
W11 Notes
Power series as functions
Videos, Math Dr. Bob

01 Theory

Given a numerical value for x within the interval of convergence of a power series, the series sum
may be considered as the output f(x) of a function f.

Many techniques from algebra and calculus can be applied to such power series functions.

Addition and Subtraction:

Summation notation:

∞

∑
n=0

anx
n +

∞

∑
n=0

bnx
n =

∞

∑
n=0

(an + bn)xn

Scaling:

cf = ca0 + (ca1)x + (ca2)x2 + ⋯

Summation notation:

c

∞

∑
n=0

anx
n =

∞

∑
n=0

(can)xn

Power series functions: Derivative/Antiderivative - Basics
Power series functions: Derivative/Antiderivative - Interval of Convergence
Power series functions: Derivative/Antiderivative - More examples
Power series functions: Geometric Power Series

f = a0 + a1x + a2x
2 + a3x

3 + ⋯
g = b0 + b1x + b2x

2 + b3x
3 + ⋯

f + g = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + ⋯

Extra - Multiplication and composition

Multiplication:

For example, suppose that the geometric power series f(x) = 1 + x + x2 + x3 + ⋯ converges,
so |x| < 1. Then we have for its square:

Composition:

f ⋅ g = (a0 + a1x + a2x
2 + ⋯) ⋅ (b0 + b1x + b2x

2 + ⋯)

= a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + ⋯

f ⋅ f = f(x)2 = (1 + x + x2 + ⋯) ⋅ (1 + x + x2 + ⋯)
= 1 + (1 + 1)x + (1 + 1 + 1)x2 + ⋯
= 1 + 2x + 3x2 + 4x3 + ⋯

=
∞

∑
n=0

(n + 1)xn
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Assume:

f = a0 + a1x + a2x
2 + a3x

3 + ⋯ =
∞

∑
n=0

anx
n

Then:

Differentiation:

df

dx
= a1 + (2a2)x + (3a3)x2 + ⋯ =

∞

∑
n=1

nanx
n−1

Antidifferentiation:

∫ f(x) dx = C + a0x +
a1

2
x2 +

a2

3
x3 + ⋯ = C +

∞

∑
n=0

an

n + 1
xn+1

For example, for the geometric series we have:

Do the series created with sums, products, derivatives etc., all converge? On what interval?

For the algebraic operations, the resulting power series will converge wherever both of the
original series converge.

For calculus operations, the radius is preserved, but the endpoints are not necessarily:

f(−x) = 1 − x + x2 − x3 + x4 − ⋯

f(2x3) = 1 + 2x3 + (2x3)2 + ⋯
= 1 + 2x3 + 4x6 + 8x9 + ⋯

f = 1 + x + x2 + x3 + x4 + ⋯

df

dx
= 1 + 2x + 3x2 + 4x3 + 5x4 + ⋯

∫ f dx = C + x +
1
2
x2 +

1
3
x3 +

1
4
x4 + ⋯

Power series calculus - Radius preserved

If the power series f(x) has radius of convergence R, then the power series f ′(x) and ∫ f dx

also have the same radius of convergence R.

Power series calculus - Endpoints not preserved

It is possible that a power series f(x) converges at and endpoint a of its interval of
convergence, yet f ′ and ∫ f dx do not converge at a.

Extra - Proof of radius for derivative and integral series

Suppose f(x) has radius of convergence R = L−1:

an+1

an
⋅ |x|⟶ L ⋅ |x|  as  n → ∞∣ ∣ W11 Notes
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02 Illustration

Consider now the derivative f ′ and its ratios of successive terms:

(n + 1)an+1x
n

nanxn−1
= ( n + 1

n
) ⋅

an+1

an
⋅ |x|

n→∞
⟶ 1 ⋅ L ⋅ |x| = L ⋅ |x|

Consider instead the antiderivative ∫ f dx and its ratios of successive terms:

( 1
n+1 )anx

n+1

( 1
n )an−1xn

= ( n

n + 1
) ⋅

an

an−1
⋅ |x|

n→∞
⟶ 1 ⋅ L ⋅ |x| = L ⋅ |x|

In both these cases the ratio test provides that the series converges when |x| < L−1.∣ ∣ ∣ ∣∣ ∣ ∣ ∣Example - Geometric series: algebra meets calculus

Consider the geometric series as a power series functions:

1
1 − x

= 1 + x + x2 + x3 + ⋯

Take the derivative of both sides of the function:

d

dx
( 1

1 − x
) ⨠⨠

1
(1 − x)2

⨠⨠ ( 1
1 − x

)
2

This means f satisfies the identity:

f ′ = f 2

Now compute the derivative of the series:

1 + x + x2 + x3 + ⋯
d
dx

⨠⨠ 1 + 2x + 3x2 + 4x3 + ⋯

On the other hand, compute the square of the series:

(1 + x + x2 + x3 + ⋯ )
2 ⨠⨠ 1 + 2x + 3x2 + 4x3 + ⋯

So we find that the same relationship holds, namely f ′ = f 2, for the closed formula and the
series formula for this function.

Example - Manipulating geometric series: algebra

Find power series that represent the following functions:

(a) 1
1 + x

  (b) 1
1 + x2

  (c) x3

x + 2
  (d) 3x

2 − 5x

Solution

(a) 1
1 + x

1. 
 Introduce double negative:

1
1 + x

=
1

1 − (−x)

 Rewrite in format 1
1−u

.
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(b) 1
1 + x2

(c) x3

x + 2

Choose u = −x.
2. 
 Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = −x:

⨠⨠ 1 + (−x) + (−x)2 + (−x)3 + ⋯

Simplify:

⨠⨠ 1 − x + x2 − x3 + ⋯

Final answer:

1
1 + x

= 1 − x + x2 − x3 + ⋯

1. 
 Rewrite:

1
1 + x2 =

1
1 − (−x2)

Choose u = −x2.
2. 
 Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = −x2:

⨠⨠ 1 + (−x2) + (−x2)2 + (−x2)3 + ⋯

⨠⨠ 1 − x2 + x4 − x6 + ⋯

Final answer:

1
1 + x

= 1 − x2 + x4 − x6 + ⋯

1. 
 Rewrite:

x3

x + 2
⨠⨠ x3 ⋅

1
2 + x

⨠⨠ x3 ⋅
1

2 (1 + x
2 )

⨠⨠
1
2
x3 ⋅

1
1 + x

2

⨠⨠
1
2
x3 ⋅

1

1 − (− x
2 )

Choose u = − x
2 . Here Ax3 = 1

2 x
3.

2. 
 Geometric series in u:

1 + u + u2 + u3 + ⋯

 Plug u = −x into geometric series.

 Rewrite in format 1
1−u .

 Plug u = −x2 into geometric series.

 Rewrite in format Ax3 ⋅ 1
1−u .

 Plug u = −x2 into geometric series.
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(d) 3x
2 − 5x

Plug in u = − x
2 :

⨠⨠ 1 + (− x
2 ) + (− x

2 )2 + (− x
2 )3 + ⋯

⨠⨠ 1 −
1
2
x +

1
4
x2 −

1
8
x3 + ⋯

Obtain:

1

1 − (− x
2 )

= 1 −
1
2
x +

1
4
x2 −

1
8
x3 + ⋯

3. 
 Distribute:

1
2
x3 ⋅

1

1 − (− x
2 )

⨠⨠
1
2
x3 −

1
4
x4 +

1
8
x5 −

1
16

x6 + ⋯

Final answer:

x3

x + 2
=

1
2
x3 −

1
4
x4 +

1
8
x5 −

1
16

x6 + ⋯

1. 
 Rewrite:

3x
2 − 5x

⨠⨠ 3x ⋅
1

2 − 5x

⨠⨠ 3x ⋅
1

2 (1 − 5x
2 )

⨠⨠
3
2
x ⋅

1

1 − 5x
2

Choose u = 5x
2 . Here Ax = 3

2 x.
2. 
 Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = 5x
2 :

⨠⨠ 1 + ( 5x
2 ) + ( 5x

2 )2 + ( 5x
2 )3 + ⋯

⨠⨠ 1 +
5
2
x +

25
4
x2 +

125
8

x3 + ⋯

Obtain:

1

1 − 5x
2

= 1 +
5
2
x +

25
4
x2 +

125
8

x3 + ⋯

3. 
 Distribute:

3
2
x ⋅

1

1 − 5x
2

⨠⨠ 3
2
x +

15
4
x2 +

75
8
x3 +

375
16

x4 + ⋯

Final answer:

3x
2 − 5x

=
3
2
x +

15
4
x2 +

75
8
x3 +

375
16

x4 + ⋯

 Multiply by 1
2 x

3.

 Rewrite in format Ax ⋅ 1
1−u .

 Plug u = 5x
2  into geometric series.

 Multiply by 3
2 x.
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Example - Manipulating geometric series: calculus

Find a power series that represents ln(1 + x).

Solution

1. 
 Differentiate ln(1 + x):

d

dx
ln(1 + x) =

1
1 + x

⨠⨠
1

1 − (−x)

2. 
 Power series by modifying 1

1−u
 with u = −x:

1
1 − (−x)

= 1 − x + x2 − x3 + x4 − ⋯

3. 
 Integrate both sides:

∫ 1
1 − (−x)

dx = ∫ 1 − x + x2 − x3 + x4 − ⋯ dx

ln(1 + x) = D + x −
1
2
x2 +

1
3
x3 −

1
4
x4 + ⋯

Use known point to solve for D:

ln(1 + 0) = D + 0 + 0 + ⋯ ⨠⨠ 0 = D

Final answer:

ln(1 + x) = x −
1
2
x2 +

1
3
x3 −

1
4
x4 + ⋯

 Differentiate to obtain similarity to geometric sum formula.

 Find power series of differentiated function.

 Integrate series to find original function.

Example - Recognizing and manipulating geometric series: Part I

(a) Evaluate 
∞

∑
n=1

(−1)n−1 1
n

.

(Hint: consider the series of ln(1 − x).)

(b) Find a series approximation for ln(2/3).

Solution

(a) Evaluate 
∞

∑
n=1

(−1)n−1 1
n

. (Hint: consider the series of ln(1 − x).)

1. 
 

We know the series of −1
1−x :

−1
1 − x

= −(1 + x + x2 + ⋯) = −1 − x − x2 − ⋯

Notice that ∫ −1
1−x

dx = ln(1 − x) + C; this is the desired function when C = 0.

 Find the series representation of ln(1 − x) following the hint.
 Notice that d

dx
ln(1 − x) = −1

1−x
.
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(b) Find a series approximation for ln(2/3).

Integrate the series term-by-term:

∫ −1
1 − x

dx = ∫ −1 − x − x2 − ⋯ dx

⨠⨠ ln(1 − x) = D − x −
x2

2
−

x3

3
− ⋯

Solve for D using ln(1 − 0) = 0, so 0 = D − 0 − 0 − ⋯ and thus D = 0. So:

ln(1 − x) = −x −
x2

2
−

x3

3
− ⋯ =

∞

∑
n=1

−
xn

n!

2. 
 The series formula ∑∞

n=1 − xn

n!  looks similar to the formula ∑∞
n=1(−1)n−1 1

n
.

3. 
 We obtain equality by setting x = −1 because −(−1)n = (−1)n+1 = (−1)n−1.
4. 

1. 
 Therefore we can use the series ln(1 − x) = −x − x2

2 − x3

3 − ⋯

2. 
 Plug in and simplify:

ln(2/3) = ln(1 − 1/3) = −1/3 −
(1/3)2

2
−

(1/3)3

3
− ⋯

= −
1
3

−
1

32 ⋅ 2
−

1
33 ⋅ 3

− ⋯

 Notice the similar formula.

 Choose x = −1 to recreate the desired series.

 Final answer is ln(1 − −1) = ln 2.

 Observe that ln(2/3) = ln(1 − 1/3).

 Plug x = 1/3 into the series for ln(1 − x).

Example - Recognizing and manipulating geometric series: Part II

(a) Find a series representing tan−1(x) using differentiation.

(b) Find a series representing ∫ dx

1 + x4
.

Solution

(a) Find a series representing tan−1(x).

1. 
2. 
 Let u = −x2:

1
1 + x2

⨠⨠
1

1 − u
= 1 + u + u2 + ⋯

⨠⨠ 1 − x2 + x4 − x6 + x8 − ⋯

3. 
 Set up the strategy. We know:

∫ 1
1 + x2

dx = tan−1(x) + C

 Notice that d
dx tan−1(x) = 1

1+x2 .
 Obtain the series for 1

1+x2 .

 Integrate the series for 1
1+x2  by terms.
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Taylor and Maclaurin series
Videos, Math Dr. Bob

(b) Find a series representing ∫ dx

1 + x4
.

and:

1
1 + x2

= 1 − x2 + x4 − x6 + x8 − ⋯

Integrate term-by-term:

⨠⨠ ∫ 1 − x2 + x4 − x6 + x8 − ⋯ dx

⨠⨠ D + x −
x3

3
+

x5

5
−

x7

7
+ ⋯

Conclude that:

tan−1(x) + C = D + x −
x3

3
+

x5

5
−

x7

7
+ ⋯

4. 
 Plugging in, obtain:

tan−1(0) = D − C + 0 + ⋯ + 0

so D − C = 0.
5. 

1. 
 Integrand is 1

1+x4 .
Rewrite integrand in format of geometric series sum:

1
1 + x4

⨠⨠
1

1 − (−x4)
⨠⨠

1
1 − u

, u = −x4

Write the series:

1
1 − u

= 1 + u + u2 + u3 + ⋯

⨠⨠ 1 − x4 + x8 − x12 + x16 − ⋯ =
∞

∑
n=0

(−1)nx4n

2. 
 Integrate term-by-term:

∫ 1 − x4 + x8 − x12 + x16 − ⋯ dx ⨠⨠ C + x −
x5

5
+

x9

9
−

x13

13
+

x17

17
− ⋯

This is our final answer.

 Solve for D − C by testing at tan−1(0) = 0.

 Final answer is tan−1(x) = x − x3

3 + x5

5 − x7

7 + ⋯.

 Find a series representing the integrand.

 Integrate the integrand series by terms.

Maclaurin series: f(x) = 1
(1−x)2

Maclaurin series: f(x) = ex

Maclaurin series: f(x) = sinx, cosx, tanx

Taylor series: f(x) = lnx at x = 1
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03 Theory

Suppose that we have a power series function:

f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯

Consider the successive derivatives of f:

When these functions are evaluated at x = 0, all terms with a positive x-power become zero:

This last formula is the basis for Taylor and Maclaurin series:

We can apply the identity in both directions:

Many functions can be ‘expressed’ or ‘represented’ near x = c (i.e. for small enough |x − c|) as
convergent power series. (This is true for almost all the functions encountered in pre-calculus and
calculus.)

Such a power series representation is called a Taylor series.
When c = 0, the Taylor series is also called the Maclaurin series.

One power series representation we have already studied:

1
1 − x

= 1 + x + x2 + x3 + ⋯

Whenever a function has a power series (Taylor or Maclaurin), the Derivative-Coefficient Identity
may be applied to calculate the coefficients of that series.

Conversely, sometimes a series can be interpreted as an evaluated power series coming from x = c

for some c. If the closed form function format can be obtained for this power series, the total sum
of the original series may be discovered by putting x = c in the argument of the function.

f(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + ⋯

f ′(x) = 0 + a1 + 2 ⋅ a2x
1 + 3 ⋅ a3x

2 + 4 ⋅ a4x
3 + ⋯

f ′′(x) = 0 + 0 + 2 ⋅ a2 + 3 ⋅ 2 ⋅ a3x
1 + 4 ⋅ 3 ⋅ a4x

2 + ⋯

f ′′′(x) = 0 + 0 + 0 + 3 ⋅ 2 ⋅ 1 ⋅ a3 + 4 ⋅ 3 ⋅ 2 ⋅ a4x
1 + …

⋮ ⋮ ⋮ ⋮

f (n)(x) = 0 + 0 + 0 + 0 + ⋯ + n! ⋅ an + ⋯

f(0) = a0 = a0

f ′(0) = a1 = a1

f ′′(0) = 2 ⋅ a2 = 2! ⋅ a2

f ′′′(0) = 3 ⋅ 2 ⋅ a3 = 3! ⋅ a3

⋮ = ⋮ = ⋮

f (n)(0) = n ⋅ (n − 1) ⋯ 2 ⋅ 1 ⋅ an = n! ⋅ an

Power series: Derivative-Coefficient Identity

f (n)(0) = n! ⋅ an

This identity holds for a power series function f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯ which has a
nonzero radius of convergence.

Know f(x)? ⇝  Calculate an for any n.
Know an? ⇝  Calculate f (n)(0) for any n.
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04 Illustration

Example - Maclaurin series of ex

What is the Maclaurin series of f(x) = ex?

Solution

Because d

dx
ex = ex, we find that f (n)(x) = ex for all n.

So f (n)(0) = e0 = 1 for all n. Therefore an =
1
n!

 for all n by the Derivative-Coefficient identity.

Thus:

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ⋯ =

∞

∑
n=0

xn

n!

Example - Maclaurin series of cos x

Find the Maclaurin series representation of cosx.

Solution
Use the Derivative-Coefficient Identity to solve for the coefficients:

an =
f (n)(0)
n!

n f (n)(x) f (n)(0) an

0 cosx 1 1

1 − sinx 0 0

2 − cosx −1 −1/2

3 sinx 0 0

4 cosx 1 1/24

5 − sinx 0 0

⋮ ⋮ ⋮ ⋮

By studying the generating pattern of the coefficients, we find for the series:

cosx = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n

(2n)!

Maclaurin series from other Maclaurin series

(a) Find the Maclaurin series of sinx using the Maclaurin series of cosx.

(b) Find the Maclaurin series of f(x) = x2e−5x using the Maclaurin series of ex.

(c) Using (b), find the value of f (22)(0).

Solution

(a)
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(b)

(c)

1. 
2. 
 Differentiate term-by-term:

1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ ⨠⨠ 0 − 2

x1

2!
+ 4

x3

4!
− 6

x5

6!
+ ⋯

= −
x1

1!
+

x3

3!
−

x5

5!
− ⋯

Take negative because sinx = − d
dx cosx:

⨠⨠ x −
x3

3!
+

x5

5!
−

x7

7!
+ ⋯

3. 

1. 
2. 
 Set u = −5x:

1 +
u1

1!
+

u2

2!
+

u3

3!
+ ⋯

⨠⨠ 1 +
(−5x)

1!
+

(−5x)2

2!
+

(−5x)3

3!
+ ⋯

3. 
 Product of series:

x2e−5x ⨠⨠ x2 (1 +
(−5x)

1!
+

(−5x)2

2!
+

(−5x)3

3!
+ ⋯)

⨠⨠ x2 − 5x3 +
25
2
x4 −

125
3!

x5 + ⋯

⨠⨠
∞

∑
n=0

(−1)n
5nxn+2

n!

1. 
 Suppose we know the series f(x) = a0 + a1x + a2x

2 + a3x
3 + ⋯

Then f (n)(0) = n! ⋅ an.
It may be easier to compute an for a given f(x) than to compute the derivative
functions f (n)(x) and then evaluate them.

2. 
 Write the series such that it reveals the coefficients:

∞

∑
n=0

(−1)n
5nxn+2

n!
⨠⨠

∞

∑
n=0

((−1)n
5n

n!
)xn+2

⟹ an+2 = (−1)n
5n

n!

 Remember that d
dx

cosx = − sinx

 Differentiate cosx = 1 − x2

2! + x4

4! − x6

6! + ⋯

 Final answer is sinx = x − x3

3! + x5

5! − ⋯

 Recall the series eu = 1 + u1

1! + u2

2! + u3

3! + ⋯

 Compute the series for e−5x.

 Compute the product.

 Derivatives at x = 0 are calculable from series coefficients.

 Compute a22.

 Coefficient with an+2 corresponds to the term with xn+2, not necessarily the
(n + 2)th term (e.g. if the first term is x2 as here).
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05 Theory

Compute a22:

a22 = (−1)20 520

20!
⨠⨠ 520 1

20!

3. 
 Use Derivative-Coefficient Identity:

f (22)(0) = 22! ⋅ a22

⨠⨠ 520 ⋅
22!
20!

⨠⨠ 520 ⋅ 22 ⋅ 21

 Compute f (22)(0).

Computing a Taylor series

Find the first five terms of the Taylor series of f(x) = √x + 1 centered at c = 3.

Solution
A Taylor series is just a Maclaurin series that isn’t centered at c = 0.

The general format looks like this:

f(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + ⋯

The coefficients satisfy an = f (n)(c)
n! . (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at x = 3:

By dividing by n! we can write out the first terms of the series:

f(x) = (x + 1)1/2, f(3) = 2

f ′(x) =
1
2

(x + 1)−1/2, f ′(3) =
1
4

f ′′(x) = −
1
4

(x + 1)−3/2, f ′′(3) = −
1

32

f ′′′(x) =
3
8

(x + 1)−5/2, f ′′′(3) =
3

256

f (4)(x) = −
15
16

(x + 1)−7/2, f (4)(3) = −
15

2048

f(x) = √x + 1

= 2 +
1
4

(x − 3) −
1

64
(x − 3)2 +

1
512

(x − 3)3 −
5

16, 384
(x − 3)4 + ⋯

Study these!

Memorize all of these series!
Recognize all of these series!
Recognize all of these summation formulas!
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Applications of Taylor series
Videos, Math Dr. Bob

06 Theory reminder

Linear approximation is the technique of approximating a specific value of a function, say
f(x1), at a point x1 that is close to another point x0 where we know the exact value f(x0). We
write Δx for x1 − x0, and y0 = f(x0), and y1 = f(x1). Then we write dy = f ′(x0) ⋅ Δx and use the
fact that:

y1 ≈ y0 + dy = y0 + f ′(x0) ⋅ Δx

Now recall the linearization of a function, which is itself another function:

Given a function f(x), the linearization L(x) at the basepoint x = c is:

L(x) = f(c) + f ′(c)(x − c)

The graph of this linearization L(x) is the tangent line to the curve y = f(x) at the point (c, f(c)).

The linearization L(x) may be used as a replacement for f(x) for values of x near c. The closer x is
to c, the more accurate the approximation L(x) is for f(x).

1
1 − x

= 1 + x + x2 + ⋯ =
∞

∑
n=0

xn, R = 1, interval:  (−1, 1)

ln(1 − x) = −
x

1
−

x2

2
−

x3

3
− ⋯ =

∞

∑
n=0

−
xn+1

n + 1
, R = 1, interval:  [−1, 1)

tan−1 x = x −
x3

3
+

x5

5
− ⋯ =

∞

∑
n=0

(−1)n
x2n+1

2n + 1
, R = 1, interval:  [−1, 1]

ex = 1 +
x

1!
+

x2

2!
+ ⋯ =

∞

∑
n=0

xn

n!
, R = ∞

cosx = 1 −
x2

2!
+

x4

4!
− ⋯ =

∞

∑
n=0

(−1)n
x2n

(2n)!
, R = ∞

sinx = x −
x3

3!
+

x5

5!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n+1

(2n + 1)!
, R = ∞

Approximating with Maclaurin polynomials: f(x) = ln(1 − x) to find ln(1.1)

Approximating with Taylor polynomials: f(x) = 1
x+1  at x = 1 to find 1/2.1

Computing a linear approximation

For example, to approximate the value of √4.01, set f(x) = √x, set x0 = 4 and y0 = 2, and set
x1 = 4.01 so Δx = 0.01.

Then compute: f ′(x) = 1
2√x

So f ′(x0) = 1/4.

Finally:

y1 ≈ y0 + f ′(x0) ⋅ Δx ⨠⨠ y1 ≈ 2 +
1
4

⋅ 0.01 = 2.0025

Computing a linearization

We set f(x) = √x, and we let c = 4.
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07 Theory

These polynomials are generalizations of linearization.
Specifically, f(c) = T0(x), and L(x) = T1(x).

The Taylor series Tn(x) is a better approximation of f(x) than Ti(x) for any i < n.

We compute f(c) = 2, and f ′(x) = 1
2√x

 so f ′(c) = 1
4 .

Plug everything in to find L(x):

L(x) = f(c) + f ′(c)(x − c) ⨠⨠ L(x) = 2 +
1
4

(x − 4)

Now approximate f(4.01) ≈ L(4.01):

L(4.01) = 2 +
1
4

(4.01 − 4) = 2.0025

Taylor polynomials

The Taylor polynomials Tn(x) of a function f(x) are the partial sums of the Taylor series of
f(x):

TN(x) =
N

∑
n=0

f (n)(c)
n!

(x − c)n = f(c) +
f ′(c)

1!
(x − c) +

f ′′(c)
2!

(x − c)2 + ⋯

Facts about Taylor series

The series Tn(x) has the same derivatives as f(x) at the point x = c. This fact can be verified
by visual inspection of the series: apply the power rule and chain rule, then plug in x = c and
all factors left with (x − c) will become zero.

The difference f(x) − Tn(x) vanishes to order n at x = c:

f(x) − Tn(x) =
f (n)(c)
n!

(x − c)n +
f (n+1)(c)
(n + 1)!

(x − c)n+1 + ⋯

= (x − c)n( f (n)(c)
n!

+
f (n+1)(c)
(n + 1)!

(x − c) + ⋯ )
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08 Illustration

The factor (x − c)n drives the whole function to zero with order n as x → c.

If we only considered orders up to n, we might say that f(x) and Tn(x) are the same near c.

Taylor polynomial approximations

Let f(x) = sinx and let Tn(x) be the Taylor polynomials expanded around c = 0.

By considering the alternating series error bound, find the first n for which Tn(0.02) must
have error less than 10−6.

Solution

1. 
 Alternating sign, odd function:

sinx = x −
x3

3!
+

x5

5!
−

x7

7!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n+1

(2n + 1)!

2. 
 AST error bound formula is:

|En| ≤ an+1

Here the series is S = a0 − a1 + a2 − a3 + ⋯  and En = S − Sn is the error.

3. 
 Find n such that an+1 ≤ 10−6, and therefore by the AST error bound formula:

|En| ≤ an+1 ≤ 10−6

Plug in x = 0.02.
From the series of sinx we obtain for a2n+1:

a2n+1 =
0.022n+1

(2n + 1)!

We seek the first time it happens that a2n+1 ≤ 10−6.
4. 
 Equations to solve:

0.022n+1

(2n + 1)!
≤ 10−6 but:

0.022(n−1)+1

(2(n − 1) + 1)!
≰ 10−6

Method: list the values:

0.021

1!
= 0.02,

0.023

3!
≈ 1.33 × 10−6,

0.025

5!
≈ 2.67 × 10−11, …

The first time a2n+1 is below 10−6 happens when 2n + 1 = 5.
5. 
 When 2n + 1 = 5, the term x2n+1

(2n + 1)!
 at x = 0.02 is less than 10−6.

Therefore the sum of prior terms is accurate to an error of less than 10−6.

 Write the Maclaurin series of sinx because we are expanding around c = 0.

 Notice this series is alternating, so AST error bound formula applies.

 Notice that x = 0.02 is part of the terms ai in this formula.
 Implement error bound to set up equation for n.

 Solve for the first time a2n+1 ≤ 10−6.

 Interpret result and state the answer.
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The sum of prior terms equals T4(0.02).
Since T4(x) = T3(x) because there is no x4 term, the same sum is T3(0.02).
The final answer is n = 3.

 It would be wrong to infer at the beginning that the answer is 5, or to solve
2n + 1 = 5 to get n = 2.

Taylor polynomials to approximate a definite integral

Approximate ∫
0.3

0
e−x2

dx using a Taylor polynomial with an error no greater than 10−5.

Solution

1. 
 Plug u = −x2 into the series of eu:

eu = 1 +
u

1!
+

u2

2!
+ ⋯

⨠⨠ e−x2
= 1 −

1
2!
x2 +

1
4!
x4 −

1
6!
x6 + ⋯

2. 
 Antiderivative by terms:

∫ 1 −
1
2!
x2 +

1
4!
x4 −

1
6!
x6 + ⋯ dx

⨠⨠ x −
1
3!
x3 +

1
5!
x5 −

1
7!
x7 + ⋯

Plug in bounds for definite integral:

∫
0.3

0
e−x2

dx ⨠⨠ x −
1
3!
x3 +

1
5!
x5 −

1
7!
x7 + ⋯

0.3

0

⨠⨠ 0.3 −
0.33

3!
+

0.35

5!
−

0.37

7!
+ ⋯∣3. 

 Compute some terms:

0.33

3!
≈ 0.0045,

0.35

5!
≈ 2.0 × 10−5,

0.37

7!
≈ 4.34 × 10−8

So we can guarantee an error less than 4.34 × 10−5 by summing the first terms
through 0.35

5! .

4. 

 Write the series of the integrand.

 Compute definite integral by terms.

 Notice AST, apply error formula.

 Final answer is 0.3 −
0.33

3!
+

0.35

5!
≈ 0.291243.
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