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W07 Notes
Sequences and series basics
01 Theory

A sequence is a rule that defines a term for each natural number n ∈ N:

a0, a1, a2, a3, a4, …

So a sequence is a function from N to R.

The defining relation of a geometric sequence is equivalent to an+1 = an ⋅ r.

By plugging a1 = a0 ⋅ r into a2 = a1 ⋅ r, we have a2 = (a0 ⋅ r) ⋅ r = a0 ⋅ r2. This plugging can be
repeated n-times to get a formula for the nth term:

an = an−1 ⋅ r = an−2 ⋅ r2 = an−3 ⋅ r3 = ⋯ = a1 ⋅ rn−1 = a0 ⋅ rn

Therefore an = a0 ⋅ rn, and we have a formula for the general term of the sequence (the
term with index n).

Geometric sequence

A sequence is called geometric if the ratio of consecutive terms is some constant r,
independent of n:

an+1

an
= r for every n

Starting point of a sequence

Note that sometimes the index (variable) of a sequence starts somewhere other than 0.
Most common is 1 but any other starting point is allowed, even negative numbers.

Sometimes c is used instead of a0 in the formula for the general term of a sequence,
thus an = crn. The ‘c’ notation is useful when the sequence starts from n ≠ 0.

Extra - Fibonacci sequence

The Fibonacci sequence goes like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
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02 Illustration

03 Theory

A series is an infinite sum that is created by successive additions without end. The terms
are not added up “all at once” but rather they are added up “as n increases” or “as n → ∞.”

The pattern is:

Fn = Fn−1 + Fn−2

This formula is a recursion relation, which means that terms are defined using the
values of prior terms.

The Fibonacci sequence is perhaps the most famous sequence of all time. It is related to
the Golden Ratio and the Golden Spiral:

Geometric sequence: revealing the format

Find a0 and r and an (written in the geometric sequence format) for the following
geometric sequences:

(a) an = (−
1

2
)

n

  (b) bn = −3( 2n+1

5n
)  (c) cn = e5+7n

Solution
(a)
Plug in n = 0 to obtain a0 = 1. Notice that an+1/an = −1/2 and so therefore r = −1/2.
Then the ‘general term’ is an = a0 ⋅ rn = 1 ⋅ (−1/2)n.

(b)
Rewrite the fraction:

2n+1

5n
⨠⨠ 2 ⋅ (

2

5
)

n

Plug that in and observe bn = −6 ⋅ (2/5)n. From this format we can read off b0 = −6 and
r = 2/5.

(c)
Rewrite:

cn ⨠⨠ e
5 ⋅ e7n ⨠⨠ e

5 ⋅ (e7)
n

From this format we can read off c0 = e5 and r = e7.
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a0 + a1 + a2 + a3 + … =
∞

∑
n=0

an

Three of the most famous series are the Leibniz series and the geometric series:

04 Illustration

Leibniz series: 1 −
1

3
+

1

5
−

1

7
+ ⋯ +

(−1)n

2n + 1
+ ⋯ =

π

4

Geometric series: 1 +
1

2
+

1

4
+

1

8
+ ⋯ + ( 1

2
)

n

+ ⋯ = 2

Partial sum sequence of a series

The partial sum sequence of a series is the sequence whose terms are the sums up to
the given index:

SN = a0 + a1 + ⋯ + aN =
N

∑
n=0

an

These SN  terms themselves form a sequence:

S0, S1, S2, S3, …

Example - Geometric series

The geometric series total sum S can be calculated using a “shift technique” as follows:

The geometric series partial sums can be calculated similarly, as follows:

1. Compare S and rS:

S = a0 + a0r + a0r
2 + a0r

3 + ⋯
×r

⨠⨠ rS = a0r + a0r
2 + a0r

3 + a0r
4 + ⋯

2. Subtract second line from first line, many cancellations:

S = a0 + a0r + a0r
2 + a0r

3 + ⋯

−(rS = a0r + a0r
2 + a0r

3 + a0r
4 + ⋯)

——————————————————
S − rS = a0

3. Solve to find S:

S =
a0

1 − r

1. Compare S and rS:

SN = a0 + a0r + a0r
2 + ⋯ + a0r

N

×r

⨠⨠ rSN = a0r + a0r
2 + ⋯ + a0r

N + a0r
N+1

 Note: this calculation assumes that S exists, i.e. that the series converges.
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05 Theory

A sequence has a limit if its terms tend toward a specific number, or toward ±∞.

When this happens we can write “limn→∞ an = L” with some number L ∈ R or L = ±∞.
We can also write “an → L as n → ∞”.

The sequence is said to converge if it has a finite limit L ∈ R.

Some sequences don’t have a limit at all, like an = cosn:

Or an = en:

2. Subtract second line from first line, many cancellations:

SN = a0 + a0r + a0r
2 + ⋯ + a0r

N

−(rSN = a0r + a0r
2 + ⋯ + a0r

N + a0r
N+1)

——————————————————

SN − rSN = a0 − a0r
N+1

3. Solve to find SN :

SN = a0
1 − rN+1

1 − r

=
a0

1 − r
−

a0

1 − r
r
N+1 = S − Sr

N+1

The last formula is revealing in its own way. Here is what it means in terms of
terms:

a0 + a0r + ⋯ + a0r
N =

a0 + a0r + a0r
2 + ⋯

− (a0r
N+1 + a0r

N+2 + ⋯)
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These sequences diverge.
In the second case, there is a limit L = ∞, so we say it diverges to +∞.

If the general term an is a continuous function of n, we can replace n with the continuous
variable x and compute the continuous limit instead:

lim
n→∞

an = lim
x→∞

ax

If ax would be a differentiable function, and we discover an indeterminate form, then we can
apply L’Hopital’s Rule to find the limit value. For example, if the indeterminate form is
0 ⋅ ∞, we can convert it to ∞

1/0 = ∞
∞  and apply L’Hopital.

06 Illustration

Extra - Convergence definition

The precise meaning of convergence is this. We have an → L as n → ∞ if, given any
proposed error ε > 0, it is possible to find N  such that for all n > N  we have |an − L| < ε

.

When L = ∞, convergence means that given any B > 0, we can find N  such that for all
n > N  we have an > B.

Similarly for L = −∞.

L’Hopital’s Rule for sequence limits

(a) What is the limit of an =
lnn

n
?

(b) What is the limit of bn =
(lnn)2

n
?

(c) What is the limit of cn = n(√n2 + 1 − √n)?

Solution
(a)
Identify indeterminate form ∞

∞ . Change from n to x and apply L’Hopital:

 The difference between converging and having a limit is that a limit could ‘exist’,
namely at +∞ or −∞, yet we still say the sequence diverges.
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lim
x→∞

lnx

x

d

dx

⨠⨠ lim
x→∞

1/x

1
= 0

(b)
Identify indeterminate form ∞

∞ . Change from n to x and apply L’Hopital:

lim
x→∞

(lnx)2

x

d

dx

⨠⨠ lim
x→∞

2 lnx ⋅ 1
x

1
= 2 lim

x→∞

lnx

x

(by an result)
= 0

(c)
Identify form ∞ ⋅ 0 and rewrite as ∞

∞ :

n(√n2 + 1 − √n) ⨠⨠
√n2 + 1 − √n

1/n

Change from n to x and apply L’Hopital:

lim
x→∞

√x2 + 1 − √x

1/x
⨠⨠

1
2 (x

2 + 1)−1/2
(2x) − 1

2 x
−1/2

−1/x2

Simplify:

⨠⨠
−2x3

√x2 + 1
+ x

3/2 =
−2x3 + x3/2√x2 + 1

√x2 + 1

Consider the limit:

−2x3 + x
3/2√x2 + 1

√x2 + 1

x→∞
⟶

−2x3 + x
3/2

x

x
⟶

−2x3

x
⟶ −∞

Extra - Squeeze theorem

Use the squeeze theorem to show that 4n

n! → 0 as n → ∞.

Solution
We will squeeze the given general term above 0 and below a sequence bn that we must
devise:

0 ≤
4n

n!
≤ bn

We need bn to satisfy bn → 0 and 4n

n! ≤ bn. Let us study 4n

n! .

4n

n!
=

4 ⋅ 4 ⋅ ⋯ ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4

n(n − 1) ⋯ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1

Now for the trick. Collect factors in the middle bunch:

4n

n!
=

4

n
( 4

n − 1
⋅

4

n − 2
⋅ ⋯ ⋅

4

7
⋅

4

6
⋅

4

5
) 4 ⋅ 4 ⋅ 4 ⋅ 4

4 ⋅ 3 ⋅ 2 ⋅ 1

Each factor in the middle bunch is < 1 so the entire middle bunch is < 1. Therefore:

4n

n!
<

4

n
⋅

44

4!
=

1024

24n
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07 Theory

In this context, ‘monotone’ just means it preserves the increasing or decreasing modality for
all terms.

Terminology:

Notice!

08 Illustration

Now we can easily see that 1024/24n → 0 as n → ∞, so we set bn = 1024/24n and we are
done.

Monotone sequences

A sequence is called monotone increasing if an+1 ≥ an for every n.

A sequence is called monotone decreasing if an+1 ≤ an for every n.

Monotonicity Theorem

If a sequence is monotone increasing, and bounded above by B, then it must converge
to some limit L, and L ≤ B.

If a sequence is monotone decreasing, and bounded below by B, then it must converge
to some limit L, and L ≥ B.

Bounded above by B means that an ≤ B for every n
Bounded below by B means that B ≤ an for every n

Monotonicity theorem

Show that an = √n + 1 − √n converges.

Solution

1. 
 Because n + 1 > n, we know √n + 1 > √n.

Therefore √n + 1 − √n > 0

2. 
 New formula: ax = √x + 1 − √x considered as a differentiable function.

 Derivative of ax:

d

dx
ax =

1

2√x + 1
−

1

2√x

 Observe that an > 0 for all n.

 Change n to x and show ax is decreasing.

 Take derivative to show decreasing.

 The Monotonicity Theorem says that a limit L exists, but it does not provide the limit
value.
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09 Theory

Let us apply this to the geometric series. Recall our formula for the partial sums:

SN = a0
1 − rN+1

1 − r

Rewrite this formula:

⨠⨠ SN =
a0

1 − r
−

a0

1 − r
r
N+1

Now take the limit as N → ∞:

lim
N→∞

SN = “
a0

1 − r
−

a0

1 − r
r

∞+1 ” =
a0

1 − r

(If |r| = 1 then the denominator is 0, and if |r| > 1 then the factor r∞+1 does not converge.)

Furthermore, we have the limit value:

∞

∑
n=0

an = lim
N→∞

SN =
a0

1 − r
= S

This result confirms the formula we derived for the total S for a geometric series. This time
we did not start by assuming S exists, on the contrary we proved that S exists. (Provided
that |r| < 1.)

Simplify:

⨠⨠
2(√x − √x + 1)

4√x√x + 1

Denominator is > 0. Numerator is < 0. So d

dx
ax < 0 and ax is monotone

decreasing.
3.  Therefore an is monotone decreasing as n → ∞.

Series convergence

We say that a series converges when its partial sum sequence converges:

“
∞

∑
n=0

an converges” MEANS: “SN converges as N → ∞”

Extra - Aspects of S and SN  from the geometric series

Notice that we always have the rule:

This rule can be viewed as coming from partitioning the full series into a finite part SN

SN = S − r
N+1

S

SN =
a0

1 − r
−

a0

1 − r
r
N+1

 So we see that SN  converges exactly when |r| < 1. It converges to a0

1−r
.
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and the remaining infinite part:

We can remove a factor rN+1 from the infinite part:

S − SN = r
N+1 (a0 + a0r + a0r

2 … )

The parenthetical expression is equal to S, so we have the formula SN = S − rN+1S

given above.

S = a0 + a0r + ⋯ + a0r
N

SN

+ a0r
N+1 + a0r

N+2 + …

S−SN

 
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