Simple divergence test

Videos, Math Dr. Bob

- <u>Geometric series and SDT, again</u>: Geometric series, Simple Divergence Test (aka "Limit Test")
- Integral test: Basics
- <u>Integral test</u>: *p*-series
 - Extra: <u>Integral test</u>: Further examples
 - Extra: Integral test: Estimations

01 Theory

₿ Simple Divergence Test (SDT)

Applicability: Any series.

Test Statement:

$$\lim_{n o\infty}a_n
eq 0 \qquad \Longrightarrow \qquad \sum_{n=1}^\infty a_n \;\; ext{diverges}$$

• \triangle The converse is not valid. For example, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges even though $\lim_{n\to\infty} \frac{1}{n} = 0$.

02 Illustration

 \equiv Simple Divergence Test: examples

Consider:
$$\sum_{n=1}^{\infty} \frac{n}{4n+1}$$

• This diverges by the SDT because $a_n \rightarrow \frac{1}{4}$ and not 0.

Consider:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1}$$

- This diverges by the SDT because $\lim_{n\to\infty} a_n = \text{DNE}$.
- We can say the terms "converge to the pattern +1, -1, +1, -1, ...," but that is not a limit value.

Positive series

- <u>Direct Comparison Test</u>: Theory and basic examples
- <u>Direct Comparison Test</u>: Series $\frac{1}{\ln n}$
- Limit Comparison Test: Theory and basic examples
- Limit Comparison Test: Further examples

03 Theory

Positive series

A series is called **positive** when its individual terms are positive, i.e. $a_n > 0$ for all n.

The partial sum sequence S_N is *monotone increasing* for a positive series.

By the monotonicity test for convergence of sequences, S_N therefore converges whenever it is *bounded above*. If S_N is not bounded above, then $\sum_{n=1}^{\infty} a_n$ diverges to $+\infty$.

Another test, called the **integral test**, studies the terms of a series as if they represent rectangles with upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable n in a_n into a continuous variable x. This is easy when we have a formula for a_n (provided it doesn't contain factorials or other elements dependent on integrality).

🗒 Extra - Integral test: explanation

To show that *integral convergence implies series convergence*, consider the diagram:

This shows that $\sum_{n=2}^{N} a_n \leq \int_1^N f(x) dx$ for any N. Therefore, if $\int_1^{\infty} f(x) dx$ converges, then $\int_1^N f(x) dx$ is bounded (independent of N) and so $\sum_{n=2}^N a_n$ is bounded by that inequality. But $\sum_{n=2}^N a_n = S_N - a_1$; so by adding a_1 to the bound, we see that S_N itself is bounded, which implies that $\sum_{n=1}^{\infty} a_n$ converges.

To show that *integral divergence implies series divergence*, consider a similar diagram:

This shows that $\sum_{n=1}^{N-1} a_n \ge \int_1^N f(x) dx$ for any *N*. Therefore, if $\int_1^\infty f(x) dx$ diverges, then $\int_1^N f(x) dx$ goes to $+\infty$ as $N \to \infty$, and so $\sum_{n=1}^{N-1} a_n$ goes to $+\infty$ as well. So $\sum_{n=1}^{\infty} a_n$ diverges.

- I Notice: the picture shows f(x) entirely above (or below) the rectangles.
 - This depends upon f(x) being monotone decreasing, as well as f(x) > 0.
 - This explains the applicability conditions.

Next we use the integral test to evaluate the family of *p*-series, and later we can use *p*-series in comparison tests without repeating the work of the integral test.

\blacksquare *p*-series

```
A p-series is a series of this form: \sum_{n=1}^{\infty} \frac{1}{n^p}
```

Convergence properties:

 $p>1: {
m series \ converges}$

 $p \leq 1$: series diverges

Extra - Proof of *p*-series convergence

To verify the convergence properties of *p*-series, apply the integral test:

 $1. \equiv$ Applicability: verify it's continuous, positive, decreasing.

- Convert *n* to *x* to obtain the function $f(x) = \frac{1}{x^p}$.
- Indeed $\frac{1}{x^p}$ is continuous and positive and decreasing as *x* increases.

2. E Apply the integral test.

• Integrate, assuming $p \neq 1$:

$$egin{array}{ll} \displaystyle \int_1^\infty rac{1}{x^p} \, dx & \gg \gg & \lim_{R o\infty} \left. rac{x^{p-1}}{p-1}
ight|_1^R \ & \gg \gg & \lim_{R o\infty} \left. \left(rac{R^{-p+1}}{-p+1} - rac{1^{-p+1}}{-p+1}
ight) \end{array}$$

• When p>1 we have $\lim_{R \to \infty} rac{R^{-p+1}}{-p+1} = 0$

• When p < 1 we have $\lim_{R o \infty} \; rac{R^{-p+1}}{-p+1} = \infty$

 ∞

• When *p* = 1, integrate a second time:

$$egin{array}{ll} \displaystyle \int_{1}^{\infty}rac{1}{x}\,dx &\gg & \displaystyle \lim_{R o\infty}\,\ln x \Big|_{1}^{R} \ & \gg & \displaystyle \lim_{R o\infty}\,\ln R - \ln 1 &\gg & \end{array}$$

3. \equiv Conclude: the integral converges when p > 1 and diverges when $p \leq 1$.

• I Supplement: we could instead immediately refer to the convergence results for *p*-*integrals* instead of reproving them here.

04 Illustration

$\equiv p$ -series examples

By finding p and applying the p-series convergence properties:

We see that $\sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$ converges: p = 1.1 so p > 1

But $\sum_{n=1}^{\infty} rac{1}{\sqrt{n}}$ diverges: p=1/2 so $p\leq 1$

 \equiv Integral test - pushing the envelope of convergence

Does
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 converge?
Does $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converge?

Notice that $\ln n$ grows *very slowly* with n, so $\frac{1}{n \ln n}$ is just a *little* smaller than $\frac{1}{n}$ for large n, and similarly $\frac{1}{n(\ln n)^2}$ is just a little smaller still.

Solution

1. The two series lead to the two functions $f(x) = \frac{1}{x \ln x}$ and $g(x) = \frac{1}{x(\ln x)^2}$.

2. \equiv Check applicability.

• Clearly f(x) and g(x) are both continuous, positive, decreasing functions on $x \in [2, \infty]$.

3. \Rightarrow Apply the integral test to f(x).

• Integrate
$$f(x)$$

$$\int_{2}^{\infty} \frac{1}{x \ln x} \, dx \quad \gg \gg \quad \int_{u = \ln 2}^{\infty} \frac{1}{u} \, du$$

$$\gg \gg \lim_{R \to \infty} \ln u \Big|_{\ln 1}^{R} \gg \gg \infty$$

4. \equiv Conclude: $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges.

5. \equiv Apply the integral test to g(x).

• Integrate
$$g(x)$$
:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx \implies \int_{u=\ln 2}^{\infty} \frac{1}{u^{2}} du$$

$$\gg \gg \lim_{R \to \infty} -u^{-1} \Big|_{\ln 2}^{R} \implies \frac{1}{\ln 2}$$
6. \equiv Conclude: $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges.

05 Theory

Direct Comparison Test (DCT)

Applicability: Both series are positive: $a_n > 0$ and $b_n > 0$.

Test Statement: Suppose $a_n \leq b_n$ for large enough n. (Meaning: for $n \ge N$ with some given N.) Then:

• Smaller pushes up bigger:

$$\sum_{n=1}^\infty a_n \;\; ext{diverges} \;\; \Longrightarrow \;\; \sum_{n=1}^\infty b_n \;\; ext{diverges}$$

• Bigger controls smaller:

$$\sum_{n=1}^{\infty} b_n \hspace{0.2cm} ext{converges} \hspace{0.2cm} \Longrightarrow \hspace{0.2cm} \sum_{n=1}^{\infty} a_n \hspace{0.2cm} ext{converges}$$

06 Illustration

E Direct comparison test: rational functions

The series
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} 3^n}$$
 converges by the DCT.

- Choose: $a_n = \frac{1}{\sqrt{n} \, 3^n}$ and $b_n = \frac{1}{3^n}$
- Check: $0 < \frac{1}{\sqrt{n} \, 3^n} \leq \frac{1}{3^n}$
- Observe: $\sum \frac{1}{3^n}$ is a convergent geometric series

The series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^3}$ converges by the DCT.

- Choose: a_n = cos²n/n³ and b_n = 1/n³.
 Check: 0 ≤ cos²n/n³ ≤ 1/n³
- Observe: $\sum \frac{1}{n^3}$ is a convergent *p*-series

The series
$$\sum_{n=1}^{\infty} rac{n}{n^3+1}$$
 converges by the DCT.

• Choose:
$$a_n = \frac{n}{n^3+1}$$
 and $b_n = \frac{1}{n^2}$

- Check: $0 \le \frac{n}{n^3+1} \le \frac{1}{n^2}$ (notice that $\frac{n}{n^3+1} \le \frac{n}{n^3}$)
- Observe: $\sum \frac{1}{p^2}$ is a convergent *p*-series

The series
$$\sum_{n=2}^{\infty} \frac{1}{n-1}$$
 diverges by the DCT

- Choose: $a_n = \frac{1}{n}$ and $b_n = \frac{1}{n-1}$
- Check: $0 \leq \frac{1}{n} \leq \frac{1}{n-1}$
- Observe: $\sum \frac{1}{n}$ is a divergent *p*-series

07 Theory

Some series can be compared using the DCT after applying certain manipulations and tricks.

For example, consider the series $\sum_{n=2}^{\infty} \frac{1}{n^2-1}$. We suspect convergence because $a_n \approx \frac{1}{n^2}$ for *large n*. But unfortunately, $a_n > \frac{1}{n^2}$ always, so we cannot apply the DCT.

We could make some *ad hoc* arguments that do use the DCT, eventually:

- Trick Method 1:
 - Observe that for n > 1 we have $\frac{1}{n^2-1} \leq \frac{10}{n^2}$. (Check it!)
 - But $\sum \frac{10}{n^2}$ converges, indeed its value is $10 \cdot \sum \frac{1}{n^2}$, which is $\frac{10\pi^2}{6}$.
 - So the series $\sum \frac{1}{n^2-1}$ converges.
- Trick Method 2:
 - Observe that we can change the letter n to n + 1 by starting the new n at n = 1.
 - Then we have:

$$\sum_{n=2}^{\infty}rac{1}{n^2-1} \hspace{.1in} = \hspace{.1in} \sum_{n=1}^{\infty}rac{1}{(n+1)^2-1} \hspace{.1in} = \hspace{.1in} \sum_{n=1}^{\infty}rac{1}{n^2+2n}$$

• This last series has terms smaller than $\frac{1}{n^2}$ so the DCT with $b_n = \frac{1}{n^2}$ (a convergent *p*-series) shows that the original series converges too.

These convoluted arguments suggest that a more general version of Comparison is possible.

Indeed, it is sufficient to compare the *limiting behavior* of two series. The limit of *ratios* (limit of 'comparison') links up the convergence / divergence of $\sum a_n$ and $\sum b_n$.

🗄 Limit Comparison Test (LCT) - "Limiting Ratio Test"

Applicability: Both series are positive: $a_n > 0$ and $b_n > 0$.

Test Statement: Suppose that $\lim_{n\to\infty} \frac{a_n}{b_n} = L$. Then:

• If $0 < L < \infty$:

$$\sum a_n \quad rac{ ext{converges}}{ ext{diverges}} \qquad \Longleftrightarrow \qquad \sum b_n \quad rac{ ext{converges}}{ ext{diverges}}$$

If L = 0 or $L = \infty$, we can still draw an inference, but in only one direction:

• If
$$L = 0$$
:
 $\sum b_n$ converges $\implies \sum a_n$ converges
• If $L = \infty$:
 $\sum b_n$ diverges $\implies \sum a_n$ diverges

🗒 Extra - Limit Comparison Test: Theory

Suppose $a_n/b_n \to L$ and $0 < L < \infty$. Then for n sufficiently large, we know $a_n/b_n < L + 1$

Doing some algebra, we get $a_n < (L+1)b_n$ for *n* large.

If $\sum b_n$ converges, then $\sum (L+1)b_n$ also converges (constant multiple), and then the DCT implies that $\sum a_n$ converges.

Conversely: we also know that $b_n/a_n \to 1/L$, so $b_n < (1/L+1)a_n$ for all n sufficiently large. Thus if $\sum a_n$ converges, $\sum (1/L+1)a_n$ also converges, and by the DCT again $\sum b_n$ converges too.

The cases with L = 0 or $L = \infty$ are handled similarly.

08 Illustration

 \equiv Limit Comparison Test examples

The series
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
 converges by the LCT.

- Choose: $a_n = \frac{1}{2^n 1}$ and $b_n = \frac{1}{2^n}$.
- Compare in the limit:

$$\lim_{n o \infty} rac{a_n}{b_n} \quad \gg \gg \quad \lim_{n o \infty} rac{2^n}{2^n-1} \quad \gg \gg \quad 1 \ =: \ L$$

• Observe: $\sum \frac{1}{2^n}$ is a convergent geometric series

The series
$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$$
 diverges by the LCT.

- Choose: $a_n = rac{2n^2+3n}{\sqrt{5+n^5}}$, $b_n = n^{-1/2}$
- Compare in the limit:

$$egin{array}{lll} \lim_{n o\infty}rac{a_n}{b_n} &\gg & \lim_{n o\infty}rac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}} \ rac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}} & \stackrel{n o\infty}{\longrightarrow} & rac{2n^{5/2}}{n^{5/2}} o 2 \ =: \ L \end{array}$$

• Observe: $\sum n^{-1/2}$ is a divergent *p*-series

The series
$$\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}$$
 converges by the LCT.

- Choose: $a_n = rac{n^2}{n^4 n 1}$ and $b_n = n^{-2}$
- Compare in the limit:

$$\lim_{n
ightarrow\infty}rac{a_n}{b_n} \quad \gg \gg \quad \lim_{n
ightarrow\infty}rac{n^4}{n^4-n-1} \quad \gg \gg \quad 1 \ =: \ L$$

• Observe: $\sum_{n=2}^{\infty} n^{-2}$ is a converging *p*-series

Alternating series

Videos, Math Dr. Bob:

- Alternating Series Test: Theory and basic examples
- <u>Alternating Series Test</u>: Remainder estimates
- <u>Alternating Series Test</u>: Further remainder estimates

09 Theory

Consider these series:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \dots = \infty$$

$$-1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \frac{1}{5} - \frac{1}{6} - \frac{1}{7} - \dots = -\infty$$

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots = \ln 2$$

$$1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots = ?$$

The absolute values of terms are the same between these series, only the signs of terms change.

The first is a **positive series** because there are no negative terms.

The second series is the negation of a positive series – the study of such series is equivalent to that of positive series, just add a negative sign everywhere. These signs can be factored out of the series. (For example $\sum -\frac{1}{n} = -\sum \frac{1}{n}$.)

The third series is an **alternating series** because the signs alternate in a strict pattern, every other sign being negative.

The fourth series is *not* alternating, nor is it positive, nor negative: it has a mysterious or unknown pattern of signs.

A series with any negative signs present, call it $\sum_{n=1}^{\infty} a_n$, **converges absolutely** when the positive series of absolute values of terms, namely $\sum_{n=1}^{\infty} |a_n|$, converges.

THEOREM: Absolute implies ordinary

If a series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then it also converges as it stands.

A series might converge due to the presence of negative terms and yet *not* converge absolutely:

A series $\sum_{n=1}^{\infty} a_n$ is said to be **converge conditionally** when the series converges as it stands, but the series produced by inserting absolute values, namely $\sum_{n=1}^{\infty} |a_n|$, diverges.

The alternating harmonic series above, $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \ln 2$, is therefore conditionally convergent. Let us see why it converges. We can group the terms to create new sequences of *pairs*, each pair being a positive term. This can be done in two ways. The first creates an increasing sequence, the second a decreasing sequence:

increasing from 0:
$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \left(\frac{1}{7} - \frac{1}{8}\right) + \cdots$$

decreasing from 1: $1 - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \left(\frac{1}{6} - \frac{1}{7}\right) - \cdots$

Suppose S_N gives the sequence of partial sums of the original series. Then S_{2N} gives the first sequence of pairs, namely S_2 , S_4 , S_6 , ... And S_{2N-1} gives the second sequence of pairs, namely S_1 , S_3 , S_5 , ...

The second sequence shows that S_N is bounded above by 1, so S_{2N} is monotone increasing and bounded above, so it converges. Similarly S_{2N-1} is monotone decreasing and bounded below, so it converges too, and of course they must converge to the same thing.

The fact that the terms were *decreasing in magnitude* was an essential ingredient of the argument for convergence. This fact ensured that the parenthetical pairs were positive numbers.

🕆 Alternating Series Test (AST) - "Leibniz Test"

Applicability: Alternating series only: $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ with $a_n > 0$

Test Statement:

If:

- (1) a_n are *decreasing*, so $a_1 > a_2 > a_3 > a_4 > \cdots > 0$
- (2) $a_n \to 0$ as $n \to \infty$ (i.e. it passes the SDT)

Then:

$$\sum_{n=1}^{\infty}(-1)^{n-1}a_n$$
 converges

Furthermore, partial sum *errors* are bounded by "subsequent terms":

 $|S-S_N| \leq a_{N+1}$

🗒 Extra - Alternating Series Test: Theory

Just as for the alternating harmonic series, we can form *positive* paired-up series because the terms are decreasing:

$$(a_1-a_2)+(a_3-a_4)+(a_5-a_6)+\cdots$$

$$a_1 - (a_2 - a_3) - (a_4 - a_5) - (a_6 - a_7) - \cdots$$

The first sequence S_{2N} is monotone increasing from 0, and the second S_{2N-1} is decreasing from a_1 . The first is therefore also bounded above by a_1 . So it converges. Similarly, the second converges. Their difference at any point is $S_{2N} - S_{2N-1}$ which is equal to $-a_{2N}$, and this goes to zero. So the two sequences must converge to the same thing.

By considering these paired-up sequences and the effect of adding each new term one after the other, we obtain the following order relations:

 $0 < S_2 < S_4 < S_6 < \ \cdots \ < S < \ \cdots \ < S_5 < S_3 < S_1 = a_1$

Thus, for any even 2N and any odd 2M - 1:

$$S_{2N} < S < S_{2M-1}$$

Now set M = N and subtract S_{2N-1} from both sides:

$$S_{2N} - S_{2N-1} < S - S_{2N-1} < 0$$

$$\gg \gg -a_{2N} < S - S_{2N-1} < 0$$

Now set M = N + 1 and subtract S_{2N} from both sides:

$$0 < S - S_{2N} < S_{2N+1} - S_{2N}$$

$$\gg \gg \quad 0 < S - S_{2N} < a_{2N+1}$$

This covers both even cases (n = 2N) and odd cases (n = 2N - 1). In either case, we have:

$$\left|S-S_{n}
ight| < a_{n+1}$$

10 Illustration

∃ Alternating Series Test: Basic illustration

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$
 converges by the AST

- Notice that $\sum \frac{1}{\sqrt{n}}$ diverges as a *p*-series with p = 1/2 < 1.
- Therefore the first series converges *conditionally*.

(b)
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2}$$
 converges by the AST.

- Notice the funny notation: $\cos n\pi = (-1)^n$.
- This series converges *absolutely* because $\left|\frac{\cos n\pi}{n^2}\right| = \frac{1}{n^2}$, which is a *p*-series with p = 2 > 1.

$$\equiv$$
 Approximating π

The Taylor series for $\tan^{-1} x$ is given by:

$$an^{-1} x = x - rac{x^3}{3} + rac{x^5}{5} - rac{x^7}{7} + \cdots$$

Use this series to approximate π with an error less than 0.001.

Solution

The main idea is to use $\tan \frac{\pi}{4} = 1$ and thus $\tan^{-1} 1 = \frac{\pi}{4}$. Therefore:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

and thus:

$$\pi = 4 - rac{4}{3} + rac{4}{5} - rac{4}{7} + \cdots$$

Write E_n for the error of the approximation, meaning $E_n = S - S_n$.

By the AST error formula, we have $|E_n| < a_{n+1}$.

We desire *n* such that $|E_n| < 0.001$. Therefore, calculate *n* such that $a_{n+1} < 0.001$, and then we will know:

$$|E_n| < a_{n+1} < 0.001$$

The general term is $a_n = \frac{4}{2n-1}$. Plug in n + 1 in place of n to find $a_{n+1} = \frac{4}{2n+1}$. Now solve:

$$a_{n+1} = rac{4}{2n+1} < 0.001$$
 $\gg >> rac{4}{0.001} < 2n+1$
 $\gg >> 3999 < 2n$
 $\gg >> 2000 \le n$

We conclude that at least 2000 terms are necessary to be confident (by the error formula) that the approximation of π is accurate to within 0.001.