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11.1 Sequences
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Definition

A sequence is a list in a particular order.

1,2,3,4,5

5,3,1,2,4

The above two sequences are different.
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Infinite Sequence

We will be concerned with infinite sequences of numbers, in which
there is a pattern to the terms.

Examples:

1, 2, 3, 4, 5, ...

1, 12 ,
1
3 ,

1
4 , ...
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Sequence Descriptions

Here are multiple ways to describe the same infinite sequence:

{1, 12 ,
1
3 ,

1
4 , ...}

{
1

n

}
∞{
1

n

}
n=1

{an}, an =
1

n
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Graphing Sequences

Graphing a sequence involves plotting discrete points, rather than
plotting curves.

Example: plot {n2} and

{
1

n

}
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Convergence or Divergence

If lim
n→∞

an = L, and L is finite,

then {an} converges to L;

otherwise, the sequence diverges.

If lim
n→∞

an = ∞ (or −∞),

then {an} diverges to ∞ (or −∞).
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Examples

{
1

n

}
converges to 0

{n2} diverges to ∞

{(−1)n} = {−1, 1,−1, 1, ...} diverges (no corresponding function)
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Theorem

If an = f (n), and lim
x→∞

f (x) = L, where L is finite, then {an}
converges to L.

If L is ∞ (or −∞), then the sequence diverges to ∞ (or −∞).
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Example

Is the sequence,

{
ln n

n

}
, convergent or divergent?

Solution:

f (x) =
ln x

x

lim
x→∞

f (x) = lim
x→∞

1
x

1
= 0

lim
n→∞

ln n

n
= 0

{
ln n

n

}
is convergent

Note that L’Hospital’s Rule
cannot be applied to a sequence,
but can be applied to the
corresponding continuous
function.
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Another Example

Is the sequence, {sin(2πn)}, convergent or divergent?

Solution:

lim
x→∞

sin(2πx) does not exist,

but

lim
n→∞

sin(2πn) = 0, so the sequence is convergent.
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Theorem 2

If lim
n→∞

|an| = 0, then lim
n→∞

an = 0
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Example 1

Does the sequence, {(−1)n 1
n}, converge or diverge?

Solution:

|(−1)n 1
n | =

1
n

lim
n→∞

1
n = 0, so lim

n→∞
(−1)n 1

n = 0

{(−1)n 1
n} converges to 0.
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Example 2

For what values of r does {rn} converge?

Solution:

lim
x→∞

r x =


0, for 0 < r < 1

1, for r = 1

∞, for r > 1

so

lim
n→∞

rn =


0, for 0 < r < 1

1, for r = 1

∞, for r > 1

Note that r x is defined only for r > 0. What about r ≤ 0?
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Example 2 Cont

lim
n→∞

rn = 0 if |r | < 1

lim
n→∞

rn does not exist if r ≤ −1

For example:{(
− 1

2

)n}
=

{
− 1

2
,
1

4
,−1

8
,
1

16
, · · ·

}
convergent

{(
− 1

)n}
=

{
− 1, 1,−1, 1, · · ·

}
divergent{(

− 2
)n}

=
{
− 2, 4,−8, 16, · · ·

}
divergent
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Summary for {r n}

{rn} converges to 0 for −1 < r < 1

{rn} converges to 1 for r = 1

{rn} diverges otherwise
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Try It

Show whether the following sequences converge or diverge.

{
− 3(2

n+1

5n )
}

{
− 3(2

n+1

5 )
}

{
− 3( 2

5n )
}
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Try It

For what value of p does { 1
np } converge?
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Try It

Show whether the following sequences converge or diverge.

{(−1)n 1√
n
} { n

n+1}

{(−1)n
√
n} {(−1)n n

n+1}
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Try It

Show whether the following sequences converge or diverge.

{n ln(e4)
3n

}
{(−1)2n+1}

{
(−1)n + n

(−1)n − n

}

20 / 191



Monotonic Theorem

A monotonic bounded sequence converges.

monotonically increasing: an+1 ≥ an for all n

monotonically decreasing: an+1 ≤ an for all n
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Explanation

Monotonically increasing
sequence is always bounded
below.

Monotonically decreasing
sequence is always bounded
above.
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Example

Does the sequence, 0.2, 0.22, 0.222, 0.2222, ... converge?

Solution:

Sequence is monotonically increasing. It is bounded by 0.2 (below)
and 0.3 (above). The sequence is convergent.
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Squeeze Theorem
If an ≤ bn ≤ cn for all n ≥ n0, and

lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.
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Review

Factorial

0! = 1

n! = n(n − 1)!

5! = 5× 4× 3× 2× 1

67! = 67× 66!

(n + 2)! = (n + 2)(n + 1)n!
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Example

Does the sequence, {4n

n! }, converge?

Solution:

nth term:
4× 4× 4× 4× 4× 4 · ×4× 4

1× 2× 3× 4× 5× 6× · × (n − 1)× n
≤ 4× 4× 4× 4

1× 2× 3× 4

(
4

n

)
for n ≥ 5

0 ≤ 4n

n!
≤ 1024

24n
for n ≥ 5

AND

lim
n→∞

1024

24n
= 0

So
4n

n!
= 0 by the squeeze theorem
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11.2 Series
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Definition

A series is the sum of the terms of an infinite sequence.

a1 + a2 + a3 + · · ·+ an + · · · =
∞∑
n=1

an =
∑

an

A series can have a finite sum.
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Example

Consider: A bug crosses a room by jumping half (12) of the
remaining distance with each jump.
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Example Cont.

Distance covered:

d = 1
2ℓ+

1
2(

1
2)ℓ+

1
2(

1
2)(

1
2)ℓ+ · · ·+ (12)

nℓ+ · · · =?

d =
∞∑
n=1

(12)
nℓ = ℓ (intuitively)

So a series, an infinite sum, can be finite.
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Partial Sum

Definition: sn =
n∑

i=1
ai = a1 + a2 + a3 + · · ·+ an−1 + an

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

Partial sums form a sequence, {sn}.
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Convergence of Series

If {sn} is convergent, then

lim
n→∞

sn = s is a real number,

series
∑

an is convergent, and

∞∑
n=1

an = s (sum of series).

Otherwise, the series is divergent.

(Thus, series have two associated sequences. These are the
sequence of terms, {an}, and the sequence of partial sums, {sn}.)
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Geometric Series

∞∑
n=1

arn−1 = a+ ar + ar2 + ar3 + · · ·+ arn−1 + · · ·

Geometric series are distinguished by having a common ratio, r , of
subsequent terms.

Example:

∞∑
n=1

3(14)
n−1 = 3 + 3(14) + 3(14)

2 + 3(14)
3 + · · ·+ 3(14)

n−1 + · · ·
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Convergence of Geometric Series

∞∑
n=1

arn−1 = a+ ar + ar2 + ar3 + · · ·+ arn−1 + · · ·

For what values of r is the series convergent?

sn = a+ ar + ar2 + ar3 + · · ·+ arn−1

If r = 1, then sn = na. Clearly, lim
n→∞

sn = ±∞, and series is

divergent.

Now check other values of r...

34 / 191



Convergence of Geometric Series Cont.

sn = a+ ar + ar2 + ar3 + · · ·+ arn−1 Equation 1

rsn = ar + ar2 + ar3 + · · ·+ arn−1 + arn Equation 2

sn − rsn = a− arn Equation 1− Equation 2

sn(1− r) = a(1− rn)

sn = a
1−r (1− rn) if r ̸= 1
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Convergence of Geometric Series Cont.

sn = a
1−r (1− rn) if r ̸= 1

If |r | < 1 then lim
n→∞

sn =
a

1− r
(Convergent)

If r > 1 then lim
n→∞

sn = ±∞ (Divergent)

If r ≤ −1 then lim
n→∞

sn does not exist. (Divergent)
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Summary

The geometric series,
∞∑
n=1

arn−1 = a+ ar + ar2 + ar3 + · · ·+ arn−1 + · · ·

is convergent if |r | < 1.

Otherwise, the series is divergent.

If convergent, the sum is a
1−r .
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Bug Example Conclusion

d =
∞∑
n=1

ℓ(12)
n =

∞∑
n=1

(12ℓ)(
1
2)

n−1

r = 1
2 , a = (12)ℓ, r is the common ratio, and a is the first term.

d = s =
( 1
2
)ℓ

1− 1
2

= ℓ, as expected.
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Try It

Determine whether the following series are convergent or
divergent. Find the sum of convergent geometric series.

∞∑
n=1

1
2(

1
3)

n−1
∞∑
n=0

1
(
√
2)n

∑
(0.0001n)2

∞∑
n=1

en

3n−1

∑
(−1)n( 4π )

n−1
∑ n

n+2
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Example

0.222̄ = 0.2 + 0.02 + 0.002 + 0.0002 + · · ·

= 2
10 + 2

100 + 2
1000 + 2

10000 + · · ·

= 2
10 + 2

10(
1
10) +

2
10(

1
10)

2 + 2
10(

1
10)

3 + · · ·

=
2
10

1− 1
10

= 2
10−1

0.222̄ = 2
9
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Theorem

If the series,
∞∑
n=1

an, is convergent, then lim
n→∞

an = 0.

This means that, in order for a series to be convergent, the terms
must have a limit of 0.
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Example

an = n
n+1

lim
n→∞

n
n+1 = 1

{an} is convergent.

∑
an is divergent.
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Example

an = 1
n

lim
n→∞

1
n = 0

{an} is convergent.

∑
an ??? Not necessarily convergent. Stay tuned for the answer.
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Divergence Test

If lim
n→∞

an ̸= 0, then the series,
∞∑
n=1

an, is divergent.

(This test is a consequence of the theorem.)
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Limit Laws

If
∑

an and
∑

bn are convergent, and
∑

an = a and
∑

bn = b,
then

∑
can,

∑
(an + bn), and

∑
(an − bn) are convergent, and

i)
∑

can = ca

ii)
∑

(an + bn) = a+ b

iii)
∑

(an − bn) = a− b
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Summary

If lim
n→∞

an = L, and L is finite, then {an} is convergent.

If lim
n→∞

an ̸= 0, then
∑

an is divergent.

A geometric series is convergent if the magnitude of the common
ratio is less than 1.

If a geometric series is convergent, the sum is s = a
1−r , where r is

the common ratio and a is the first term.
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11.3 The Integral Test and Estimates of Sums
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Quiz

True (A) or False (B)?

1) If lim
n→∞

an = 0, then {an} is convergent.

2) If lim
n→∞

an = 2, then {an} is divergent.

3) If lim
n→∞

an = 0, then
∑

an is convergent.

4) If lim
n→∞

an = 2, then
∑

an is divergent.
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Series With Positive Terms

If the terms of a series are all positive, then {sn} is an increasing
sequence. So it is either bounded, and therefore converges to a
finite positive number, or it is unbounded, and therefore diverges
to ∞.

Therefore, a series with only positive terms is either convergent, or
diverges to ∞. This simplifies the study of positive series.

49 / 191

The Integral Test

Let an = f (n), where f (x) is a continuous, positive, and decreasing
function on [1,∞).

i) If

∫ ∞

1
f (x)dx is convergent, then

∞∑
n=1

an is convergent.

ii) If

∫ ∞

1
f (x)dx is divergent, then

∞∑
n=1

an is divergent.
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Graphical Explanation

∞∑
n=1

an≥
∫ ∞

1
f (x)dx

If

∫ ∞

1
f (x)dx diverges,

then so does the series.∫ ∞

1

1

x
dx diverges,

so
∞∑
n=1

1
n diverges.
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Graphical Explanation - 2

∞∑
n=2

an≤
∫ ∞

1
f (x)dx

∞∑
n=1

an ≤ a1 +

∫ ∞

1
f (x)dx

If

∫ ∞

1
f (x)dx converges,

then so does the series.∫ ∞

1

1

x2
dx converges,

so
∞∑
n=1

1
n2

converges.
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What’s the Difference?

1
n2

decreases faster than 1
n
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Example

For what values of p does the series,
∞∑
n=1

1
np , converge?

f (x) = 1
xp is continuous, positive, and decreasing if p > 0;

so

∫ ∞

1

1

xp
dx converges if p > 1; diverges otherwise.

Therefore,

∞∑
n=1

1
np converges for p > 1 by Integral Test;

diverges for 0 < p ≤ 1 by Integral Test;

diverges for p ≤ 0 by the Divergence Test.
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P-Series Test

∞∑
n=1

1
np converges for p > 1; diverges otherwise.
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Note

As with all series, convergence depends only on behavior of the
”tail”.
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Examples

Determine if the following series converge or diverge.

∞∑
n=3

1
n4

∞∑
n=1

1
n−4

∞∑
n=1

1

n
1
4
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Try It

Show whether the following series converge or diverge. Pay careful
attention to notation. Justify all steps.

∞∑
n=1

ne−n ∑ en

n

∑ 1
3n

∞∑
n=2

1
n ln n

∑ n2

n2+5

∑ 1
n2+5

58 / 191



11.4 The Comparison Tests
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Introduction

For
∞∑
n=2

1
n−1 ,

1
n−1 behaves like 1

n when n is large. Suspect

divergence.

For
∞∑
n=1

1
2n+1 ,

1
2n+1 behaves like 1

2n when n is large. Suspect

convergence.
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Comparison Test

Suppose that there exists M > 0 such that 0 ≤ an ≤ bn for n ≥ M.

i) If
∑

bn is convergent, then
∑

an is also convergent.

ii) If
∑

an is divergent, then
∑

bn is also divergent.

Note:

1) Both series must have non-negative terms.

2) We only compare two series that converge or two series that
diverge.
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Example

For
∞∑
n=2

1
n−1

an = 1
n

bn = 1
n−1

0 ≤ an ≤ bn for all n ≥ 2∑
an is a divergent p-series, p = 1 ≯ 1

∴
∞∑
n=2

bn is divergent by CT(Comparison Test)
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Steps

1) Identify series to compare to.

2) Check criteria.

3) Execute test.

4) Show convergence results for comparison series.

5) State conclusion.
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Repeat Example

∞∑
n=2

1
n−1

an = 1
n ; bn = 1

n−1 1

0 ≤ an ≤ bn for all n ≥ 2 2 3∑
an is a divergent p-series, p = 1 ≯ 1 4

∴
∞∑
n=2

bn is divergent by CT(Comparison Test) 5
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Example 2

∞∑
n=2

1
2n+1

an = 1
2n+1 ; bn = 1

2n 1

0 ≤ an ≤ bn for all n ≥ 1 2 3∑
bn is a convergent geometric series, |r | = 1

2 < 1 4

∴
∞∑
n=2

an is convergent by CT(Comparison Test) 5
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Example 3

∞∑
n=1

cos2 n
n3

0 ≤ cos2 n
n3

≤ 1
n3

for all n 1 2 3∑ 1
n3

is a convergent p-series, p = 3 > 1 4

∴
∞∑
n=1

cos2 n
n3

is convergent by CT(Comparison Test) 5
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Example 4

For
∞∑
n=3

1
n2−5

, suspect convergence, but 1
n2−5

≮ 1
n2
.

What to do?
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Limit Comparison Test

Suppose that
∑

an and
∑

bn are series with positive terms. If

lim
n→∞

an
bn

= c

where c is a finite number and c > 0, then either both series
converge or both diverge.
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Return to Example 4

∞∑
n=3

1
n2−5

Compare 1
n2−5

to 1
n2

1

1
n2−5

≥ 0 and 1
n2

≥ 0 2

lim
n→∞

1
n2−5
1
n2

= lim
n→∞

n2

n2 − 5
= 1 (finite and not 0) 3

∑ 1
n2

is a convergent p-series, p = 2 > 1 4

∴
∞∑
n=3

1
n2−5

is convergent by LCT (Limit Comparison Test) 5
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Example 5
∞∑
n=3

n2+99n+3
3n3+n2−n−1

Compare n2+99n+3
3n3+n2−n−1

to n2

3n3
= 1

3n 1

n2+99n+3
3n3+n2−n−1

≥ 0 and 1
3n ≥ 0 2

lim
n→∞

n2+99n+3
3n3+n2−n−1

1
3n

= lim
n→∞

3n3 + 297n2 + 9n

3n3 + n2 − n − 1
= 1 (finite and not 0)

3∑ 1
3n is a divergent p-series, p = 1 ≯ 1 4

∴
∞∑
n=3

n2+99n+3
3n3+n2−n−1

is divergent by LCT (Limit Comparison Test)

5
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Try It

∞∑
n=1

5+2n3

(1+n2)2

∞∑
n=1

1
3n−1

∞∑
n=1

en

n
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Try It

∞∑
n=1

( sin nn )2

∞∑
n=1

n+8√
n6+n4+1

∞∑
n=1

−( n
n3+1

)
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11.5 Alternating Series and Absolute Convergence
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Recap

All of these tests require positive terms:

Integral Test

P-Series Test

Comparison Test

Limit Comparison Test
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What If?

What if the terms are not positive?

Examples:∑
−( 1n ) = −1− 1

2 − 1
3 − 1

4 − · · ·∑
−( 1

n2
) = −1− 1

4 − 1
9 − 1

16 − · · ·

What if the terms are alternating in sign?

Examples:∑
(−1)n−1 1

n = 1− 1
2 + 1

3 − 1
4 + · · ·∑

(−1)n−1 1
n2

= 1− 1
4 + 1

9 − 1
16 + · · ·
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Example

∞∑
n=1

(−1)n−1 1
n

n an sn
1 1 1

2 −1
2 1− 1

2 = 1
2

3 1
3

1
2 + 1

3 = 5
6

4 −1
4

5
6 − 1

4 = 7
12

5 1
5

7
12 + 1

5 = 47
60

...
...

...
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Alternating Series Test

If
∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − · · · ,

with bn > 0,

satisfies

i) bn+1 ≤ bn

ii) lim
n→∞

bn = 0 for all n

then the series is convergent.

(bn is the absolute value of the series term.)

77 / 191

Note

The Alternating Series Test (AST) is a test for convergence only.
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Example

∞∑
n=1

(−1)n−1 1
n

bn = |(−1)n−1 1
n | =

1
n

bn+1 ≤ bn, (
1

n+1 ≤ 1
n ), for all n

lim
n→∞

bn = 0, ( lim
n→∞

1
n = 0)

∞∑
n=1

(−1)n−1 1
n is convergent by the AST
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Example 2

∞∑
n=1

cos nπ
2n2

= −1
2 + 1

8 − 1
18 + 1

32 − · · ·

an = cos nπ
2n2

= (−1)n

2n2

bn = |an| = 1
2n2

bn+1 ≤ bn for all n, ( 1
2(n+1)2

≤ 1
2n2

)

lim
n→∞

bn = 0

∞∑
n=1

cos nπ
2n2

is convergent by the AST
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Example 3

For
∞∑
n=1

(−1)ne(
1
n
)

an = (−1)ne
1
n bn = |an| = e

1
n

Decreasing?

f (x) = e(
1
x
)

f ′(x) = − 1
x2
e(

1
x
), (negative for all x in domain)

bn+1 ≤ bn for all n in [1,∞)

lim
n→∞

bn = lim
n→∞

e(
1
n
) = 1

lim
n→∞

(−1)ne
1
n ̸= 0 (does not exist)

∞∑
n=1

(−1)ne
1
n is divergent by Divergence Test. (Remember that

AST is a convergence test only.)
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Alternating Series Estimation Theorem

If s =
∞∑
n=1

(−1)n−1bn, where bn > 0, is the sum of an alternating

series that satisfies

i) bn+1 ≤ bn

ii) lim
n→∞

bn = 0 for all n

then |En| = |s − sn| ≤ bn+1

where |En| is the magnitude of the error in the estimate.
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Interpretation

If we use sn to estimate the sum, s, of an alternating series that
converges by AST, then |error | is less than the magnitude of the
first term that is left out of the estimated sum.
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Estimation Example

For
∞∑
n=1

(−1)n−1 1
n , what is the maximum error if 5 terms are used

to approximation the sum?

s = 1− 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + · · ·

s ≈ s5 = 1− 1
2 + 1

3 − 1
4 + 1

5 , |error | ≤ b6

s ≈ 0.783̄, |error | ≤ 1
6 = 0.166̄
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Try It

How large should n be (how many terms) to insure that

|error | ≤ 0.01, where sn is used to approximate
∞∑
n=1

(−1)n−1 1
n?
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Definition

A series
∑

an is absolutely convergent if the series of absolute
values

∑
|an| is convergent.

A series
∑

an is conditionally convergent if
∑

an is convergent,
but

∑
|an| is divergent.
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Examples

∞∑
n=1

(−1)n−1 1
n is conditionally convergent

∞∑
n=1

(−1)n−1 1
n2

is absolutely convergent
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Theorem

Absolute convergence implies convergence.

(If
∑

|an| converges, then
∑

an converges.)

We can test for absolute convergence, using the tests that require
positive terms.
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Example

∞∑
n=1

cos n
n2

: Not alternating and not positive for all n; therefore CT,

LCT, Integral Test are not options. (but suspect convergence)

an = cos n
n2

|an| = | cos n|
n2

|an| ≤ 1
n2
, positive terms∑ 1

n2
is convergent p-series, p = 2 > 1∑

|an| is convergent by CT so
∑

an is absolutely convergent (and
therefore convergent).
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Try It

Show whether these series are absolutely convergent, conditionally
convergent, or divergent.

1)
∑

(−1)n 1√
n

2)
∑

(−1)n+2 1
n3+2

3)
∑

(−1)n 5n

n5
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Quiz

Absolutely Convergent (A), conditionally convergent (C), or
Divergent (D)?

1)
∞∑
n=1

(−1)n 1
n+1

2)
∞∑
n=1

1
n+1

3)
∞∑
n=1

(−1) 1
n+1

4)
∞∑
n=1

(−1)n n
n+1

5)
∞∑
n=1

(−1)n−1 tan−1 n

6)
∞∑
n=1

(−1)n−1 sin( 1n )
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Quiz

For what values of p does the series,
∞∑
n=1

(−1)n−1 1
np , converge?

A) p ≥ 0

B) p > 0

C) p ≥ 1

D) p > 1
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Quiz

For what values of p is the series,
∞∑
n=1

(−1)n−1 1
np , absolutely

convergent?

A) p ≥ 0

B) p > 0

C) p ≥ 1

D) p > 1
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Quiz

For what values of p is the series,
∞∑
n=1

(−1)n−1 1
np , conditionally

convergent?

A) p > 0

B) 0 ≤ p < 1

C) 0 < p ≤ 1

D) p > 1
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11.6 The Ratio Test & Root Test
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Ratio Test

i) If lim
n→∞

|an+1

an
| = L < 1, then

∑
an is absolutely convergent.

ii) If lim
n→∞

|an+1

an
| = L > 1 or lim

n→∞
|an+1

an
| = ∞, then

∑
an is

divergent.

iii) If lim
n→∞

|an+1

an
| = 1, then the Ratio Test is inconclusive.( The

series may be convergent or divergent.)
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When to Use

Use the Ratio Test when there is a factorial in the series terms or
when there is a combination of geometric and power factors.
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Example

For
∞∑
n=1

3n

n! , an = 3n

n! , |an| =
3n

n! , |an+1| = 3n+1

(n+1)!

|an+1

an
| = 3n+1

(n+1)! ×
n!
3n

= 3n+1

3n × n!
(n+1)!

= 3
n+1

lim
n→∞

|an+1

an
| = 0 < 1

∑
an is absolutely convergent by the Ratio Test( and therefore

convergent).
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Example

For
∞∑
n=1

(−1)n en

n100
, an = (−1)n en

n100
, |an| = en

n100
, |an+1| = en+1

(n+1)100

|an+1

an
| = en+1

(n+1)100
× n100

en

= en+1

en × n100

(n+1)100

= e( n
n+1)

100

lim
n→∞

|an+1

an
| = e > 1

∑
an is divergent by the Ratio Test.
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Example

For
∞∑
n=1

4(23)
n, an = 4(23)

n

|an+1

an
| = 4( 2

3
)n+1

4( 2
3
)n

= 2
3 < 1∑

an is convergent by Ratio Test, but Geometric Series Test is
faster.
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Example

For
∞∑
n=1

n2

n3+3n
, an = n2

n3+3n

|an+1

an
| = (n+1)2

(n+1)3+3(n+1)
× n3+3n

n2

= (n+1
n )2 × n3+3n

(n+1)3+3(n+1)

lim
n→∞

|an+1

an
| = 1

The Ratio Test is inconclusive.

The Ratio Test is inconclusive when the series is like a p-series.

Use LCT to prove that the series is divergent.
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Root Test

i) If lim
n→∞

n
√

|an| = L < 1, then
∑

an is absolutely convergent.

ii) If lim
n→∞

n
√

|an| = L > 1 or lim
n→∞

n
√

|an| = ∞, then
∑

an is

divergent.

iii) If lim
n→∞

n
√

|an| = 1, then the Root Test is inconclusive.( The

series may be convergent or divergent.)
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When to Use

Use the Root Test for a series with terms of the form,
|an| = [f (n)]n, so that n

√
|an| = f (n).
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Example

For
∞∑
n=1

( 1n )
n, an = ( 1n )

n

n
√

|an| = 1
n

lim
n→∞

1
n = 0 < 1

∑
an is absolutely convergent by the Root Test (and therefore

convergent).
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Example

For
∞∑
n=1

(−1)n( n
2n+1)

n, an = (−1)n( n
2n+1)

n

|an| = ( n
2n+1)

n

n
√

|an| = n
2n+1

lim
n→∞

n
2n+1 = 1

2 < 1

∑
an is absolutely convergent by the Root Test (and therefore

convergent).
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Example

For
∞∑
n=1

(32)
n, an = (32)

n

n
√

|an| = 3
2 > 1∑

an is divergent by Root Test, but Geometric Series Test is faster.
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Try It

Test whether the following series are absolutely convergent,
conditionally convergent, or divergent.

∞∑
n=1

( 3n )
n

∞∑
n=1

(−3)n−1

(2n+1)!

∞∑
n=1

(−1)n(n+2)!
10n

∞∑
n=1

n24n

5n+2

∞∑
n=1

(−1)n n
n3+2

∞∑
n=1

(−1)n−1 n
n2+1
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11.8 Power Series
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Example

∞∑
n=0

xn = 1 + x + x2 + x3 + · · ·+ xn + · · ·

Note: This is both a power series and a geometric series.
Convergent for |x | < 1

Interval of convergence: (−1, 1)

Radius of convergence, R = 1
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In General

Power Series in (x − a)

Power Series centered at a

Power Series about a

∞∑
n=0

cn(x −a)n = c0+ c1(x −a)+ c2(x −a)2+ · · ·+ cn(x −a)n+ · · ·

For
∞∑
n=0

xn = 1 + x + x2 + x3 + · · ·+ xn + · · ·

a = 0; cn = 1 (for all n)
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Example

∞∑
n=0

xn

n! = 1 + x + x2

2! +
x3

3! + · · ·

Find the radius and interval of convergence.

a = 0; cn = 1
n!

Use the Ratio Test: |an+1

an
| = |x |n+1

(n+1)! ×
n!
|x |n

= |x |n+1

|x |n × n!
(n+1)!

= |x |( 1
n+1)
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Example - Continued

|an+1

an
| = |x |( 1

n+1)

lim
n→∞

|an+1

an
| = 0 for all x

Interval of convergence: (−∞,∞)

Radius of convergence, R = ∞

112 / 191



Example
∞∑
n=0

n!(x − 3)n = 1 + (x − 3) + 2!(x − 3)2 + 3!(x − 3)3 · · ·

Find the radius and interval of convergence:

|an+1

an
| = (n+1)!|x−3|n+1

n!|x−3|n

= (n + 1)|x − 3|

lim
n→∞

|an+1

an
| = ∞ unless |x − 3| = 0

Interval of convergence: x = 3

Radius of convergence, R = 0
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Example

∞∑
n=0

3(x−2)n

n+1

Find the interval and radius of convergence:

|an+1

an
| = 3|x−2|n+1

n+2 × n+1
3|x−2|n

= 3|x−2|n+1

3|x−2|n × n+1
n+2

= |x − 2| × n+1
n+2

lim
n→∞

|an+1

an
| = |x − 2|
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Example - Continued

lim
n→∞

|an+1

an
| = |x − 2|

Convergent for |x − 2| < 1

Divergent for |x − 2| > 1

What about |x − 2| = 1?

Ratio Test is inconclusive. Use another test.
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Example - Continued
∞∑
n=0

3(x−2)n

n+1 Checking |x − 2| = 1

x − 2 = −1
∞∑
n=0

3(−1)n

n+1

Convergent

x − 2 = 1
∞∑
n=0

3
n+1

Divergent

Series is convergent for −1 ≤ x − 2 < 1; 1 ≤ x > 3

Interval of convergence: [1, 3)

Radius of convergence, R = 1
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Theorem

For a given power series,
∞∑
n=0

cn(x − a)n, there are only three

possibilities:

i) The series converges only when x = a.

ii) The series converges for all x .

iii) There is a positive number, R, such that the series converges if
|x − a| < R and diverges if |x − a| > R.
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Summarize

Series Radius of Convergence Interval of Convergence
∞∑
n=0

xn R = 1 (−1, 1)

∞∑
n=0

xn

n! R = ∞ (−∞,∞)

∞∑
n=0

n!(x − 3)n R = 0 x = 3

∞∑
n=0

3(x−2)n

n+1 R = 1 [1, 3)
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Interpret

The possible intervals of convergence for a power series centered at

a,
∞∑
n=0

cn(x − a)n, are:

x = a

(a− R, a+ R]

[a− R, a+ R)

[a− R, a+ R]

(a− R, a+ R)

(−∞,∞)
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Try It 1

∞∑
n=1

10n(x−1)n

n2

Find the radius and interval of convergence.
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Try It 2

∞∑
n=1

(4x+1)n

n

Find the radius and interval of convergence.
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Try It 3

If
∞∑
n=0

bn8
n is convergent and

∞∑
n=0

bn10
n is divergent, then what

about

∞∑
n=0

bn2
n

∞∑
n=0

bn(−10)n

∞∑
n=0

bn(−2)n
∞∑
n=0

bn11
n

∞∑
n=0

bn(−8)n
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Try It 1 Solution 1

|an+1

an
| = 10n+1|x−1|n+1

(n+1)2
× n2

10n|x−1|n

= 10n+1

10n × n2

(n+1)2
× |x−1|n+1

|x−1|n

= 10( n
n+1)

2|x − 1|

lim
n→∞

|an+1

an
| = 10|x − 1|

Series is convergent for 10|x − 1| < 1 OR |x − 1| < 1
10

Series is divergent for 10|x − 1| > 1 OR |x − 1| > 1
10

R = 1
10
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Try It 1 Solution 2

Check 10|x − 1| = 1 OR |x − 1| = 1
10 (Ratio test inconclusive.)

This corresponds to x − 1 = − 1
10 AND x − 1 = 1

10

(That is, x = 9
10 AND x = 11

10)

For x = 9
10

∞∑
n=1

(−1)n

n2

Convergent

For x = 11
10

∞∑
n=1

1
n2

Divergent

I = [ 9
10 ,

11
10 ], R = 1

10
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Try It 2 Solution 1

Rewrite as
∞∑
n=1

4n(x+ 1
4
)n

n , |an+1

an
| = 4n+1|x+ 1

4
|n+1

n+1 × n
4n|x+ 1

4
|n

= 4n+1

4n × n
n+1 × |x+ 1

4
|n+1

|x+ 1
4
|n

= 4( n
n+1)|x + 1

4 |

lim
n→∞

|an+1

an
| = 4|x + 1

4 |

Series is convergent for 4|x + 1
4 | < 1 OR |x + 1

4 | <
1
4

Series is divergent for 4|x + 1
4 | > 1 OR |x + 1

4 | >
1
4

R = 1
4
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Try It 2 Solution 2

Check 4|x + 1
4 | = 1 OR |x + 1

4 | =
1
4 (Ratio test inconclusive.)

This corresponds to x + 1
4 = −1

4 AND x + 1
4 = 1

4

(That is, x = −1
2 AND x = 0)

For x = −1
2

∞∑
n=1

(−1)n

n

Convergent

For x = 0
∞∑
n=1

1
n

Divergent

I = [−1
2 , 0), R = 1

4
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Try It 3 Solutions

If
∞∑
n=0

bn8
n is convergent and

∞∑
n=0

bn10
n is divergent, then what

about

∞∑
n=0

bn2
n C

∞∑
n=0

bn(−10)n ?

∞∑
n=0

bn(−2)n C
∞∑
n=0

bn11
n D

∞∑
n=0

bn(−8)n ?
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11.9 Representations of Functions
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Geometric Power Series

1 + x + x2 + x3 + · · ·+ xn + · · · = 1
1−x if |x | < 1

1
1−x = 1 + x + x2 + x3 + · · ·+ xn + · · · =

∞∑
n=0

xn if |x | < 1

What does it mean that a function is equal to a series?
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Substitution

We find more functions with power series representations by
substitution into a known function and associated power series:

1
1−x2

=
∞∑
n=0

(x2)n =
∞∑
n=0

x2n = 1 + x2 + x4 + · · ·

Then use substitution to find interval of convergence:

|x2| < 1

|x | < 1
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More Substitution

1
1+2x = 1

1−(−2x) =
∞∑
n=0

(−2x)n

1
1+2x =

∞∑
n=0

(−1)n2nxn for | − 2x | < 1 or |x | < 1
2
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Multiplication

We find more functions with power series representations by
multiplying a known function and associated power series by a
constant or by a power of x. This does not affect the interval of
convergence.

5
1−x = 5( 1

1−x ) = 5
∞∑
n=0

xn =
∞∑
n=0

5xn for |x | < 1

x
1−x = x( 1

1−x ) = x
∞∑
n=0

xn =
∞∑
n=0

xn+1 for |x | < 1
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Multiplication and Substitution

1
3−x = 1

3(1− x
3
) =

1
3(

1
1− x

3
) = 1

3

∞∑
n=0

( x3 )
n

1
3−x =

∞∑
n=0

1
3n+1 x

n for | x3 | < 1 or |x | < 3
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Try It 1

Find power series representations for the following functions, and
determine the interval of convergence:

1
1−8x3

7
2+3x

3
2−5x

2x3

1−x2
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Theorem

If the power series,
∞∑
n=0

cn(x − a)n, has radius of convergence,

R > 0, then the function, f (x) =
∞∑
n=0

cn(x − a)n,is differentiable,

and therefore continuous, on the interval (a− R, a+ R) and

i) f ′(x) =
∞∑
n=1

ncn(x − a)n−1

ii)
∫
f (x)dx = C +

∞∑
n=0

cn
(x−a)n+1

n+1

The radii of convergence of the power series in equations i) and ii)
are also R, but the interval of convergence might be different from
that of the original power series.
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Interpretation

Power series representations of functions can be integrated or
differentiated term by term to yield power series for other functions
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Differentiation Example

1
1−x = 1 + x + x2 + x3 + · · ·+ xn + · · · R = 1, I = (−1, 1)

d( 1
1−x

)

dx = 1 + 2x + 3x2 + · · ·+ nxn−1 + · · · R = 1

1
(1−x)2

=
∞∑
n=1

nxn−1 =
∞∑
n=0

(n + 1)xn, R = 1
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Integration Example

1
1−x = 1 + x + x2 + x3 + · · ·+ xn + · · · R = 1, I = (−1, 1)∫

1
1−x dx = C + x + x2

2 + x3

3 + · · ·+ xn

n + · · · R = 1

− ln |1− x | = C +
∞∑
n=0

xn+1

n+1 , R = 1

Now find C...
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Integration Example Cont.

− ln |1− x | = C +
∞∑
n=0

xn+1

n+1 , R = 1

Substitute x = 0:

− ln |1− 0| = C +
∞∑
n=0

0n+1

n+1

0 = C + 0

C = 0

So, ln |1− x | =
∞∑
n=0

− xn+1

n+1 , R = 1
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Integration Example Cont.

What about endpoints?

At x = −1:
∞∑
n=0

− (−1)n+1

n+1

Series is convergent.

At x = 1:
∞∑
n=0

− 1
n+1

Series is divergent.

Interval of convergence for series is [−1, 1) but series is only
guaranteed to be equal to the function within R, (−1, 1).

It can be shown that the series converges to the function for x in
[−1, 1).
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Note

ln(1− x) =
∞∑
n=0

− xn+1

n+1 on [−1, 1)

Also, ln(1− x) ≈
n∑

i=0
− x i+1

i+1 for x close to 0.
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Example

Find a series representation for ln(2/3).

ln(1− x) =
∞∑
n=0

− xn+1

n+1 , R = 1

ln(1− 1
3) =

∞∑
n=0

− ( 1
3
)n+1

n+1

ln 2
3 =

∞∑
n=1

−1
3nn
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Example

What is the sum of the convergent series:
∞∑
n=1

(−1)n+1 1
n

Solution:

−
∞∑
n=0

xn+1

n+1 = ln(1− x) for x in [−1, 1) (Previously derived.)

∞∑
n=1

− xn

n = ln(1− x) (Adjust the index.)

∞∑
n=1

− (−1)n

n = ln(1− (−1)) (Plug in x = −1.)

∞∑
n=1

(−1)n+1

n = ln 2
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Quiz 1

Find the sum of the series
∞∑
n=0

− ( 1
4
)n+1

n+1

A) − ln(1/4)

B) ln(1/4)

C) ln(3/4)
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Quiz 2

Find the sum of the series
∞∑
n=0

(−1)n+1 1
5n+1(n+1)

A) ln(4/5)

B) ln(6/5)

C) ln(5/6)
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Example

Find a power series representation for tan−1 x

First, find a power series representation for 1
1+x2

1
1+x2

= 1
1−(−x2)

=
∞∑
n=0

(−x2)n

1
1+x2

=
∞∑
n=0

(−1)nx2n

Then, integrate to find power series representation for tan−1 x
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Example Cont.

tan−1 x = C +
∫

1
1+x2

dx

= C +
∫
(
∞∑
n=0

(−1)nx2n)dx = C +
∫
(1− x2 + x4 − x6 + · · · )dx

tan−1 x = C +
∞∑
n=0

(−1)n x2n+1

2n+1 = C + x − x3

3 + x5

5 − x7

7 + · · ·

Solve for C using x = 0:

tan−1 0 = C + 0− 03

3 + 05

5 − 07

7 + · · ·

C = 0
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Example Cont.

tan−1 x =
∞∑
n=0

(−1)n x2n+1

2n+1 , R = 1

Note: It can be proven that this series converges to the function
within the interval [−1, 1]. Thus

tan−1 1 =
∞∑
n=0

(−1)n 12n+1

2n+1

π
4 =

∞∑
n=0

(−1)n

2n+1

π = 4(1− 1
3 + 1

5 − 1
7 + · · · ) = 4− 4

3 + 4
5 − 4

7 + · · ·
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Try It 2

π = 4− 4
3 + 4

5 − 4
7 + · · ·

How many terms need to be added to approximate π to within
0.001?
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Quiz

Find the sum of the series
∞∑
n=0

(−1)n
√
3
2n+1

32n+1(2n+1)

A) No sum (divergent)

B) π
6

C) π
3
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Try It 1 Solutions

1
1−8x3

=
∞∑
n=0

8nx3n, I = (−1
2 ,

1
2)

3
2−5x =

∞∑
n=0

3(5n)
2n+1 x

n, I = (−2
5 ,

2
5)

7
2+3x =

∑ 7(−1)n3n

2n+1 xn, I = (−2
3 ,

2
3)

2x3

1−x2
=

∞∑
n=0

2x2n+3, I = (−1, 1)
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Try It 2 Solution
π =

∞∑
n=0

(−1)n4
2n+1

Find the term that has a magnitude of less than or equal to 0.001.
That will be the error term.

For what values of n is 4
2n+1 ≤ 1

1000?

2n + 1 ≥ 4000

2n ≥ 3999

n ≥ 1999.5

n ≥ 2000

So, the n = 2000 term will be the error term. Include terms 0
through 1999. That is 2000 terms.

π ≈
1999∑
n=0

(−1)n4
2n+1
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11.10 Taylor and Maclaurin Series
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Other Functions

How can we find power series representations for functions that are
not related to 1

1−x ?

Answer: Use Taylor or MacLaurin Series.
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Theorem

If a function, f (x), has a power series about a, then the series will
have the form,

T (x) =
∞∑
n=0

cn(x − a)n where cn = f (n)(a)
n!

This is a Taylor Series.

If a = 0, then the series is also known as a Maclaurin Series.
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Why?

If f (x) = T (x), then all derivatives should be equal at a.

f (x) = T (x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + · · ·

f (a) = T (a) → f (a) = c0

T ′(x) = c1 + 2c2(x − a) + 3c2(x − a)2 + 4c4(x − a)3 + · · ·

f ′(a) = T ′(a) → f ′(a) = c1

T”(x) = 2c2 + 3 · 2c3(x − a) + 4 · 3c4(x − a)2 + · · ·

f ”(a) = T”(a) → f ”(a) = 2c2 → c2 =
f ”(a)
2

T (3)(x) = 3 · 2c3 + 4 · 3 · 2c4(x − a) + · · ·

f (3)(a) = T (3)(a) → f (3)(a) = 3 · 2c3 → c3 =
f (3)(a)
3·2
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Coefficients

c0 = f (a)

c1 = f ′(a)

c2 =
f ′′(a)
2

c3 =
f (3)(a)
3·2

In general, cn = f (n)(a)
n!

These are the coefficients that insure that the derivatives of T (x)
and of f (x) at a are equal. Finding a Taylor/Maclaurin Series for a
function is a matter of finding these coefficients.
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Example

Find the Maclaurin series for f (x) = ex

Solution:

T (x) =
∞∑
n=0

cnx
n

Now find coefficients...

n f (n)(x) f (n)(0) cn = f (n)(0)
n!

0 ex 1 1

1 ex 1 1

2 ex 1 1
2

cn = 1
n!

T (x) =
∞∑
n=0

1
n!x

n
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Theorem

Let I = (a− R, a+ R), where R > 0. Suppose there exists K > 0
such that all derivatives of f are bounded by K on I :

|f (i)(x)| ≤ K for all i ≥ 0 and x ∈ I

Then f (x) is represented by its Taylor series in I :

f (x) =
∞∑
n=0

f (n)(a)
n! (x − a)n for all x ∈ I
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Radius of Convergence

f (x) = ex

f (n)(x) = ex

For all R > 0, |f (i)(x)| ≤ ea+R for x ∈ (a− R, a+ R)

Use K = ea+R

T (x) converges to f (x) for all x ∈ (a− R, a+ R)

Since R is arbitrary, T (x) converges to f (x) for all x .
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Summary

ex =
∞∑
n=0

xn

n! , R = ∞
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Interpretation

ex = T (x) =
∞∑
n=0

xn

n! = 1 + x + x2

2 + x3

3! + · · · for all x

ex ≈ Tn(x) =
n∑

i=0

x i

i! = 1 + x + x2

2 + x3

3! + · · ·+ xn

n! for x close to 0

f (x) = ex

T0(x) = 1

T1(x) = 1 + x

T2(x) = 1 + x + x2

2

T3(x) = 1 + x + x2

2 + x3

6

T4(x) = 1 + x + x2

2 + x3

6 + x4

24
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Interpretation Cont.

e = e1 = T (1) =
∞∑
n=0

1n

n! = 1 + 1 + 1
2 + 1

3! + · · ·

e ≈ 1

e ≈ 1 + 1 = 2

e ≈ 1 + 1 + 1
2 = 2.5

e ≈ 1 + 1 + 1
2 + 1

6 = 2.6̄

The more terms that are included, the better the approximation.
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Quiz

Use substitution and multiplication to find the Maclaurin series for
f (x) = x2e−5x

A)
∞∑
n=0

(−5)nxn+2

n!

B)
∞∑
n=0

(−5)nx2n

n!

C)
∞∑
n=0

−5xn+2

n!
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Quiz

f (x) = x2e−5x

Find f (25)(0)

A) 0

B) 1
25!

C) −(25!)523

23!
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Maclaurin Series for cos(x)

i f (i)(x) f (i)(0) ci =
f (i)(0)

i!

0 cos x 1 1

1 − sin x 0 0

2 − cos x -1 −1
2

3 sin x 0 0

4 cos x 1 1
4!
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Coefficients for cos(x)

cos x = 1 + 0− 1
2x

2 + 0 + 1
4!x

4 + 0 + · · ·

cos x = 1− 1
2x

2 + 1
4!x

4 + · · ·

Note that the Taylor series includes only even terms, so it is an
even function, just as cos x is an even function. It can be shown
that R = ∞.

cos x =
∞∑
n=0

(−1)n x2n

(2n)! ,R = ∞
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Graphical Interpretation

The partial sums are Taylor Polynomials.

f (x) = cos x

T0(x) = 1

T2(x) = 1− x2

2!

T4(x) = 1− x2

2! +
x4

4!

T6(x) = 1− x2

2! +
x4

4! −
x6

6!
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Example

cos(0.01) =
∞∑
n=0

(−1)n (0.01)2n

(2n)! = 1− (0.01)2

2 + (0.01)4

4! − (0.01)6

6! + · · ·

cos(0.01) ≈ T0(0.01) = 1

cos(0.01) ≈ T2(0.01) = 1− (0.01)2

2 = .99995

cos(0.01) ≈ T4(0.01) = 1− (0.01)2

2 + (0.01)4

24 = .9999500004

Using T4(0.01), |error | ≤ (0.01)6

6! = 1.4× 10−15
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Quiz

Find the Maclaurin Series for f (x) = x2 cos x3

A) T (x) =
∞∑
n=0

(−1)n x12n

(12n)!

B) T (x) =
∞∑
n=0

(−1)n x12n

(2n)!

C) T (x) =
∞∑
n=0

(−1)n x6n+2

(2n)!
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Quiz

If f (x) = x2 cos x3, find f (43)(0)

A) 1
43!

B) − 1
43!

C) 0
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Example

Find the Maclaurin Series for sin(x):

Solution: Instead of starting from scratch, we will use
differentiation.

cos x =
∞∑
n=0

(−1)n x2n

(2n)! ,R = ∞

Now, differentiate...
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Example Cont.

d
dx (cos x) =

d
dx

[ ∞∑
n=0

(−1)n
x2n

(2n)!

]
=

∞∑
n=1

(−1)n
1

(2n)!
(2n)x2n−1

=
∞∑
n=1

(−1)n
x2n−1

(2n − 1)!

=
∞∑
n=0

(−1)n+1 x2(n+1)−1

(2(n + 1)− 1)!

− sin x =
∞∑
n=0

(−1)n+1 x2n+1

(2n + 1)!

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
R = ∞
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Summarize

1
1−x =

∞∑
n=0

xn R = 1 (−1, 1)

ln(1− x) =
∞∑
n=0

− xn+1

n + 1
R = 1 [−1, 1)

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n + 1
R = 1 [−1, 1]

ex =
∞∑
n=0

xn

n!
R = ∞

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
R = ∞

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
R = ∞
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Try It 1

Find the sum of the following series:

∞∑
n=0

(−1)n π2n+1

42n+1(2n+1)!

∞∑
n=0

22n

n!

∞∑
n=0

(−1)n(π)2n+2

32n+1(2n)!
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Try It 1 Solution

Find the sum of the following series:

∞∑
n=0

(−1)n π2n+1

42n+1(2n+1)!
= sin(π4 ) =

√
2
2

∞∑
n=0

22n

n! = e(2
2) = e4

∞∑
n=0

(−1)n(π)2n+2

32n+1(2n)!
= π2

3

∞∑
n=0

(−1)n(π)2n

32n(2n)!
= π2

3 cos π
3 = π2

6
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Applications of Taylor Polynomials
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Linear Approximation

We know that we can approximate a function, y = f (x), near
x = a, by finding an equation for the line tangent to the curve at
x = a.

L(x) = f (a) + f ′(a)(x − a)

This linearization has the same value and the same first derivative
at x = a as the function, y = f (x).
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Linearization

If L(x) = f (a) + f ′(a)(x − a),

then L(a) = f (a) and L′(a) = f ′(a).

Same value, same slope.

Also, f (x) ≈ L(x) near x = a.
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Example
If f (x) = ln x , then f (1) = 0, f ′(x) = 1

x , and f ′(1) = 1.

L(x) = 0 + 1(x − 1)

L(x) = x − 1

Same value, same slope at x = 1.

L(x) ≈ f (x) near x = 1.

L(0.9) = −0.100000

f (0.9) = −0.105361
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Improve?

Can we make a better approximation by making a quadratic
function, Q(x), such that

Q(a) = f (a)

Q ′(a) = f ′(a)

and Q ′′(a) = f ′′(a)???

Yes.
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Quadratic Approximation

If f (x) = ln x , then Q(x) = 0 + 1(x − 1)− 1
2(x − 1)2

or Q(x) = x − 1− 1
2(x − 1)2

Compare derivatives:

f (x) = ln x Q(x) = x − 1− 1
2(x − 1)2

f (1) = 0 Q(1) = 0

f ′(x) = 1
x Q ′(x) = 1− (x − 1)

f ′(1) = 1 Q ′(1) = 1

f ′′(x) = − 1
x2

Q ′′(x) = −1

f ′′(1) = −1 Q ′′(1) = −1
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Continued

Q(x) ≈ f (x) near x = 1

Compare:

L(0.9) = −0.100000

Q(0.9) = −0.105000

f (0.9) = −0.105361

|error | ≈ 0.000361
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Improvement?

Can we improve this approximation by making a polynomial of
degree n, such that the derivatives of the polynomial and the
function agree at x = a through the nth derivative?

Yes. This is the Taylor polynomial of degree n.
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Taylor Polynomial

The Taylor Polynomial approximation of degree n for the function
f (x), near x = a, is

Tn(x) = c0+ c1(x − a)+ c2(x − a)2+ c3(x − a)3+ · · ·+ cn(x − a)n

where cn = f n(a)
n! , and these are the coefficients that make the

derivatives agree.

The Taylor polynomial is a partial sum of the Taylor series.
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Requirements

f (x) is defined on an open interval, I .

All derivatives, f (k)(x), exist on I .

a ∈ I

186 / 191



Error Bound Theorem

Assume that f (n+1)(x) exists and is continuous. Let M be a
number such that |f (n+1)(u)| ≤ M for all u between a and x , then

|Rn(x)| = |f (x)− Tn(x)| ≤ M
|x − a|n+1

(n + 1)!

where Tn(x) is the nth Taylor polynomial centered at x = a.
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Estimation Example 1

If T2(0.9) is used to approximate ln(0.9), what does the error
bound formula guarantee?

Solution:

T2(x) = x − 1− 1
2(x − 1)2 (centered at a = 1)

Find M:
f (3)(x) = 2

x3

|f (3)(u)| = 2
u3

≤ 2
0.93

for u between 1 and 0.9

so M = 2000
93
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Solution - Continued

|f (0.9)− T2(0.9)| ≤ 2000
93

|0.9−1|3
(2+1)!

|error | ≤ 1
93∗3 = 0.000457

We found that |error | ≈ 0.000361.

0.000361 < 0.000457
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Estimation Example 2
Now, if a Maclaurin polynomial is to be used to approximate
sin(0.02) to within 10−6, how many terms must be included?

Solution:

sin(x) =
∞∑
n=0

(−1)n x2n+1

(2n+1)!

This is an alternating series so use the alternating series estimation
theorem.

sin(x) = x − x3

3! +
x5

5! − · · ·

sin(0.02) = 0.02− 0.023

3! + 0.025

5! − · · ·

= 0.02− 1.3̄× 10−6 + 2.6̄× 10−11 − · · ·

Two terms needed.

sin(0.02) ≈ 0.0199986̄, |error | ≤ 2.6̄× 10−11
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Estimation Example 3

Approximate
∫ 0.3
0 e−x2dx with |error | ≤ 0.00001 using a Taylor

polynomial.

Solution:∫ 0.3

0
e−x2dx =

∫ 0.3

0

[ ∞∑
n=0

(−x2)

n!

]
dx

=

∫ 0.3

0

[
1− x2 +

x4

2
− x6

6
+ · · ·

]
dx

=

[
x − x3

3 + x5

5·2 − x7

7·6 + · · ·
]∣∣∣∣0.3

0

=

[
0.3− 0.33

3 + 0.35

5·2 − 0.37

7·6 + · · ·
]
− 0

≈ 0.3− 0.33

3 + 0.35

5·2 |error | ≤ 0.37

7·6 < 1× 10−5∫ 0.3

0
e−x2dx ≈ 0.291243
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