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W03 Notes
Partial fractions
01 Theory

A rational function is a ratio of polynomials, for example:

P(x)

Q(x)
=

5x2 + x − 28

x3 − 4x2 + x + 6

These are allowed as simple terms in partial fraction decompositions:

1

x2 + 1
,

2x + 1

x2 + 5
,

7

5x − 8
,

1

x
,

1

x3

These are not allowed:

x

x − 1
,

x3 + 2

x2 + 1
,

1

x2 − 1
,

1

x(x − 1)

These are allowed, showing irreducible quadratic and higher powers:

x

x2 + 1
,

x3 + 2x + 1

(x2 + 2)2

In this example the numerator is linear and the denominator is quadratic and irreducible.

To create a partial fraction decomposition, follow these steps:

02 Illustration

Partial fraction decomposition

The partial fraction decomposition of a rational function is a way of writing it as a sum
of simple terms, like this:

3x3 − 5x2 − 6x + 20

x4 − 3x3 + 4x
= −

2

x + 1
+

2

(x − 2)2
+

5

x

Allowed denominators:

Allowed numerators: constant (over linear power) or linear (over quadratic power)

Linear, as any x − a, or linear power, as any (x − a)n

Quadratic, as any x2 + bx + c, or quadratic power, as any (x2 + bx + c)n

Condition: quadratics must be irreducible (no roots, or i.e. b2 < 4c)

1. Check denominator degree is higher
Else do long division

2. Factor denominator completely (even using irrational roots)
3. Write the generic sum of partial fraction terms with their constants

4. Solve for constants

Partial fractions with repeated factor

 Repeated factors – special treatment: sum with incrementing powers

af://h1-0
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Find the PFD:

3x − 9

x3 + 3x2 − 4

Solution

1. 
2. 
 Rational roots theorem: x = 1 is a zero.

Divide by x − 1:

x3 + 3x2 − 4

x − 1
= x2 + 4x + 4

Factor again:

x2 + 4x + 4 = (x + 2)2

Final factored form:

x3 + 3x2 − 4 ⨠⨠ (x − 1)(x + 2)2

3. 
 Allow all lower powers:

3x − 9

(x − 1)(x + 2)2
=

A

x − 1
+

B

x + 2
+

C

(x + 2)2

4. 
 Multiply across by the common denominator:

3x − 9 = A(x + 2)2 + B(x − 1)(x + 2) + C(x − 1)

For A, set x = 1, obtain:

3 ⋅ 1 − 9 = A(1 + 2)2 + B ⋅ 0 + C ⋅ 0
⨠⨠ −6 = 9A
⨠⨠ A = −2/3

For C, set x = −2, obtain:

3 ⋅ (−2) − 9 = A ⋅ 0 + B ⋅ 0 + C ⋅ (−3)
⨠⨠ −15 = −3C
⨠⨠ C = 5

For B, insert prior results and solve.
 Plug in A and C:

3x − 9 = −
2

3
(x + 2)2 + B(x − 1)(x + 2) + 5(x − 1)

Now plug in another convenient x, say x = 3:

0 = −
2

3
⋅ 52 + B ⋅ 2 ⋅ 5 + 5 ⋅ 2

50

3
− 10 = 10B ⨠⨠ B =

2

3

5. 

 Check! Numerator is smaller than denominator (degree-wise).
 Factor the denominator.

 Write the generic PFD.

 Solve for A, B, and C.

 Plug in A, B, C for the final answer.
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03 Theory

Partial fractions can be integrated using just a few techniques. We consider three kinds of
terms:

 Final answer:

3x − 9

x3 + 3x2 − 4
=

−2/3

x − 1
+

2/3

x + 2
+

5

(x + 2)2

A

x − a
,

A

(x − a)2
,

A

(x − a)3
, … ,

and
A

x2 + h2
, and

Ax + B

x2 + h2

Linear power bottom

To integrate terms like this:

A

(x − a)n

If n = 1 then use log:

∫
A

x − a
dx = A ln |x − a| + C

If n > 1 then use power rule:

∫
A

(x − a)n
dx ⨠⨠ ∫ A(x − a)−n dx ⨠⨠ A

(x − a)−n+1

−n + 1
+ C

Quadratic bottom, constant top

We have a formula for simple irreducible quadratics:

∫ dx

x2 + h2
=

1

h
tan−1 ( x

h
) + C

Quadratic bottom, linear top

To integrate terms like this:

Ax + B

x2 + h2

Break into separate terms:

Ax + B

x2 + h2
⨠⨠

Ax

x2 + h2
+

B

x2 + h2

Then:

 This formula should be memorized!

af://h3-5
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04 Illustration

First term with x in top:

∫ Ax

x2 + h2
dx ⨠⨠ A

2
ln x2 + h2 + C∣ ∣Second term lacking x in top:

∫ B

x2 + h2
dx ⨠⨠ B

h
tan−1 ( x

h
) + C

Extra - Completing the square when “no real roots”

To integrate terms with more general quadratics, like this:

A

x2 + bx + c

we need b2 − 4c < 0, i.e. “no real roots” of the quadratic. If that holds, then we can complete
the square and substitute u = tan θ as follows.

Look what happens when completing the square:

x2 + bx + c ⨠⨠ (x +
b

2
)

2

−
b2

4
+ c

Notice that b2 − 4c < 0 is equivalent to the condition − b2

4 + c > 0. Create a new label
Z = − b2

4 + c. So this condition means Z > 0 and we can safely define √Z.

Then a u-substitution u = x + b
2  simplifies the equation like this:

x2 + bx + c ⨠⨠ u2 + √Z
2

The quadratic formula x = −b±√b2−4ac
2a  shows that the condition b2 − 4c < 0 is equivalent to

the condition “no real roots.” (In our case a = 1. If we had a ≠ 1, we could divide out this a
and change the others.)

So we see that “no real roots” is equivalent to the condition that the denominator can be
converted to the format x2 + h2 with some constant h.

At this point, to compute the integral, do trig sub with u = √Z tan θ and du = √Z sec2 θ dθ:

∫ Adx

x2 + bx + c
⨠⨠ ∫ A√Z sec2 θ dθ

Z sec2 θ

⨠⨠
A

√Z
∫ dθ ⨠⨠

A

√Z
θ + C

⨠⨠ A

√Z
tan−1 (

x + b/2

√Z
) + C

Example - Repeated quadratic, linear tops

Compute the integral:

∫
x3 + 1

(x2 + 4)2
dx

af://h3-6
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Solution

1. 
 Check that numerator degree is lower than denominator. ✓

Factor denominator completely. ✓ (No real roots.)
Write generic PFD:

x3 + 1

(x2 + 4)2
=

Ax + B

x2 + 4
+

Cx + D

(x2 + 4)2

Common denominators and solve:

x3 + 1 = (Ax + B)(x2 + 4) + Cx + D

⨠⨠ x3 + 1 = Ax3 + Bx2 + (4A + C)x + 4B + D

⨠⨠ A = 1, B = 0

⨠⨠ C = −4, D = 1

Therefore:

x3 + 1

(x2 + 4)2
=

x

x2 + 4
+

−4x + 1

(x2 + 4)2

2. 
 Integrate the first term using u = x2 + 4:

∫ x

x2 + 4
dx

u=x2+4

⨠⨠ 1

2
∫ du

u

⨠⨠ 1

2
ln |u| + C ⨠⨠ 1

2
ln x2 + 4 + C∣ ∣Break up the second term:

−4x + 1

(x2 + 4)2
⨠⨠

−4x

(x2 + 4)2
+

1

(x2 + 4)2

Integrate the first term of RHS:

∫ −4x

(x2 + 4)2
dx ⨠⨠ − 2∫ du

u2

⨠⨠
2

u
+ C ⨠⨠

2

x2 + 4
+ C

Integrate the second term of RHS:

∫
dx

(x2 + 4)2

x=2 tan θ

⨠⨠ ∫
2 sec2 θ dθ

16 sec4 θ

⨠⨠
1

8
∫ cos2 θ dθ ⨠⨠

1

16
θ +

1

32
sin(2θ) + C

 Compute the partial fraction decomposition.

 Notice “linear over quadratic” in first term.
 Notice repeated factor: sum with incrementing powers up to 2.

 Integrate by terms.

Extra - “Rationalize a quotient” - convert into PFD
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Numerical integration
05 Theory

The Trapezoid Rule is a technique to approximate the area under a curve as the sum of areas
of thin trapezoids whose top corners lie on the curve.

Notice the pattern in 2s and see how this formula comes about:
The area of one trapezoid is Δx( yj−1+yj

2 ). All vertical values y1, … , yn−1 (excepting the

endpoints f(a) and f(b)) are represented in two trapezoids, so their contribution is doubled.

Sometimes an integrand may be converted to a rational function using a substitution.

Consider this integral:

∫
√x + 4

x
dx

Set u = √x + 4, so x = u2 − 4 and dx = 2u du:

⨠⨠ ∫
2u du

u2 − 4

Now this rational function has a partial fraction decomposition:

2u

u2 − 4
⨠⨠

2u

(u − 2)(u + 2)
⨠⨠

1

u − 2
+

1

u + 2

It is easy to integrate from there!

Exercise examples:

To compute ∫ √x

x−1 dx, try the substitution u = √x.
To compute ∫ dx

2√x− 3√x
, try the substitution u = 6√x.

To compute ∫ 1
x−√x+2

dx, try the substitution u = √x + 2.

Trapezoid rule - area formula

Given a function f and a partition of the range [a, b] labeled by x0, x1, … , xn (with x0 = a

and xn = b), the Trapezoid Rule determines the area formula:

Tn =
1

2
Δx(y0 + 2y1 + 2y2 + ⋯ + 2yn−1 + yn)

Extra - Trapezoid rule - error bound

af://h2-8
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The Midpoint Rule is a technique to approximate the area under a curve as the sum of areas of
thin rectangles whose top midpoints lies on the curve.

The very same formula also represents the areas of trapezoids whose top midpoints lie on the
curve and whose top line is tangent to the curve:

The reason they are equal is simple: when pivoting the top line on the ‘attached’ midpoint, the
area of the trapezoid does not change.

Notice that Mn has an error bound that is 1/2 of the bound for Tn. This does not mean that Mn

always has a smaller error than Tn. It means that without calculating the error, simply plugging
numbers into the error bound formulas, we obtain a smaller bound for Mn than for Tn. This is
about our knowledge of the error, not the reality of the error.

The error of the Trapezoid Rule approximation is bounded by this formula:

Error(Tn) ≤
K2(b − a)3

12n2

Here K2 is any number satisfying K2 ≥ |f ′′(x)| for x ∈ [a, b].

Midpoint Rule - area formula

Given a function f and a partition of the range [a, b] labeled by x0, x1, … , xn (with x0 = a

and xn = b), the Midpoint Rule determines the area formula:

Mn = Δx(f(c1) + f(c2) + ⋯ + f(cn−1) + f(cn))

Here each ci is the midpoint of the interval [xi−1,xi]. It can be given by the formula
ci = a + (i − 1/2)Δx.

Extra - Midpoint Rule - error bound

The error of the Midpoint Rule approximation is bounded by this formula:

Error(Mn) ≤
K2(b − a)3

24n2

Here K2 is any number satisfying K2 ≥ |f ′′(x)| for x ∈ [a, b].
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06 Theory

It turns out that the Midpoint Rule and the Trapezoid Rule tend to differ from the exact integral
in opposite directions, and the Midpoint Rule tends to be twice as accurate. Therefore we may
improve on both of them by constructing a weighted average of the formulas. This is called
Simpson’s Rule.

Simpson’s Rule - defining formula

Simpson’s Rule is given by the weighted sum of the Trapezoid and Midpoint Rules:

Sn =
1

2
Tn +

2

3
Mn

Simpson’s Rule - computing formula

Given a function f and a partition of the range [a, b] labeled by x0, x1, … , xn (with x0 = a

and xn = b), Simpson’s Rule determines the area formula:

Sn =
1

3
Δx(y0 + 4y1 + 2y2 + 4y3 + 2y4 + ⋯ + 2yn−2 + 4yn−1 + yn)

Simpson’s Rule - error bound

The error of Simpson’s Rule approximation is bounded by this formula:

Error(Sn) ≤
K4(b − a)5

180n4

Here K4 is any number satisfying K4 ≥ |f (4)(x)| for x ∈ [a, b].

Simpson’s Rule = “Parabola Rule”

The formula of Simpson’s Rule can also be explained or defined geometrically: it is the
formula giving the sum of areas under small parabolas that meet the curve in three points.

There is a unique parabola passing through any three points with differing x-values:

 Note the pattern for Simpson’s Rule: 1, 4, 2, 4, 2, 4, 2, …, 1

af://h3-10
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07 Illustration

These may be pieced together to form an approximation to the curve:

The area under the parabola through P0, P1, and P2 is given by this formula:

h

3
(y0 + 4y1 + y2)

This formula may be verified using basic calculus (area under a parabola) and a lot of
algebra. (Ambitious students should derive it.)

The area under the parabola through P2, P3, and P4 is given by a similar formula:

h

3
(y2 + 4y3 + y4)

The Simpson’s Rule formula is the sum of all these formulas! So the 2s in Simpson’s come
from duplication of endpoint terms as the “rectangular” regions are stacked end-to-end.

Example - Simpson’s Rule on the Gaussian Distribution

The function ex2  is very important for probability and statistics, but it cannot be integrated
analytically.

Apply Simpson’s Rule to approximate the integral:

∫
1

0
ex

2

dx

with Δx = 0.1 and n = 10. What error bound is guaranteed for this approximation?

Solution
We need a table of values of xi and yi = f(xi):

xi : 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f(xi) : e0.02
e0.12

e0.22
e0.32

e0.42
e0.52

e0.62
e0.72

e0.82
e0.92

e1.02

≈ 1.000 1.010 1.041 1.094 1.174 1.284 1.433 1.632 1.896 2.248 2.718

These can be plugged into the Simpson Rule formula to obtain our desired approximation:

To find the error bound we need to find the smallest number we can manage for K4.

Take four derivatives and simplify:

f (4)(x) = (12 + 48x2 + 16x4)ex
2

S10 =
1

3
⋅ 0.1 ⋅ (1.000 + 4 ⋅ 1.010 + 2 ⋅ 1.041 + 4 ⋅ 1.094 + ⋯ + 2 ⋅ 1.896 + 4 ⋅ 2.248 + 2.718)

≈ 1.463

af://h3-11


10 / 10

On the interval x ∈ [0, 1], this function is maximized at x = 1. Use that for the optimal K4:

f (4)(1.000) = 206.589

Finally we plug this into the error bound formula:

K4(b − a)5

180n4
=

206.589 ⋅ 1.0005

180 ⋅ 104
≈ 0.0001

⨠⨠ Error(S10) ≤ 0.0001
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