Section 7.8: Improper Integrals

Stacie Pisano University of Virginia

September 22, 2023

1 / 22

7.8 Improper Integrals

Two Types

Infinite Interval

Discontinuous Integrands

Ex.

$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

Ex.

 $\int_0^2 \frac{1}{x} dx$

3 / 22

Example

Example Cont

5 / 22

Definition

If
$$\int_{a}^{R} f(x)dx$$
 exists for every $R \ge a$, then
 $\int_{a}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{a}^{R} f(x)dx$, if this limit exists.

If
$$\int_{R}^{b} f(x)dx$$
 exists for every $R \le b$, then
 $\int_{-\infty}^{b} f(x)dx = \lim_{R \to -\infty} \int_{R}^{b} f(x)dx$, if this limit exists

In both cases, the integral is convergent if a finite limit exists, and the integral is divergent otherwise. Thus, an improper integral may diverge to ∞ or to $-\infty$, or it may diverge with no limit.

Example

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{1}{x} dx$$
$$= \lim_{R \to \infty} \ln |x| \Big|_{1}^{R}$$
$$= \lim_{R \to \infty} (\ln |R| - \ln 1)$$
$$= \infty$$

Integral is divergent. (Diverges to $\infty.)$

7 / 22

Recap

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{R \to \infty} \int_{1}^{R} x^{-p} dx$$
$$= \lim_{R \to \infty} \frac{x^{-p+1}}{-p+1} \Big|_{1}^{R} \text{ if } p \neq 1$$
$$= \lim_{R \to \infty} \frac{R^{1-p} - 1}{1-p}$$
$$= \begin{cases} \infty & p < 1\\ \frac{-1}{1-p} & p > 1 \end{cases}$$

 $\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ is convergent for } p > 1 \text{ and divergent for } p \leq 1.$

9 / 22

Try

$$\int_{-\infty}^{0} \frac{1}{x-1} dx$$

Another Kind of Infinite Integral

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

The equality holds if both integrals on the right are convergent. The integral on the left is divergent if either integral on the right is divergent.

Comparison Theorem

For infinite integrals, the comparison theorem applies: Suppose f and g are continuous functions and $f(x) \ge g(x) \ge 0$ for $x \ge a$, If $\int_{a}^{\infty} f(x)dx$ is convergent, then $\int_{a}^{\infty} g(x)dx$ is convergent. If $\int_{a}^{\infty} g(x)dx$ is divergent, then $\int_{a}^{\infty} f(x)dx$ is divergent. y = f(x)y = g(x)

Example

$$\int_{1}^{\infty} \frac{1}{x^{2} + x + 1} dx \text{ is convergent because}$$
$$0 \leq \frac{1}{x^{2} + x + 1} \leq \frac{1}{x^{2}} \text{ and } \int_{1}^{\infty} \frac{1}{x^{2}} dx \text{ is convergent.}$$

$$\int_{2}^{\infty} \frac{x}{x^{2} - 1} dx \text{ is divergent because}$$
$$\frac{x}{x^{2} - 1} \ge \frac{x}{x^{2}} = \frac{1}{x} > 0 \text{ and } \int_{2}^{\infty} \frac{1}{x} dx \text{ is divergent.}$$

13 / 22

Quiz

$$\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$$

A) is convergent.

- B) diverges to ∞ .
- C) diverges to $-\infty$.
- D) diverges with no limit.

Discontinuous Integrand

If
$$f(x)$$
 is continuous on $[a, b)$ and discontinuous at b ,
then $\int_{a}^{b} f(x)dx = \lim_{R \to b^{-}} \int_{a}^{R} f(x)dx$

If f(x) is continuous on (a, b] and discontinuous at a, then $\int_{a}^{b} f(x)dx = \lim_{R \to a^{+}} \int_{R}^{b} f(x)dx$

Example

Quiz

$$\int_0^1 \frac{1}{x^2} dx$$

A) is convergent.

- B) diverges to ∞ .
- C) diverges to $-\infty$.
- D) diverges with no limit.

Note

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx$$
 is convergent for $p > 1$ and divergent for $p \le 1$.

$$\int_0^a \frac{1}{x^p} dx$$
 is convergent for $p < 1$ and divergent for $p \ge 1$.

Inside Discontinuity

If f(x) is discontinuous at c where a < c < b, then

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

The equality holds if both integrals on the right are convergent. The integral on the left is divergent if either integral on the right is divergent.

Example

$$\int_{-2}^{2} \frac{1}{x} dx = \int_{-2}^{0} \frac{1}{x} dx + \int_{0}^{2} \frac{1}{x} dx$$

$$\uparrow \qquad \uparrow$$

Already shown to be divergent.

Also divergent.

So
$$\int_{-2}^{2} \frac{1}{x} dx$$
 is divergent.

If we ignore the discontinuity:

$$\int_{-2}^{2} \frac{1}{x} dx = \ln |x||_{-2}^{2}$$
$$= \ln 2 - \ln |-2|$$
$$= \ln 2 - \ln 2$$
$$= 0$$

Wrong!

21 / 22

Try

 $\int_0^{\pi} \sec x dx$