
W10 Notes
Ratio test and Root test
Videos, Math Dr. Bob

01 Theory

Ratio test: Basics
Ratio test: Ratio test + DCT
Root test: Basics
Root test: for ∑(1 − 1/n2)n

3

Ratio Test (RaT)

Applicability: Any series with nonzero terms.

Test Statement:

Suppose that an+1

an
⟶ L as n → ∞.

Then: ∣ ∣ L < 1 :
∞

∑
n=1

an converges absolutely

L > 1 :
∞

∑
n=1

an diverges

L = 1 or DNE : test inconclusive

Extra - Ratio test: explanation

To understand the ratio test, consider this series:

∞

∑
n=0

2n

n!
= 1 +

2

1!
+

22

2!
+

23

3!
+ ⋯

When n > 3, the multiplication factor giving the next term is necessarily less than 2
3 .

Therefore, when n > 3, the terms shrink faster than those of a geometric series having r = 2
3

.
Therefore this series converges.

Similarly, consider this series:
∞

∑
n=0

10n

n!
= 1 +

10

1!
+

102

2!
+

103

3!
+ ⋯

Write Rn = an
an−1

 for the ratio from the prior term an−1 to the current term an. For this series,
Rn = 10

n
.

This ratio falls below 10
11  when n > 11, after which the terms necessarily shrink faster than

those of a geometric series with r = 10
11

. Therefore this series converges.

The term 23

3!
 is given by multiplying the prior term by 2

3
.

The term 24

4!
 is given by multiplying the prior term by 2

4
.

The term an is created by multiplying the prior term by 2
n .
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02 Illustration

The main point of the discussion can be stated like this:

Rn → L < 1 as n → ∞

Whenever this is the case, then eventually the ratios are bounded below some r < 1, and the
series terms are smaller than those of a converging geometric series.

Extra - Ratio test: proof

Let us write Rn = an+1

an
 for the ratio to the next term from term n.

Suppose that Rn → L as n → ∞, and that L < 1. This means: eventually the ratio of terms is
close to L; so eventually it is less than 1.

More specifically, let us define r = L+1
2 . This is the point halfway between L and 1. Since

Rn → L, we know that eventually Rn < r.

Any geometric series with ratio r converges. Set c = aN  for N  big enough that RN < r. Then
the terms of our series satisfy |aN+n| ≤ crn, and the series starting from aN  is absolutely
convergent by comparison to this geometric series.

(Note that the terms a1, … , aN−1 do not affect convergence.)∣ ∣Example - Ratio test

(a) Observe that 
∞

∑
n=0

10n

n!
 has ratio Rn = 10

n+1  and thus Rn → 0 = L < 1. Therefore the RaT

implies that this series converges.

(b) 
∞

∑
n=1

n2

2n
 has ratio Rn = (n+1)2

2n+1 / n2

2n .

Simplify this:

(n + 1)2

2n+1
/ n2

2n
⨠⨠

(n + 1)2

2n+1
⋅

2n

n2

Notice this technique!

Simplify the ratio:

We frequently use these rules:

10n+1 = 10n ⋅ 10, (n + 1)! = (n + 1)n!

to simplify ratios having exponents and factorials.

10n+1

(n + 1)!

n!
10n

⨠⨠
(n + 1)!

10n+1
⋅
n!

10n

⨠⨠
10 ⋅ 10n

(n + 1)n!
⋅
n!

10n ⨠⨠
10

n + 1

n→∞
⟶ 0
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03 Theory

04 Illustration

⨠⨠
(n + 1)2 ⋅ 2n

n2 ⋅ 2 ⋅ 2n
⨠⨠

n2 + 2n + 1

2n2

n→∞
⟶

1

2
= L

So the series converges absolutely by the ratio test.

(c) Observe that 
∞

∑
n=1

n2 has ratio Rn =
n2 + 2n + 1

n2
→ 1 as n → ∞.

So the ratio test is inconclusive, even though this series fails the SDT and obviously diverges.

(d) Observe that 
∞

∑
n=1

1

n2
 has ratio Rn =

n2

n2 + 2n + 1
→ 1 as n → ∞.

So the ratio test is inconclusive, even though the series converges as a p-series with p = 2 > 1

.

(e) More generally, the ratio test is usually inconclusive for rational functions; it is more
effective to use LCT with a p-series.

Root Test (RooT)

Applicability: Any series.

Test Statement:

Suppose that n√|an|⟶ L as n → ∞.

Then:

L < 1 :
∞

∑
n=1

an converges absolutely

L > 1 :
∞

∑
n=1

an diverges

L = 1 or DNE : test inconclusive

Extra - Root test: explanation

The fact that n√|an| → L and L < 1 implies that eventually n√|an| < r for all high enough n,
where r = L+1

2  is the midpoint between L and 1.

Now, the equation n√|an| < r is equivalent to the equation |an| < rn.

Therefore, eventually the terms |an| are each less than the corresponding terms of this
convergent geometric series:

∞

∑
n=1

rn = 1 + r + r2 + r3 + ⋯

Root test examples
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(a) Observe that 
∞

∑
n=1

( 1

n
)

n

 has roots of terms:

|an|1/n = (( 1

n
)

n

)
1/n

=
1

n

n→∞
⟶ 0 = L

Because L < 1, the RooT shows that the series converges absolutely.

(b) Observe that 
∞

∑
n=1

(−1)n( n

2n + 1
)

n

 has roots of terms:

n√|an| =
n

2n + 1

n→∞
⟶

1

2
= L

Because L < 1, the RooT shows that the series converges absolutely.

(c) Observe that 
∞

∑
n=1

( 3
n
)

n

 converges because n√|an| = 3
n

→ 0 as n → ∞.

Ratio test versus root test

Determine whether the series 
∞

∑
n=1

n24n

5n+2
 converges absolutely or conditionally or diverges.

Solution

Before proceeding, rewrite somewhat the general term as ( n
5
)

2
⋅ ( 4

5
)

n

.

Now we solve the problem first using the ratio test. By plugging in n + 1 we see that

an+1 = ( n + 1
5

)
2

⋅ ( 4
5
)

n+1

So for the ratio Rn we have:

Therefore the series converges absolutely by the ratio test.

Now solve the problem again using the root test. We have for n√|an|:

(( n
5
)

2
⋅ ( 4

5
)

n

)
1/n

= ( n
5
)

2/n
⋅

4
5

To compute the limit as n → ∞ we must use logarithmic limits and L’Hopital’s Rule. So, first
take the log:

ln(( n
5
)

2/n
⋅

4

5
) =

2

n
ln

n

5
+ ln

4

5

Then for the first term apply L’Hopital’s Rule:

ln n
5

d/dx
⟶

1
n/5

⋅ 1
5

n/2
d/dx
⟶ 1/2

⨠⨠
1/n

1/2
⨠⨠

2

n
⟶ 0 as n → ∞

( n + 1

5
)

2

⋅ ( 4

5
)

n+1

⋅ ( 5

n
)

2

⋅ ( 5

4
)

n

⨠⨠
n2 + 2n + 1

n2
⋅

4

5
⟶

4

5
< 1 as n → ∞
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Series tests: strategy tips
Videos, Math Dr. Bob

Videos, Trefor Bazett

05 Theory

It can help to associate certain “strategy tips” to find convergence tests based on certain patterns.

So the first term goes to zero, and the second (constant) term is the value of the limit. So the
log limit is ln 4

5 , and the limit (before taking logs) must be eln 4
5  (inverting the log using ex)

and this is 4
5 . Since 4

5 < 1, the root test also shows that the series converges absolutely.

Series test round-up: Part I
Series test round-up: Part II
Series test round-up: Part III

How to choose a series convergence test

Matching powers → Simple Divergence Test
∞

∑
n=1

n − 1

2n + 1

Use the SDT because we see the highest power is the same (= 1) in numerator and
denominator.

Rational or Algebraic → Limit Comparison Test

∞

∑
n=1

√n3 + 1

3n3 + 4n2 + 2

Use the LCT because we have a rational or algebraic function (positive terms).

Not rational, not factorials → Integral Test
∞

∑
n=1

ne−n2

Use the IT because we do not have a rational/algebraic function, and we do not see factorials.

Rational, alternating → AST, and LCT or DCT
∞

∑
n=1

(−1)n
n2

n4 + 1

Use the AST because it’s alternating. Then use the LCT (to find absolute convergence)
because its a rational function.

Factorials → Ratio Test
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Power series: Radius and Interval
Videos, Math Dr. Bob

06 Theory

A power series looks like this:

f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯

Power series are used to build and study functions. They allow a uniform “modeling framework”
in which many functions can be described and compared. Power series are also convenient for
computers because they provide a way to store and evaluate differentiable functions with
numerical (approximate) values.

The idea of a power series is a modification of the idea of a geometric series in which the common
ratio r becomes a variable x, and each term has an additional coefficient parameter an controlling
the relative contribution of different orders.

07 Theory

Every power series has a radius of convergence and an interval of convergence.

∞

∑
n=1

2n

n!

Use the RaT because we see a factorial. (In case of alternating + factorial, use RaT first.)

Recognize geometric → LCT or DCT
∞

∑
n=1

1

2 + 3n

Use the LCT or DCT comparing to 1
3n  because we see similarity to 1

3n  (recognize geometric).

Power series: Interval and Radius of Convergence
Power series: Interval of Convergence Using Ratio Test

Further example
Power series: Interval of Convergence Using Root Test
Power series: Finding the Center

Small x needed for power series

The most important fact about power series is that they work for small values of x.

Many power series diverge for |x| too big; but even when they converge, for big |x| they
converge more slowly, and partial sum approximations are less accurate.

Radius of convergence

Consider a power series centered at x = 0:

f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯

Define L as the limit of coefficient ratios:
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We can build shifted power series for x near another value c. Just replace the variable x with a
shifted variable u = x − c:

The radius of convergence of a shifted series is calculated in the same way, using the coefficients:

R =
1

limn→∞
an+1

an

However, in the shifted setting, the radius of convergence concerns the distance from c: Such a
power series converges when |x − c| < R and diverges when |x − c| > R.

The interval of convergence of a power series is determined by:

L = lim
n→∞

an+1

an

Then reciprocal, R = 1/L, is the radius of convergence; it can be anything in [0, ∞]

including either extreme.

The power series necessarily converges for |x| < R and diverges for |x| > R.∣ ∣Extra - Radius of convergence: explanatory proof

Treat the variable x in the power series f(x) = a0 + a1x + a2x
2 + ⋯ as a constant.

Apply the ratio test to this series. The ratio function is:

Rn =
an+1

an
⋅ |x|

Since |x| is a constant here, we have:

lim
n→∞

Rn = L|x|

Therefore, the ratio test says that the series converges absolutely when |x| < 1/L, and
diverges when |x| > 1/L. ∣ ∣a0 + a1u + a2u

2 + a3u
3 + ⋯

⨠⨠ a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + ⋯∣ ∣the radius of convergence
the center point
special consideration of endpoints

Interval of convergence

The interval of convergence I of a power series f(x) = a0 + a1x + a2x
2 + ⋯ is the set of

values of x where the series converges.

The interval of convergence I is:

centered at x = c

extending a distance R to either side of c
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To calculate the interval of convergence, follow these steps:

08 Illustration

including / excluding the endpoints where |x − c| = R depending on the particular case

Observe the center c of the shifted series; c = 0 corresponds to no shift.
Take the limit to compute R.
Write down the preliminary interval (c − R, c + R).
Plug each endpoint c − R and c − R into the original series

→ check for convergence
Add in the convergent endpoints. There are 4 total possibilities.

Example - Radius and interval for a few series

Series Radius Interval
∞

∑
n=0

xn R = 1 (−1, 1)

∞

∑
n=1

(x − 2)n

n

R = 1 [1, 3)

∞

∑
n=0

n!xn R = 0 {0}

∞

∑
n=0

xn

(2n)!
R = ∞ (−∞, ∞)

Example - Radius of convergence

Find the radius of convergence of the series:

(a) 
∞

∑
n=0

xn

2n
 (b) 

∞

∑
n=0

x2n

(2n)!

Solution

(a) The ratio of coefficients is Rn =
an+1

an
=

1/2n+1

1/2n
= 1/2.

Therefore R = 2 and the series converges for |x| < 2.

(b) This power series has a2n+1 = 0, meaning it skips all odd terms.

Instead of the standard ratio function, we take the ratio of successive even terms. The series
of even terms has coefficients an = 1

(2n)!
. So:∣ ∣an+1

an
⨠⨠

1
(2(n+1))!

1
(2n)!

⨠⨠
1

(2n + 2)(2n + 1)(2n)!
⋅

(2n)!

1
⨠⨠

1

(2n + 2)(2n + 1)∣ ∣ W10 Notes
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As n → ∞, this converges to 0, so L = 0 and R = ∞.

Example - Interval of convergence

Find the interval of convergence of the following series.

(a) 
∞

∑
n=1

(x − 3)n

n
  (b) 

∞

∑
n=0

(−3)nxn

√n + 1

Solution

(a) 
∞

∑
n=1

(x − 3)n

n

(b) 
∞

∑
n=0

(−3)nxn

√n + 1

1. Apply ratio test.
 Ratio of successive coefficients:

Rn =
1

n + 1
⋅
n

1
⨠⨠ n

n + 1∣ ∣Limit of ratios:

Rn =
n

n + 1

n→∞
⟶ 1

Deduce L = 1 and therefore R = 1.
Therefore:

|x − 3| < 1⟹ converges

|x − 3| > 1⟹ diverges

2. Preliminary interval of convergence.
 Translate to interval notation:

|x − 3| < 1 ⨠⨠ x ∈ (3 − 1, 3 + 1)

⨠⨠ x ∈ (2, 4)

3. Final interval of convergence.
 Check endpoint x = 2:

∞

∑
n=1

(2 − 3)n

n
⨠⨠

∞

∑
n=1

(−1)n

n

⨠⨠ converges by AST

Check endpoint x = 4:

∞

∑
n=1

(4 − 3)n

n
⨠⨠

∞

∑
n=1

1

n

⨠⨠ diverges as p-series

Final interval of convergence: x ∈ [2, 4)

1. Limit of coefficients ratio.
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 Ratio of successive coefficients:

Rn =
an+1

an
⨠⨠

(−3)n+1

√n + 2
⋅

√n + 1

(−3)n

⨠⨠
3√n + 1

√n + 2∣ ∣ ∣ ∣Limit of ratios:

lim
n→∞

Rn ⨠⨠ lim
n→∞

3√n + 1

√n + 2
⨠⨠ 3

Deduce L = 3 and thus R = 1/3.
Therefore:

|x| <
1

3
⟹ converges

|x| >
1
3
⟹ diverges

Preliminary interval of convergence: x ∈ (− 1
3 , 1

3 )

2. Check endpoints.
 Check endpoint x = −1/3:

∞

∑
n=0

(−3 ⋅ (− 1
3 ))

n

√n + 1
⨠⨠

∞

∑
n=0

1n

√n + 1

⨠⨠ diverges by LCT with bn = 1/√n

Check endpoint x = +1/3:

∞

∑
n=0

(−3 ⋅ (+ 1
3 ))

n

√n + 1
⨠⨠

∞

∑
n=0

(−1)n

√n + 1

⨠⨠ converges by AST

Final interval of convergence: x ∈ (−1/3, 1/3]

Interval of convergence - further examples

Find the interval of convergence of the following series.

(a) 
∞

∑
n=0

n(x + 2)n

3n+1
  (b) 

∞

∑
n=1

(4x + 1)n

n

Solution

(a) 
∞

∑
n=0

n(x + 2)n

3n+1

Ratio of coefficients: Rn =
n + 1

3n
⟶

1

3
.

So the R = 3, center is x = −2, and the preliminary interval is (−2 − 3, −2 + 3) = (−5, 1).

Check endpoints: ∑ n(−3)n

3n+1
 diverges and ∑ n(3)n

3n+1
 also diverges. Final interval is

(−5, 1).
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(b) 
∞

∑
n=1

(4x + 1)n

n

Ratio of coefficients: Rn =
n + 1

n
⟶ 1.

So R = 1, and the series converges when |4x + 1| < 1.
Extract preliminary interval.

 Divide by 4:

|4x + 1| < 1
÷4

⨠⨠ |x + 1/4| < 1/4 ⨠⨠ x ∈ (0, 1/2)

Check endpoints: ∑
(4 ⋅ −1

2 + 1)n

n
 converges but ∑ 1

n
 diverges.

Final interval of convergence: [−1/2, 0)
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