:

v(t) = s′(t) = √x′(t)2 + y′(t)2

1. Apply the Fundamental Theorem of Calculus to the integral formula for s(t).
2. Consider ds = √x′(t)2 + y′(t)2 dt for a small change dt: so the rate of change of arclength is dsdt ,

in other words s′(t).

Example - Speed, distance, displacement

The parametric curve (t, 2
3
t3/2) describes the position of a moving particle (t measuring

seconds).
(a) What is the speed function?

Suppose the particle travels for 8 seconds starting at t = 0.
(b) What is the total distance traveled?
(c) What is the total displacement?

Solution

(a)
Compute derivatives:

(x′, y′) = (1, t1/2)

Now compute the speed.

Find sum of squares:

(x′)2 + (y′)2 = 1 + (t1/2)2 = 1 + t

Get the speed function:

v(t) = √(x′)2 + (y′)2 = √1 + t

(b)
Distance traveled by using speed.
Compute total distance traveled function:
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s(t) = ∫
t

u=0

√1 + u du

Integrate.

Substitute w = 1 + u and dw = du.

New bounds are 1 and 1 + t.

Calculate:

Insert t = 8 for the answer.

The distance traveled up to t = 8 is:

s(8) =
2

3
(93/2 − 1) ⨠⨠

2

3
(27 − 1) ⨠⨠

52

3

This is our final answer.

(c)

Displacement formula: d = √(x1 − x0)2 + (y1 − y0)2

Pythagorean formula for distance between given points.

Compute starting and ending points.

For starting point, insert t = 0:

(x(t), y(t))
t=0

⨠⨠ (t, 2

3
t3/2)

t=0

⨠⨠ (0, 0)

For ending point, insert t = 8:

Plug points into distance formula.

Insert (0, 0) and (8, 32√2/3):

⨠⨠ ∫
1+t

1

√wdw

⨠⨠ 2
3
w3/2

1+t

1

⨠⨠ 2
3
((1 + t)3/2 − 1)∣∣ ∣(x(t), y(t))

t=8
⨠⨠ (t, 2

3
t3/2)

t=8

⨠⨠ (8,
2

3
83/2) ⨠⨠ (8,

32√2

3
)∣ ∣W13 Notes
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09 Theory - Surface area of revolutions

This formulas adds the areas of thin bands, but the bands are demarcated using parametric
functions instead of input values of a graphed function.

The formula assumes that the curve is traversed one time as t increases from a to b.

10 Illustration

This is our final answer.

82 + ( 32√2

3
)

2

⨠⨠ √64 +
2048

9

⨠⨠
√2624

3

⎷Surface area of a surface of revolution: thin bands

Suppose a parametric curve (x(t), y(t)) is revolved around the x-axis or the y-axis.

The surface area is:

A = ∫
b

a

2πR(t)√(x′)2 + (y′)2 dt

The radius R(t) should be the distance to the axis:

R(t) = y(t) revolution about x-axis
R(t) = x(t) revolution about y-axis

Example - Surface of revolution - parametric circle

By revolving the unit upper semicircle about the x-axis, we can compute the surface area of
the unit sphere.

The parametrization of the unit upper semicircle is: (x, y) = (cos t, sin t).

The derivative is: (x′, y′) = (− sin t, cos t).

Therefore, the arc element:

Now for R we choose R = y(t) = sin t because we are revolving about the x-axis.

Plugging all this into the integral formula and evaluating gives:

A = ∫
π

0

2π sin t dt ⨠⨠ − 2π cos t
π

0
⨠⨠ 4π

ds = √(x′)2 + (y′)2 dt

⨠⨠ √(− sin t)2 + (cos t)2 dt ⨠⨠ dt∣W13 Notes
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Notice: This method is a little easier than the method using the graph y = √1 − x2.

Example - Surface of revolution - parametric curve

Set up the integral which computes the surface area of the surface generated by revolving
about the x-axis the curve (t3, t2 − 1) for 0 ≤ t ≤ 1.

Solution

For revolution about the x-axis, we set R = y(t) = t2 − 1.

Then compute ds:

Therefore the desired integral is:

A = ∫
1

0
2πRds ⨠⨠ ∫

1

0
2π(t2 − 1)t√9t2 + 4 dt

ds = √(x′)2 + (y′)2 ⨠⨠ √(3t2)2 + (2t)2 ⨠⨠ √9t4 + 4t2

⨠⨠ √t2(9t2 + 4) ⨠⨠ t√9t2 + 4
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