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Parametric curves

Videos, Organic Chemistry Tutor

Intro to parametric equations and graphing

Parametric curves are curves traced by the path of a ‘moving’ point. An independent parameter,
such as t for ‘time’, controls both = and y values through Cartesian coordinate functions z(t)
and y(t). The coordinates of the moving point are (z(t), y(t)).

A parametric curve is a function from parameter space R to the plane R? given in terms of
coordinate functions:

t— (2(t), y(t))

A Other notations

Be aware that sometimes the coordinate functions are written with f and g (or yet other
letters) like this: (z,y) = (£(t), g(t))

Or simply equating coordinate letters with functions: = = f(¢), y= g(t)

Sometimes a different parameter is used, like s or u.

For example, suppose:
z=t>—2, y=t+1

The curve traced out is a parabola that opens horizontally:

Given a parametric curve, we can create an equation satisfied by z and y variables by solving for ¢
in either coordinate function (inverting either f or g) and plugging the result into the other
function.

In the example:
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y=t+1 >> t=y-1
>» z=t"-2t »» z=y-1)>-2@y-1)
>» z=y’—4y+3 > z=(y-2)° 1

This is the equation of a parabola centered at (—1,2) that opens to the right.

The image of a parametric curve is the set of output points (z(t), y(t) ) that are traversed by

the moving point.

A parametric curve has hidden information that isn’t contained in the image:

The time values t when the moving point is found in various locations.
The speed at which the curve is traversed.

The direction in which the curve is traversed.

We can reparametrize a parametric curve to use a different parameter or different coordinate

functions while leaving the image unchanged.
In the previous example, shift ¢ by 1:
z=@t+1)>%-20t+1), y=@E+1)+1
>»  z=tP-1, y=t+2

Since the parameter t and the parameter ¢t + 1 both cover the same values for ¢t € (—o0, ), the
same curve is traversed. But the moving point in the second, shifted version reaches any given
location one unit earlier in time. (When ¢ = —1 in the second version, the input to z(t) and y(¢) is

the same as when ¢ = 0 in the first one.)

:= Example - Parametric circles

The standard equation of a circle of radius R centered at the point (h, k):
(z—h)*+ (y— k)* = R?

This equation says that the distance from a point (z,y) on the circle to the center point (h, k)
equals R. This fact defines the circle.

Parametric coordinates for the circle:
z = h+ Rcost, y=k+ Rsint, t € [0,2m)

For example, the unit circle 2 + y? = 1 is parametrized by £ = cost and y = sin .

‘= Example - Parametric lines

Parametric coordinate functions for a line:
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T = a+rt, y=>b+ st, t € (—o0, +0)

Compare this to the graph of linear function:

y=mx+b some m, b

Vertical lines cannot be described as the graph of a function. We must use z = a.

Parametric lines can describe all lines equally well, including horizontal and vertical lines.
A vertical line z = a is achieved by setting s = 0 and r # 0.
A horizontal line y = b is achieved by setting » = 0 and s # 0.

A non-vertical line y = mx + b may be achieved by setting s = m and r =1, and a = 0.

Assuming that r # 0, the parametric coordinate functions describe a line satisfying:

y=b+s<z_a>
7

S S
> > y:;-x—&-(b—?-a)

and therefore the slope is m = £ and the y-interceptis b — < - a.

The point-slope construction of a line has a parametric analogue:

point-slope line:

y—a=m(z—b) (z,y) = (a +t, b+ mt)

b+2m+

b+m+

b—m+

a-1 a a+1a+2

:= Example - Parametric ellipses

The general equation of an ellipse centered at (h, k) with half-axes a and b is:

(52) (54 -

This equation represents a siretched unit circle:

by a in the z-axis

by b in the y-axis

Parametric coordinate functions for the general ellipse:
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z = h+ acost, y=k+ bsint, t € [0,2m)

:= Example - Parametric cycloids

The cycloid is the curve traced by a pen attached to the rim of a wheel as it rolls.

0 T 2 3z 4

It is easy to describe the cycloid parametrically. Consider the geometry of the situation:

y
C=(1
! | =@ 1)
P i IE Jcos t
y 1
sin ¢
0 x ‘ x

The center C of the wheel is moving rightwards at a constant speed of 1, so its position is
(t,1). The angle is revolving at the same constant rate of 1 (in radians) because the radius is
1.

The triangle shown has base sint, so the z coordinate is ¢ — sint. The y coordinate is 1 — cost.

So the coordinates of the point P = (z,y) are given parametrically by:
r =1t —sint, y=1—cost, t>0
If the circle has another radius, say R, then the parametric formulas change to:

= Rt — Rsint, y= R — Rcost, t>0

Calculus with parametric curves

We can use z(t) and y(t) data to compute the slope of a parametric curve in terms of ¢.

Slope formula

Given a parametric curve (z(t), y(t)), its slope satisfies:
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= = (where z'(t) # 0)

Concavity formula

Given a parametric curve (z(t), y(t)), its concavity satisfies the formula:

Py _ d (Y 1 /
-z = E(x’(t) ) . 70 (where 2'(t) # 0)

For both derivations, it is necessary to view ¢ as a function of z through the inverse
parameter function. For example if z = f(t) is the parametrization, then t = f1(z) is the

inverse parameter function.
We will need the derivative 4= in terms of ¢. For this we use the formula for derivative of
inverse functions:

dt 1

dr  dz
&t

Given all this, both formulas are simple applications of the chain rule.

For the slope:

dy dy dt , 1
o aw O YO om
!
¢
>» YO

z'(t)

For the concavity:

d?y d (dy d (dy dt
W*%(%) > > a(a)'a

> > d
dt

Y\ 1
m’(t)) 2 (0)

(In the second step we inserted the formula for j—z from the slope.)

)
In view of the formula % = %,(%, we see:

Pure vertical: when z'(t) = 0 and yet y/(¢) # 0
Pure horizontal: when y/(t) = 0 and yet z'(¢) # 0

When 2'(ty) = y/(¢y) = 0 for the same ¢ = ¢y, we have a stationary point, which might
subsequently progress into pure vertical, pure horizontal, or neither.
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:= Example - Tangent to a cycloid
Find the tangent line (described parametrically) to the cycloid (4¢ — 4sint, 4 — 4 cost) when
t =m/4.
Solution
Compute =’ and y/.
Find z'(¢):

z(t) = 4t —4sint  »>>» z'(t) =4 —4cost

Find y/(t):

y(t) =4 —4cost >> ¢(t) =4sint

Plugin t = w/4:
(/1) >>» 4—4dcos(r/4) >> 4-2V2
Plugint = n/4:

Y (n/4) > 4sin(n/4) >>» 22

Apply formula: @ =
dx

Calculate % att =m/4:

d (/4 2v/2
Y (x/4) = y,(”/) >y 2
dz z'(m/4) 4-2v/2
Simplify:
22 4422
> > VB A
4-2V2 4+2V2
>»  B2H8 o B
16 -8
So:
dy = V2+1
dz t=m/4

This is the slope m for our line.

Need the point P for our line. Find (z,y) at t = 7/4.
Plug t = /4 into parametric formulas:

(2(t), u(®))] > > (4% _ 4sin(n/4), 4 — 4 Cos(7r/4))

t=m/4

> (7r —2v2,4— 2\/5)
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Point-slope formulation of tangent line:
r=a+t, y=b+mt
Inserting our data:

T = (m—2V2)+t, y=(4-2V2)+(V2+1)t

:= Example - Vertical and horizontal tangents of the circle

Consider the circle parametrized by z = cost and y = sint. Find the points where the tangent
lines are vertical or horizontal.

Solution

For the points with vertical tangent line, we find where the moving point has z/(¢t) = 0
(purely vertical motion):

z'(t) = —sint,
z'(t)=0 > > —sint=0
> > t=0,7

The moving point is at (1,0) when ¢t = 0, and at (—1,0) when ¢t = 7.

For the points with horizontal tangent line, we find where the moving point has y/(¢t) = 0
(purely horizontal motion):

y'(t) = cost,
() =0 > > cost =0

3T

»» ot T
27 2

The moving point is at (0,1) when ¢ = 7/2, and at (0, —1) when ¢ = 37/2.

:= Example - Finding the point with specified slope

Consider the parametric curve given by (z,y) = (t2, t*). Find the point where the slope of the

tangent line to this curve equals 5.
Solution
Compute the derivatives:
'(t) = 2t, ) = 3t
Therefore the slope of the tangent line, in terms of ¢:

_dy y'(t)

0

3t? 3
ki 2t
> > 2% > > 5
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Set up equation:

m = 5
—t = 5
Solve. Obtain t = <2.
Find the point:
(2,9)| »>» (0 10
Y103 9 27

The arclength of a parametric curve with coordinate functions z(¢) and y(¢) is:

L= / Ny

This formula assumes the curve is traversed one time as ¢ increases from a to b.

/\ Counts total traversal
This formula applies when the curve image is traversed one time by the moving point.

Sometimes a parametric curve traverses its image with repetitions. The arclength formula
would add length from each repetition!

The arclength of a parametric curve is calculated by integrating the infinitesimal arc
element:

ds = /dz? + dy?

b
L:/ds

In order to integrate ds in the t variable, as we must for parametric curves, we convert ds to
a function of ¢:

ds = \/da? + dy? > > \/% - (dz? + dy?) - dt?

de?  dy? dz\ 2 dy\ 2
> > T LY Var »>» (—”c) +<—y> dt

de2 a2 dt dt
> > ds = /! (t)2 +y/(t)2dt
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So we obtain ds = 1/(2')? + (y')? dt and the arclength formula follows from this:

o= [ Jerrwpa

06 Illustration

‘= Example - Perimeter of a circle
The perimeter of the circle (R cost, Rsint) is easily found. We have (z',y') = (—Rsint, Rcost),
and therefore:

(") + (¥)* = (~Rsint)? + (Rcost)?

> > R?sint + R%cos®t >»>>»  R?

ds =4/ (z')2+ (y')?dt = Rdt

Integrate around the circle:

27 27
Perimeter = / ds > > / Rdt
0 0

2
> > Rt‘o — 27R

‘= Example - Perimeter of an asteroid

Find the perimeter length of the ‘asteroid’ given parametrically by (z,y) = (a cos® 6, asin® 0)
for a = 2.

Solution

Notice: Throughout this problem we use the parameter 0 instead of t. This does not mean we
are using polar coordinates!

Compute the derivatives in 6:

(w', y’) = (3a cos® @sin 6, 3asin® § cos 0)

Compute the infinitesimal arc element.
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()2 + @)% >> 9a®cos?fsin? 6 + 9a®sin* 6 cos? §
> > 94 sin® f cos® 0 (cos2 0 + sin’ 6)
> > 9a?sin? f cos? §

Plug into the arc element, simplify:
ds = \/(a)? + y/)? db
>>»  V9a?sin?fcos?6df

> > ds = 3a‘ sin 6 cos 6| do

Bounds of integration?

Easiest to use 0 € [0, 7/2]. This covers one edge of the asteroid. Then multiply by 4 for the

final answer.
On the interval 6 € [0,7/2], the factor 3asin @ cos 6 is positive. So we can drop the absolute
value and integrate directly.

I\ Absolute values matter!

If we tried to integrate on the whole range 6 € [0, 27|, then 3a sin 6 cos 0 really does

change sign.

To perform integration properly with these absolute values, we’d need to convert to a

piecewise function by adding appropriate minus signs.

Integrate the arc element:

/2 /2
/ ds >> / 3a sin 6 cos 6 df
0 0

1
> > 3(1/ udu (u = sin6)
u=0

21

u 3a
>>  3a -5

> > >

0

Finally, multiply by 4 to get the total perimeter: L=6a

The distance function s(t) returns the total distance traveled by the particle from a chosen

starting time ¢, up to the (input) time ¢:
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s(t) :/t:ds _ /t:./m/(u)uy'(u)mu

We need the dummy variable u so that the integration process does not conflict with ¢ in the
upper bound.

The speed of a moving particle is the rate of change of distance:

vt) = s'(t) = /(1) +y()?

This formula can be explained in either of two ways:

Apply the Fundamental Theorem of Calculus to the integral formula for s(¢).
Consider ds = 1/2/(t)2 + y/(t)2 dt for a small change dt: so the rate of change of arclength is 4,
in other words s'(t).

‘= Example - Speed, distance, displacement

The parametric curve (t, %t:‘/ 2) describes the position of a moving particle (¢t measuring
seconds).
(a) What is the speed function?

Suppose the particle travels for 8 seconds starting at ¢t = 0.
(b) What is the total distance traveled?
(c) What is the total displacement?

Solution

(a)

Compute derivatives:

(', 9

(1, 872)

Now compute the speed.
Find sum of squares:

@)+ () =1+ @) =1+1
Get the speed function:

u(t) = /(@) + ()2 = VI+t

(b)

Distance traveled by using speed.
Compute total distance traveled function:
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s(t) = / ;)\/mdu

Integrate.
Substitute w = 1 + v and dw = du.
New bounds are 1 and 1 + ¢.

Calculate:

> > Vwdw
1

1+t

2 2
»>»  Zu'l »>» = ((1 )3 1)

1

Insert ¢t = 8 for the answer.
The distance traveled up to t = 8 is:
5(8) =

52
(93/2 - 1) »» Z@T-1) »» =

w| o
w| o

This is our final answer.

(©

Displacement formula: d = v/(z1 — 0)2 + (y1 — %0)2

Pythagorean formula for distance between given points.

Compute starting and ending points.

For starting point, insert ¢ = 0:

(z(t), y(?)) ‘t:O > > <t, §t3/2> >>»  (0,0)

t=0

For ending point, insert ¢t = 8:

(=050, »> (t,§t3/2>

g t=8

2 322
> > (8,§83/2> > > (ST‘/)

Plug points into distance formula.

Insert (0,0) and (8,323/3):
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2 P
82 + (—32;/5) > > \/ 64+ 20

V2624

> > 3

This is our final answer.

Suppose a parametric curve (z(t), y(t)) is revolved around the z-axis or the y-axis.

The surface area is:
b
A = /27rR(t) (@)? + ()2 dt

The radius R(t) should be the distance to the axis:

R(t) = y(t) revolution about z-axis
R(t) = =(t) revolution about y-axis

This formulas adds the areas of thin bands, but the bands are demarcated using parametric

functions instead of input values of a graphed function.

The formula assumes that the curve is traversed one time as t increases from a to b.

‘= Example - Surface of revolution - parametric circle

By revolving the unit upper semicircle about the z-axis, we can compute the surface area of

the unit sphere.
The parametrization of the unit upper semicircle is: (z,y) = (cost, sint).

The derivative is: (z,y') = (—sint, cost).

Therefore, the arc element:
ds =4/(z")2 + (v')%dt

> y/(-sint)? + (cost)2dt > dt

Now for R we choose R = y(t) = sint because we are revolving about the z-axis.

Plugging all this into the integral formula and evaluating gives:

A:/ orsintdt > —27rcost;r > 4n
0
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Notice: This method is a little easier than the method using the graph y = V1 — z2.

:= Example - Surface of revolution - parametric curve

Set up the integral which computes the surface area of the surface generated by revolving
about the z-axis the curve (t3,¢> — 1) for 0 < ¢ < 1.
Solution

For revolution about the z-axis, we set R = y(t) = t2 — 1.

Then compute ds:

ds=4/(z')2+ (¥)2 >> (3t2)2+ (2t)2 > > /9tt + 412

> > 292 +4) >> tVo2+4

Therefore the desired integral is:

1 1
A= / 27Rds > » / 2n(t2 — 1)t/9t2 + 4 dt
0 0

14 /14
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