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W08 Notes
Simple divergence test
Videos, Math Dr. Bob

01 Theory

02 Illustration

Positive series

Geometric series and SDT, again: Geometric series, Simple Divergence Test (aka “Limit
Test”)
Integral test: Basics
Integral test: p-series

Extra: Integral test: Further examples
Extra: Integral test: Estimations

Simple Divergence Test (SDT)

Applicability: Any series.

Test Statement:

lim
n→∞

an ≠ 0 ⟹

∞

∑
n=1

an diverges

Simple Divergence Test: examples

Consider: 
∞

∑
n=1

n

4n+ 1

Consider: 
∞

∑
n=1

(−1)n−1 n

n+ 1

This diverges by the SDT because an → 1
4  and not 0.

This diverges by the SDT because limn→∞ an = DNE.
We can say the terms “converge to the pattern +1, −1, +1, −1, … ,” but that is not
a limit value.

Direct Comparison Test: Theory and basic examples
Direct Comparison Test: Series 1

lnn

Limit Comparison Test: Theory and basic examples
Limit Comparison Test: Further examples

 The converse is not valid. For example, ∑∞
n=1

1
n

 diverges even though limn→∞
1
n
= 0.

af://h1-0
af://h2-1
https://www.youtube.com/watch?v=h84pokHK-JU
https://www.youtube.com/watch?v=F2R5hXXMP24
https://www.youtube.com/watch?v=DaE9WrsEmDw
https://www.youtube.com/watch?v=m53wTpmiRmw
https://www.youtube.com/watch?v=qj0SoBqazIA
af://h3-2
af://h3-3
af://h2-5
https://www.youtube.com/watch?v=lkHi2IZAJig
https://www.youtube.com/watch?v=zThp_EGKDAo
https://www.youtube.com/watch?v=Q4_ntBBtCsU
https://www.youtube.com/watch?v=uZ4PRMxdV5o
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03 Theory

The partial sum sequence SN  is monotone increasing for a positive series.

By the monotonicity test for convergence of sequences, SN  therefore converges whenever it
is bounded above. If SN  is not bounded above, then ∑∞

n=1 an diverges to +∞.

Another test, called the integral test, studies the terms of a series as if they represent
rectangles with upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable n in an into a continuous
variable x. This is easy when we have a formula for an (provided it doesn’t contain factorials
or other elements dependent on integrality).

Positive series

A series is called positive when its individual terms are positive, i.e. an > 0 for all n.

Integral Test (IT)

Applicability:

Test Statement:

∞

∑
n=1

an
converges

diverges
⟺ ∫

∞

1
f(x) dx

converges

diverges

(i) f(x) > 0

(ii) f(x) is continuous
(iii) f(x) is monotone decreasing

Extra - Integral test: explanation

To show that integral convergence implies series convergence, consider the diagram:

This shows that ∑N
n=2 an ≤ ∫ N

1 f(x) dx for any N . Therefore, if ∫ ∞
1 f(x) dx converges,

then ∫ N

1 f(x) dx is bounded (independent of N) and so ∑N
n=2 an is bounded by that

inequality. But ∑N
n=2 an = SN − a1; so by adding a1 to the bound, we see that SN  itself is

bounded, which implies that ∑∞
n=1 an converges.

To show that integral divergence implies series divergence, consider a similar diagram:

af://h3-6
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Next we use the integral test to evaluate the family of p-series, and later we can use p-
series in comparison tests without repeating the work of the integral test.

This shows that ∑N−1
n=1 an ≥ ∫ N

1 f(x) dx for any N . Therefore, if ∫ ∞
1 f(x) dx diverges, then

∫ N

1 f(x) dx goes to +∞ as N → ∞, and so ∑N−1
n=1 an goes to +∞ as well. So ∑∞

n=1 an

diverges.

This depends upon f(x) being monotone decreasing, as well as f(x) > 0.
This explains the applicability conditions.

 Notice: the picture shows f(x) entirely above (or below) the rectangles.

p-series

A p-series is a series of this form: 
∞

∑
n=1

1

np

Convergence properties:

p > 1 : series converges p ≤ 1 : series diverges

Extra - Proof of p-series convergence

To verify the convergence properties of p-series, apply the integral test:

1. 
Convert n to x to obtain the function f(x) = 1

xp .
Indeed 1

xp  is continuous and positive and decreasing as x increases.
2. 

Integrate, assuming p ≠ 1:

∫
∞

1

1

xp
dx ⨠⨠ lim

R→∞

xp−1

p− 1

R

1

⨠⨠ lim
R→∞

(
R−p+1

−p+ 1
−

1−p+1

−p+ 1
)∣When p > 1 we have limR→∞

R−p+1

−p+1 = 0

When p < 1 we have limR→∞
R−p+1

−p+1 = ∞

 Applicability: verify it’s continuous, positive, decreasing.

 Apply the integral test.
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04 Illustration

When p = 1, integrate a second time:

∫
∞

1

1

x
dx ⨠⨠ lim

R→∞
lnx

R

1

⨠⨠ lim
R→∞

lnR− ln 1 ⨠⨠ ∞∣3.  Conclude: the integral converges when p > 1 and diverges when p ≤ 1.

 Supplement: we could instead immediately refer to the convergence results for p-
integrals instead of reproving them here.

p-series examples

By finding p and applying the p-series convergence properties:

We see that ∑∞
n=1

1
n1.1  converges: p = 1.1 so p > 1

But ∑∞
n=1

1
√n

 diverges: p = 1/2 so p ≤ 1

Integral test - pushing the envelope of convergence

Does 
∞

∑
n=2

1

n lnn
 converge?

Does 
∞

∑
n=2

1

n(lnn)2
 converge?

Notice that lnn grows very slowly with n, so 1
n lnn  is just a little smaller than 1

n
 for large

n, and similarly 1
n(lnn)2

 is just a little smaller still.

Solution

1. 

2. 
 Clearly f(x) and g(x) are both continuous, positive, decreasing functions on

x ∈ [2,∞].
3. 
 Integrate f(x):

∫
∞

2

1

x lnx
dx ⨠⨠ ∫

∞

u=ln 2

1

u
du

⨠⨠ lim
R→∞

lnu
R

ln 1
⨠⨠ ∞∣4. 

5. 

 The two series lead to the two functions f(x) = 1
x lnx  and g(x) = 1

x(lnx)2
.

 Check applicability.

 Apply the integral test to f(x).

 Conclude: ∑∞
n=2

1
n lnn  diverges.

 Apply the integral test to g(x).

af://h3-7
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 Integrate g(x):

∫
∞

2

1

x(lnx)2
dx ⨠⨠ ∫

∞

u=ln 2

1

u2
du

⨠⨠ lim
R→∞

−u−1 R

ln 2
⨠⨠ 1

ln 2∣6.  Conclude: ∑∞
n=2

1
n(lnn)2  converges.

Direct Comparison Test (DCT)

Applicability: Both series are positive: an > 0 and bn > 0.

Test Statement: Suppose an ≤ bn for large enough n.
(Meaning: for n ≥ N  with some given N .) Then:

Smaller pushes up bigger:
∞

∑
n=1

an diverges ⟹

∞

∑
n=1

bn diverges

Bigger controls smaller:
∞

∑
n=1

bn converges ⟹

∞

∑
n=1

an converges

Direct comparison test: rational functions

The series 
∞

∑
n=1

1

√n 3n
 converges by the DCT.

The series 
∞

∑
n=1

cos2 n

n3
 converges by the DCT.

The series 
∞

∑
n=1

n

n3 + 1
 converges by the DCT.

Choose: an = 1
√n 3n

 and bn = 1
3n

Check: 0 < 1
√n 3n

≤ 1
3n

Observe: ∑ 1
3n  is a convergent geometric series

Choose: an = cos2 n
n3  and bn = 1

n3 .
Check: 0 ≤ cos2 n

n3 ≤ 1
n3

Observe: ∑ 1
n3  is a convergent p-series

Choose: an = n
n3+1  and bn = 1

n2

af://h3-10
af://h3-11
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Some series can be compared using the DCT after applying certain manipulations and
tricks.

For example, consider the series ∑∞
n=2

1
n2−1 . We suspect convergence because an ≈ 1

n2  for
large n. But unfortunately, an > 1

n2  always, so we cannot apply the DCT.

We could make some ad hoc arguments that do use the DCT, eventually:

These convoluted arguments suggest that a more general version of Comparison is possible.

Indeed, it is sufficient to compare the limiting behavior of two series. The limit of ratios
(limit of ‘comparison’) links up the convergence / divergence of ∑ an and ∑ bn.

The series 
∞

∑
n=2

1

n− 1
 diverges by the DCT.

Check: 0 ≤ n

n3+1
≤ 1

n2  (notice that n

n3+1
≤ n

n3 )
Observe: ∑ 1

n2  is a convergent p-series

Choose: an = 1
n  and bn = 1

n−1

Check: 0 ≤ 1
n ≤ 1

n−1

Observe: ∑ 1
n

 is a divergent p-series

Trick Method 1:
Observe that for n > 1 we have 1

n2−1 ≤ 10
n2 . (Check it!)

But ∑ 10
n2  converges, indeed its value is 10 ⋅∑ 1

n2 , which is 10π2

6 .
So the series ∑ 1

n2−1  converges.

Trick Method 2:
Observe that we can change the letter n to n+ 1 by starting the new n at n = 1.
Then we have:

∞

∑
n=2

1

n2 − 1
=

∞

∑
n=1

1

(n+ 1)2 − 1
=

∞

∑
n=1

1

n2 + 2n

This last series has terms smaller than 1
n2  so the DCT with bn = 1

n2  (a convergent
p-series) shows that the original series converges too.

Limit Comparison Test (LCT) - “Limiting Ratio Test”

Applicability: Both series are positive: an > 0 and bn > 0.

Test Statement: Suppose that limn→∞
an

bn
= L. Then:

If L = 0 or L = ∞, we can still draw an inference, but in only one direction:

If 0 < L < ∞:

∑ an
converges

diverges
⟺ ∑ bn

converges

diverges

af://h3-13
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If L = 0:

∑ bn converges ⟹ ∑ an converges

If L = ∞:

∑ bn diverges ⟹ ∑ an diverges

Extra - Limit Comparison Test: Theory

Suppose an/bn → L and 0 < L < ∞. Then for n sufficiently large, we know an/bn < L+ 1

.

Doing some algebra, we get an < (L+ 1)bn for n large.

If ∑ bn converges, then ∑(L+ 1)bn also converges (constant multiple), and then the
DCT implies that ∑ an converges.

Conversely: we also know that bn/an → 1/L, so bn < (1/L+ 1)an for all n sufficiently
large. Thus if ∑ an converges, ∑(1/L+ 1)an also converges, and by the DCT again ∑ bn

converges too.

The cases with L = 0 or L = ∞ are handled similarly.

Limit Comparison Test examples

The series 
∞

∑
n=1

1

2n − 1
 converges by the LCT.

The series 
∞

∑
n=1

2n2 + 3n

√5 + n5
 diverges by the LCT.

Choose: an = 1
2n−1  and bn = 1

2n .
Compare in the limit:

lim
n→∞

an

bn
⨠⨠ lim

n→∞

2n

2n − 1
⨠⨠ 1 =: L

Observe: ∑ 1
2n  is a convergent geometric series

Choose: an = 2n2+3n
√5+n5

, bn = n−1/2

Compare in the limit:

lim
n→∞

an

bn
⨠⨠ lim

n→∞

(2n2 + 3n)√n

√5 + n5

(2n2 + 3n)√n

√5 + n5

n→∞
⟶

2n5/2

n5/2
→ 2 =: L

Observe: ∑n−1/2 is a divergent p-series

af://h3-14
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Alternating series
Videos, Math Dr. Bob:

09 Theory

Consider these series:

The absolute values of terms are the same between these series, only the signs of terms
change.

The first is a positive series because there are no negative terms.

The second series is the negation of a positive series – the study of such series is equivalent
to that of positive series, just add a negative sign everywhere. These signs can be factored
out of the series. (For example ∑− 1

n = −∑ 1
n .)

The third series is an alternating series because the signs alternate in a strict pattern,
every other sign being negative.

The fourth series is not alternating, nor is it positive, nor negative: it has a mysterious or
unknown pattern of signs.

A series with any negative signs present, call it ∑∞
n=1 an, converges absolutely when the

positive series of absolute values of terms, namely ∑∞
n=1 |an|, converges.

The series 
∞

∑
n=2

n2

n4 − n− 1
 converges by the LCT.

Choose: an = n2

n4−n−1  and bn = n−2

Compare in the limit:

lim
n→∞

an

bn
⨠⨠ lim

n→∞

n4

n4 − n− 1
⨠⨠ 1 =: L

Observe: ∑∞
n=2 n

−2 is a converging p-series

Alternating Series Test: Theory and basic examples
Alternating Series Test: Remainder estimates
Alternating Series Test: Further remainder estimates

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+⋯ = ∞

−1 −
1

2
−

1

3
−

1

4
−

1

5
−

1

6
−

1

7
−⋯ = −∞

1−
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−⋯ = ln 2

1 +
1

2
−

1

3
+

1

4
−

1

5
−

1

6
+

1

7
+⋯ = ?

THEOREM: Absolute implies ordinary

af://h2-16
https://www.youtube.com/watch?v=bwUxyxqUU8A
https://www.youtube.com/watch?v=MbAqIj3nrgU
https://www.youtube.com/watch?v=CTJ-_DpZhmw
af://h3-17
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A series might converge due to the presence of negative terms and yet not converge
absolutely:

A series ∑∞
n=1 an is said to be converge conditionally when the series converges as it

stands, but the series produced by inserting absolute values, namely ∑∞
n=1 |an|, diverges.

The alternating harmonic series above, 1 − 1
2 + 1

3 − 1
4 +⋯ = ln 2, is therefore

conditionally convergent. Let us see why it converges. We can group the terms to create new
sequences of pairs, each pair being a positive term. This can be done in two ways. The first
creates an increasing sequence, the second a decreasing sequence:

Suppose SN  gives the sequence of partial sums of the original series. Then S2N  gives the
first sequence of pairs, namely S2, S4, S6, … . And S2N−1 gives the second sequence of pairs,
namely S1, S3, S5, … .

The second sequence shows that SN  is bounded above by 1, so S2N  is monotone increasing
and bounded above, so it converges. Similarly S2N−1 is monotone decreasing and bounded
below, so it converges too, and of course they must converge to the same thing.

The fact that the terms were decreasing in magnitude was an essential ingredient of the
argument for convergence. This fact ensured that the parenthetical pairs were positive
numbers.

If a series ∑∞
n=1 an converges absolutely, then it also converges as it stands.

increasing from 0: (1 −
1

2
)+ ( 1

3
−

1

4
)+ ( 1

5
−

1

6
)+ ( 1

7
−

1

8
)+⋯

decreasing from 1: 1 − ( 1

2
−

1

3
)− ( 1

4
−

1

5
)− ( 1

6
−

1

7
)−⋯

Alternating Series Test (AST) - “Leibniz Test”

Applicability: Alternating series only: ∑∞
n=1(−1)n−1an with an > 0

Test Statement:
If:

Then:

∞

∑
n=1

(−1)n−1an converges

Furthermore, partial sum errors are bounded by “subsequent terms”:

|S − SN | ≤ aN+1

(1) an are decreasing, so a1 > a2 > a3 > a4 > ⋯ > 0

(2) an → 0 as n → ∞ (i.e. it passes the SDT)

Extra - Alternating Series Test: Theory

Just as for the alternating harmonic series, we can form positive paired-up series
because the terms are decreasing:

( ) ( ) ( )
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10 Illustration

The first sequence S2N  is monotone increasing from 0, and the second S2N−1 is
decreasing from a1. The first is therefore also bounded above by a1. So it converges.
Similarly, the second converges. Their difference at any point is S2N − S2N−1 which is
equal to −a2N , and this goes to zero. So the two sequences must converge to the same
thing.

By considering these paired-up sequences and the effect of adding each new term one
after the other, we obtain the following order relations:

0 < S2 < S4 < S6 < ⋯ < S < ⋯ < S5 < S3 < S1 = a1

Thus, for any even 2N  and any odd 2M − 1:

S2N < S < S2M−1

Now set M = N  and subtract S2N−1 from both sides:

Now set M = N + 1 and subtract S2N  from both sides:

This covers both even cases (n = 2N) and odd cases (n = 2N − 1). In either case, we
have:

|S − Sn| < an+1

(a1 − a2) + (a3 − a4) + (a5 − a6) +⋯

a1 − (a2 − a3) − (a4 − a5) − (a6 − a7) −⋯

S2N − S2N−1 < S − S2N−1 < 0

⨠⨠ −a2N < S − S2N−1 < 0

0 < S − S2N < S2N+1 − S2N

⨠⨠ 0 < S − S2N < a2N+1

Alternating Series Test: Basic illustration

(a) 
∞

∑
n=1

(−1)n−1

√n
 converges by the AST.

(b) 
∞

∑
n=1

cosnπ

n2
 converges by the AST.

Notice that ∑ 1
√n

 diverges as a p-series with p = 1/2 < 1.

Therefore the first series converges conditionally.

Notice the funny notation: cosnπ = (−1)n.
This series converges absolutely because cosnπ

n2 = 1
n2 , which is a p-series with

p = 2 > 1. ∣ ∣Approximating π

af://h3-18
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The Taylor series for tan−1 x is given by:

tan−1 x = x−
x3

3
+

x5

5
−

x7

7
+⋯

Use this series to approximate π with an error less than 0.001.

Solution
The main idea is to use tan π

4 = 1 and thus tan−1 1 = π
4 . Therefore:

π

4
= 1 −

1

3
+

1

5
−

1

7
+⋯

and thus:

π = 4 −
4

3
+

4

5
−

4

7
+⋯

Write En for the error of the approximation, meaning En = S − Sn.

By the AST error formula, we have |En| < an+1.

We desire n such that |En| < 0.001. Therefore, calculate n such that an+1 < 0.001, and
then we will know:

|En| < an+1 < 0.001

The general term is an = 4
2n−1 . Plug in n+ 1 in place of n to find an+1 = 4

2n+1 . Now
solve:

We conclude that at least 2000 terms are necessary to be confident (by the error
formula) that the approximation of π is accurate to within 0.001.

an+1 =
4

2n+ 1
< 0.001

⨠⨠
4

0.001
< 2n+ 1

⨠⨠ 3999 < 2n

⨠⨠ 2000 ≤ n
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