Chapter 11 Infinite Sequences and Series

11.1 Sequences
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Definition

A sequence is a list in a particular order.

1,2,3,4,5
53,124

The above two sequences are different.
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Infinite Sequence

We will be concerned with infinite sequences of numbers, in which
there is a pattern to the terms.

Examples:

1,2,3,4,5, ...

\’I—l
N~
W=
EN
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Sequence Descriptions

Here are multiple ways to describe the same infinite sequence:

1
111 -
{1, 55354 } {n}

o {an}on ="
=1
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Graphing Sequences

Graphing a sequence involves plotting discrete points, rather than
plotting curves.

1
Example: plot {n?} and {—}

n
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Convergence or Divergence

If lim a, = L, and L is finite,
n—oo

then {a,} converges to L;

otherwise, the sequence diverges.

If lim a, = oo (or —o0),
n—0o0

then {a,} diverges to oo (or —c0).
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Examples

1
{—} converges to 0

n
{n?} diverges to oo

{(-1)"} ={-1,1,—-1,1,...} diverges (no corresponding function)
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Theorem

If a, = f(n), and lim f(x) = L, where L is finite, then {a,}

X—>00
converges to L.

If Lis oo (or —o0), then the sequence diverges to oo (or —o0).
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Example

Inn .
Is the sequence, { — ¢, convergent or divergent?
n

Solutionl:
nx
f(x) = —
(x) =1
1 :
: - N hat L'H I's Rul
lim f(x) = lim < =0 ote that o_splta s Rule
X—00 x—00 1 cannot be applied to a sequence,
| but can be applied to the
nn . :
lim — =20 corresponding continuous
n—oo N .
function.
{ In n} _
—— ¢ is convergent
n
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Another Example

Is the sequence, {sin(27n)}, convergent or divergent?
Solution:

lim sin(27x) does not exist,
X—00

but

lim sin(2wn) = 0, so the sequence is convergent.
n—o0
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Theorem 2

If lim |a,| =0, then lim a, =0
n—o0 n—o00
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Example 1

Does the sequence, {(—1)"+}, converge or diverge?

Solution:

lim 1 =0,s0 lim (-1)" =0
n—o0

n—o00

{(—1)”%} converges to 0.

Example 2

For what values of r does {r"} converge?

Solution:

0,
lim r* =41,
X—00

oo?
SO

0,
lim r" =<1,
n—o00

m?

Note that r* is defined only for r > 0. What about r < 07

for0<r<1
forr=1

forr>1

for0<r<1
forr=1
forr > 1
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Example 2 Cont

lim r"=0if|r| <1

n—o00

lim r" does not exist if r < —1
n—o0

For example:

{<_l)n}_{ b1 L1 }convergent
5 =\ 27 31 "
{(_1),7}:{—1,1,—1,1,---}divergent

{(- 2)n} ={—2,4,-8,16,--- } divergent
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Summary for {r"}

{r"} converges to 0 for —1 < r <1
{r"} converges to 1 for r =1

{r"} diverges otherwise
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Try It

Show whether the following sequences converge or diverge.

n+1
{_3(25:

n+1
{-3(%

Try It

For what value of p does {1} converge?
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Try It

Show whether the following sequences converge or diverge.
(-1 L) )
{(=1)"V/n} {(-1)"+}
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Try It

Show whether the following sequences converge or diverge.

nin(e*)

(e

{(_1)2n+1}
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Monotonic Theorem

A monotonic bounded sequence converges.

monotonically increasing: a,+1 > a, for all n

monotonically decreasing: a,+1 < a, for all n

Explanation

Monotonically increasing
sequence is always bounded
below.

Monotonically decreasing
sequence is always bounded
above.
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Example

Does the sequence, 0.2,0.22,0.222,0.2222, ... converge?

Solution:

Sequence is monotonically increasing. It is bounded by 0.2 (below)
and 0.3 (above). The sequence is convergent.
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Squeeze Theorem
If a, < b, < ¢, for all n > ng, and

lim a, = lim ¢, =L, then Iim b, = L.
n—-o00 n—o0 n—o00
3
2
[
1 [ ] ®
@
® [
L L [
° ° e
0 1 2 3 4 h
@
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Review

Factorial
ol=1
nl =n(n—1)!

hl=5x4x3x2x1
67! = 67 x 66!
(n+2)=(n+2)(n+1)n
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Example

Does the sequence, {‘,‘,—7} converge?
Solution:

nth term:
AXxA4dXxAXxAXAX4 - x4x4 4><4><4><4(4>

<
Ix2x3x4x5x6x-x(n—1)xn~" 1x2x3x4
forn>5

n

4n 1024
0< —<
n! 24n

AND
) 1024
[im =
n—oo 24n
40

So — = 0 by the squeeze theorem
n!

forn>5

0
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11.2 Series
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Definition

A series is the sum of the terms of an infinite sequence.
o
agtatat+--+ap+--=> an= an
n=1

A series can have a finite sum.
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Example

Consider: A bug crosses a room by jumping half (%) of the
remaining distance with each jump.

.
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Example Cont.

Distance covered:
d=20+i3)+I0)E) e+ +E)e+ - =2

d =Y (3)" = ¢ (intuitively)
n=1

So a series, an infinite sum, can be finite.
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Partial Sum

n
Definition: s, = > aj=a1+a+ a3+ - -+ ap-1+ an
i=1
51 = aj
So = a1+ ar

S3 =a1 +ax+ as

Partial sums form a sequence, {s,}.

31/ 191
Convergence of Series

If {s,} is convergent, then

lim s, = s is a real number,
n—o00

series > a, is convergent, and

oo
> ap = s (sum of series).
n=1

Otherwise, the series is divergent.

(Thus, series have two associated sequences. These are the
sequence of terms, {a,}, and the sequence of partial sums, {s,}.)
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Geometric Series

o0
ar" '=a4ar+arP+ard+- a4
n=1

Geometric series are distinguished by having a common ratio, r, of
subsequent terms.

Example:

> 331 =34 3(1) 4302 431+ +3(H)"
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Convergence of Geometric Series

o0
Zar”_l:a+ar+ar2+ar3+---+ar”_1+---
n=1

For what values of r is the series convergent?
_ 2 3 n—1
Sp,=a—+ar—+arc+ar’>+---+ar

If r =1, then s, = na. Clearly, lim s, = +o00, and series is
. n—o0
divergent.

Now check other values of r...
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Convergence of Geometric Series Cont.

sh,=a+ar+ar’+ar3+--- 4+ ar" ! Equation 1
rsp=ar+ar’4+ard+---4ar" L+ ar” Equation 2
S, — rs, = a— ar" Equation 1— Equation 2

sn(l—r)=a(l—1r")

sn=1=(1—r")ifr#1
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Convergence of Geometric Series Cont.

sh=1=(1—r")ifr#1

If [r| <1 then lim s, = 2 (Convergent)
n—00 1—r

If r > 1 then lim s, = +o00 (Divergent)

n—00

If r < —1 then lim s, does not exist. (Divergent)
n—0o0
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Summary

The geometric series,

o0
ar" l=atar+ar’+art+-- a4
n=1
is convergent if |r| < 1.
Otherwise, the series is divergent.

. a
If convergent, the sum is T
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Bug Example Conclusion

d=3 (3= X (303)

r= % a= (%)E r is the common ratio, and a is the first term.

—~
N[ =

)¢

d =s= 27 =(, as expected.

=

N
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Try It

Determine whether the following series are convergent or
divergent. Find the sum of convergent geometric series.

> 33" > Wiy 5°(0.0001n)?
nzzjl % Z(_l)”(%)n—l Z n—’i7-2
39 / 191
Example

0.222 = 0.2 + 0.02 + 0.002 + 0.0002 + - - -
_ 2 2 2 2
= 10 T 100 T 1000 T 0000 T
=&+ B+ BEP+ HEHP+-

2
10

1
1— 15

2
0—1

OIN B~

0.222 =
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Theorem

o0
If the series, > a,, is convergent, then lim a, = 0.
n=1 n—o0

This means that, in order for a series to be convergent, the terms
must have a limit of 0.
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Example

{an} is convergent.

> ap is divergent.
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Example

1
an:E

[im % =0
n—oo

{an} is convergent.

> ap 777 Not necessarily convergent. Stay tuned for the answer.
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Divergence Test

o
If lim a, # 0, then the series, >  a,, is divergent.

n—o00 n—=1

(This test is a consequence of the theorem.)
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Limit Laws

If > a, and >_ b, are convergent, and Y a, = a and > _ b, = b,
then >  cap, > (an + bn), and > (a, — by) are convergent, and

i) > cap=ca
i) > (an+by)=a+b

i) S (an — by) = a— b
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Summary

If lim a, =L, and L is finite, then {a,} is convergent.
n—o0

If lim a, # 0, then > a, is divergent.
n—o0

A geometric series is convergent if the magnitude of the common
ratio is less than 1.

If a geometric series is convergent, the sum is s = ﬁ where r is
the common ratio and a is the first term.
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11.3 The Integral Test and Estimates of Sums
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Quiz

True (A) or False (B)?

1) If lim a, =0, then {a,} is convergent.
n—o00

2) If lim a, =2, then {a,} is divergent.

n—o0

3) If lim a, =0, then > a, is convergent.

n—o0

4) If lim a, =2, then ) _ a, is divergent.

n—00
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Series With Positive Terms

If the terms of a series are all positive, then {s,} is an increasing
sequence. So it is either bounded, and therefore converges to a
finite positive number, or it is unbounded, and therefore diverges
to oo.

Therefore, a series with only positive terms is either convergent, or
diverges to co. This simplifies the study of positive series.
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The Integral Test

Let a, = f(n), where f(x) is a continuous, positive, and decreasing
function on [1, c0).

o0 (©.9)
i) If/ f(x)dx is convergent, then )  a, is convergent.
1

n=1

n=1

i) If/ f(x)dx is divergent, then >  a, is divergent.
1
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Graphical Explanation

> anZ/ f(x)dx
n=1 1

oo

If/ f(x)dx diverges,

1
then so does the series.

1
/ —dx diverges,
1

X

(©.9)
so Y. + diverges.
n=1

51 /191
Graphical Explanation - 2

Za,,g/ f(x)dx
n=2 1

(0.8}

o y:s
an < a —I—/ f(x)dx
1

0 2

If f(x)dx converges,

n=1

1
then so does the series.

[ s -
— dx converges,  Fe—
1 X =

18

1
SO 2 converges.

n=1
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What's the Difference?

% decreases faster than %

2k
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Example

o0
For what values of p does the series, > # converge?
n=1

f(x)= le is continuous, positive, and decreasing if p > 0;
> 1

SO / —pdx converges if p > 1; diverges otherwise.
1 X

Therefore,

L converges for p > 1 by Integral Test;

nP

18

1

n

diverges for 0 < p < 1 by Integral Test;
diverges for p < 0 by the Divergence Test.
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P-Series Test

o0
> % converges for p > 1; diverges otherwise.
n=1
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Note

As with all series, convergence depends only on behavior of the
"tail”.
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Examples

Determine if the following series converge or diverge.

1
e

18

3
I
w

8
:l —
d

S
I
[y

S
1 []8
[y
S
J>\»—A|H
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Try It

Show whether the following series converge or diverge. Pay careful
attention to notation. Justify all steps.

o
£ 2 o
0

1 2
annn Zn2n—+5 anL—i—S

n—=
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11.4 The Comparison Tests
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Introduction

o0

11 | -
For sz, —= behaves like -~ when n is large. Suspect
n=

divergence.

o0
1 1 a1 ;
For 2_: 10 o1 behaves like 5; when n is large. Suspect

n=
convergence.
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Comparison Test

Suppose that there exists M > 0 such that 0 < a, < b, for n > M.
i) If Y by, is convergent, then > a, is also convergent.

i) If >~ a, is divergent, then > b, is also divergent.

Note:

1) Both series must have non-negative terms.

2) We only compare two series that converge or two series that
diverge.
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Example

0<a,<b,forall n>2

> ap is a divergent p-series, p=1 %1

. Y by is divergent by CT(Comparison Test)
n=2
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Steps

1) ldentify series to compare to.

2

)

) Check criteria.
3) Execute test.
)
)

4) Show convergence results for comparison series.

5) State conclusion.

Repeat Example

= 1

> w1

n=2

0= kit =y
0<a,<b,forall n>2

> ap is a divergent p-series, p =1 % 1

. Y by is divergent by CT(Comparison Test)
n=2
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Example 2

21
HZ::Z 57T

—

b = 3

dn = 217

0<a,<b,foralln>1

> b, is a convergent geometric series,

r=3%<1

(0.9}
. > ap is convergent by CT(Comparison Test)
n=2

65 / 191

Example 3

00
cos? n
n3
n=1

Ogcos#ggforalln

n3
> % is a convergent p-series, p =3 > 1
X cos2n - :
. > == is convergent by CT(Comparison Test)

n=1
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Example 4

(0. @)
1 1 1
For 23 ——, suspect convergence, but - £ .
n—

What to do?
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Limit Comparison Test

Suppose that > a, and > b, are series with positive terms. If

) dn
im — =c¢
n—oo b,

where c is a finite number and ¢ > 0, then either both series
converge or both diverge.
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Return to Example 4

. Y. — is convergent by LCT (Limit Comparison Test)

69 / 191

Example 5

Z n —|—99n+3
3m+n2—n—1

n>+499n+3 n? _ 1
Compare 37537 to 3 3n

3n34+n2—n—1 n3

S35 0 and L >0

3m3+n?>—n—1
n’>+99n+3 3 2
_ O — .30 +297n"+9n
lim M = | > 1 (finite and not 0)
n—00 3 n—oo 3m3 4+ n2—n—1

+ is a divergent p-series, p=1 % 1

o
5 —3”2+99”+El is divergent by LCT (Limit Comparison Test)

n3+n2—n
n=
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Try It
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11.5 Alternating Series and Absolute Convergence
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Recap

All of these tests require positive terms:
Integral Test

P-Series Test

Comparison Test

Limit Comparison Test

Sn
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What [f?

What if the terms are not positive?

Examples:

1 1 1 1
() =-1-3-i-i--

What if the terms are alternating in sign?

Examples:
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Example
o 11 "’
e
> (1)
n=1
nl| an S 2 .
1] 1 1 —,
1 1 _ 1
21 =3| 1=3=3
1 1,1_5 .
31 3| 2t3=5%
1 5 1 _ 7 s
S S B e Sl : :
1 7 1 47 3
| 5 |zt5=w :
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Alternating Series Test

If Z(—l)”_lbn:b1—b2+b3—b4+b5—"',
n=1

with b, > 0,

satisfies

|) bn—l—l S bn
i) lim b, =0 for all n

n—o0
then the series is convergent.

(by is the absolute value of the series term.)
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Note

The Alternating Series Test (AST) is a test for convergence only.
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Example

> (-1)r 1L

n=1

by = |(=1)""7 = 5

n

bni1 < by, (717 < 7), for all n

lim b, =0, (lim £ =0)

n

n—oo n—oo
e 11
ho11 -
> (—1)"7"= is convergent by the AST
n=1
Example 2
S 1,1 1 1
COoSs N
2 — 3 T8 " i8tT3mT
n=1
_ cosnm __ (—1)"
dn 2n2 T 2n2
_ 1
bp = [an| = 52

bny1 < by for all n, (2(n}r1)2 < L)

lim b, =0

n—oo

oo
COs nm

2n?

is convergent by the AST

n=1
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Example 3

o0

For 3 (—1)"e(

n=1

S

)

ap = (—1)”e% b, = |an| = en

Decreasing?

f(x) = et)

f'(x) = —%e(i), (negative for all x in domain)

bnt1 < by, for all nin [1,00)

im b, = lim e(s) =1

n—00 n—oo

lim (—1)”e% #0  (does not exist)

n—o0

> (—1)”e% is divergent by Divergence Test. (Remember that
n=1

AST is a convergence test only.)
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Alternating Series Estimation Theorem

xO

If s= > (~1)""1b,, where b, > 0, is the sum of an alternating
n=1

series that satisfies

|) bn—l—l < bn

i) lim b, =0 forall n
n—o0o

then |Ey| = |s — sp| < bt

where |E,| is the magnitude of the error in the estimate.
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Interpretation

If we use s, to estimate the sum, s, of an alternating series that
converges by AST, then |error| is less than the magnitude of the
first term that is left out of the estimated sum.

Sn

r|=
Il
[ ]

N =
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Estimation Example

o0
For > (—1)""*1, what is the maximum error if 5 terms are used

n=1
to approximation the sum?

_q_ 1.1 1,1 1., .
smss—l-b+1-1+1 lemor| < by

s~ 0.783, |error| < ¢ =0.166
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Try It

How large should n be (how many terms) to insure that

0.0}
lerror| < 0.01, where s, is used to approximate > (—1)
n=1

n—-11
L]
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Definition

A series ) a, is absolutely convergent if the series of absolute
values > |a,| is convergent.

A series > a, is conditionally convergent if > a, is convergent,
but > |a,| is divergent.
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Examples

0.}

> (~1)"11is conditionally convergent
n=1

oo
> (—1)”_1% is absolutely convergent
n=1
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Theorem

Absolute convergence implies convergence.
(If > |an| converges, then > a, converges.)

We can test for absolute convergence, using the tests that require
positive terms.
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Example

(0.0}

> C‘:TSQ”: Not alternating and not positive for all n; therefore CT,
n=1

LCT, Integral Test are not options. (but suspect convergence)

cosn
n2

dnp =

| cos n|

an| =
lan -

la,| < <, positive terms
n

> % is convergent p-series, p =2 > 1

> lan| is convergent by CT so > a, is absolutely convergent (and
therefore convergent).
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Try It

Show whether these series are absolutely convergent, conditionally
convergent, or divergent.

1) (1)L
2) (1)

3) X(-1)"%%
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Quiz

Absolutely Convergent (A), conditionally convergent (C), or

Divergent (D)?

Quiz

0.0}
For what values of p does the series, »_ (—1)

A)p=>0
B) p>0
C)p>1

D)p>1
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n—11

“5, converge?

n=1
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Quiz

oo
For what values of p is the series, > (—1)""!-L absolutely

n=1
convergent?

A)p>0
B)p>0
CQ)p>1

D)p>1
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Quiz

oo

For what values of p is the series, Zl(—l)”_lﬁ, conditionally
n=

convergent?

A)p>0
B)0<p<l1
C)0<p<l1

D)p>1
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11.6 The Ratio Test & Root Test
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Ratio Test

i) If lim |22 = [ <1, then ) a, is absolutely convergent.

n—o0
. . ant1| : antl| __ i
) If Iim |22 =L >1or lim |Z| = oo, then a, is
? n— 00 | an | n— 00 | an | Z n
divergent.

i) If lim [222] =1, then the Ratio Test is inconclusive.( The
n—oo  9n

series may be convergent or divergent.)
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When to Use

Use the Ratio Test when there is a factorial in the series terms or
when there is a combination of geometric and power factors.
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Example
oo
3n . 3n . 3n . 3n+1
For T dn = T |an| = I |an—i—1’ = (1)1
n=1
|an+1 _ 3ot
an |~ (n+1)! 3n
- 3n+1 n!
= 3 X (ar1)
_ 3
~ n+1

lim [*2 =0 < 1

n—o0

> ap is absolutely convergent by the Ratio Test( and therefore
convergent).
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Example

o0

n_e" _ n_e" _ e _ el
For Zl(_l) 1001 dn = (-1) 100 1 an| = 100 1 |ant1| = (nr1)10
n=

amp1| et 100
250 = (i x 28

_entl 7100

= “en X (np1)i

— n_ 100

o e( n+1)

lim [ =e > 1
n—oo  9n

> ap is divergent by the Ratio Test.
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Example
For 2_314(%)”, ap = 4(%)”
|an+1 _ 4(%)n+1
an 17 4(3)"
2
=2<1

> ap is convergent by Ratio Test, but Geometric Series Test is
faster.
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Example

0 2 2

n _ _n
For Zl m+3n' 90 = B13n
n—

|21 | = (n+1)? « M43n
an ' 7 (n+1)343(n+1) n?

_ (n—l—l )2 x n3+3n

— \on (n+1)3+3(n+1)
lim |22 =1
n—>oo| an |

The Ratio Test is inconclusive.
The Ratio Test is inconclusive when the series is like a p-series.

Use LCT to prove that the series is divergent.

101 / 191

Root Test

i) If lim {/|]ap| =L <1, then > a, is absolutely convergent.

n—o0
i) If nIi_)mOO |lan|=L>1or nIi_)moo /|lan| = o0, then > a, is
divergent.

iii) If lim {/|ap| =1, then the Root Test is inconclusive.( The

n—o0
series may be convergent or divergent.)
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When to Use

Use the Root Test for a series with terms of the form,

|lan| = [f(n)]", so that {/|a,| = f(n).

103 / 191

Example

v |an| = %

im L =0<1

n—oo N

> a, is absolutely convergent by the Root Test (and therefore
convergent).
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Example

o0

For > (=1)"(z257)" an = (=1)"(57757)"

n=1

|an| = (2,,11)"

n/‘an‘ — ﬁ

. n_ _ 1
A, 2ns1 = 2 <1

> a, is absolutely convergent by the Root Test (and therefore
convergent).

Example

Sl =3 > 1

105 / 191

> ap is divergent by Root Test, but Geometric Series Test is faster.
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Try It

Test whether the following series are absolutely convergent,
conditionally convergent, or divergent.

3\n >, n s n_n
2, () > 2. ()"
n= n=1 n=1
O (_3)n-1 n®4" — n—1_n
nzzjl ((2,31)! | 52 ,;::1(_1) n?+1

11.8 Power Series
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Example

oo
SXT=14x+xT x4 X
n=0

Note: This is both a power series and a geometric series.
Convergent for |x| < 1

Interval of convergence: (—1,1)

1 Radius of convergence, R =1
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In General

Power Series in (x — a)
Power Series centered at a

Power Series about a

0.}
Scn(x—a)"=c+alx—a)ta(x—a)Y+--+cpx—a)"+---
n=0

(& ¢)
For o x"=1+x+x2+x3+ - +x"+ -
n=0

a=0; c, =1 (for all n)
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Example

OOx” x2 x3
S =l xS
n=0

Find the radius and interval of convergence.

a=0_0; cn:#

] n+1
Use the Ratio Test: \agjl\ = (|,)7(_|{_1)! X |>,<7\!"

_ X"t n!

X
£)
T
N

o IXIm

= |xI(71)

Example - Continued

22 = |x|(737)

lim |22t = 0 for all x
n—oo = 9n

Interval of convergence: (—o0, 00)

Radius of convergence, R = oo
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Example

iof"!(X—3)”:1+(x—3)+2!(x—3)2+3!(X_3)3...
n=0

Find the radius and interval of convergence:

|an+1| (n+1)!]x=3|"*
- nl|x—3|"
= (n+1)|x — 3]
lim [#22| = oo unless [x — 3| =0
n—o00

Interval of convergence: x =3

Radius of convergence, R =0 3
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Example

00
z_: n+1

Find the interval and radius of convergence:

|2ntL | = 3[x—2["* N+l
an | T n+2 3|x—2]n

_ 32t ngd
3|x—=2|" n+2

:|x—2|x%

lim 225 = |x — 2]
n—o0
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Example - Continued

im 2] — [y
fim 22| = |x 2|
Convergent for [x —2| < 1
Divergent for [x — 2| > 1

What about |x — 2| =17

Ratio Test is inconclusive. Use another test.
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Example - Continued
5 362" Checking |x — 2| = 1

= n+1

x—2=-1 x—2=1
o o

Z 3(—1)” Z 3
n=0 ntl n=0 ntl
Convergent Divergent

Series is convergent for —1 < x—-2<1;1<x>3

Interval of convergence: [1,3)

Radius of convergence, R =1 1
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Theorem

oo
For a given power series, > cp(x — a)”, there are only three

possibilities:

n=0

i) The series converges only when x = a.

ii) The series converges for all x.

iii) There is a positive number, R, such that the series converges if
|x — a| < R and diverges if |[x —a| > R.
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Summarize
Series Radius of Convergence | Interval of Convergence
> x" R=1 (-1,1)
n=0
Z ):7_,: R = o0 (—OO, OO)
n=0
> nl(x — R=0 x =3
n=0
X 3(x—2)"
> A5 R=1 1,3)
n—
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Interpret

The possible intervals of convergence for a power series centered at

oo
a, Y. cp(x —a)", are:

n=0

X =a

(a—R,a+ R]

[a— R,a+ R)

[a— R,a+ R]

(a—R,a+ R)

(—OO, OO)
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Try It 1

i 10"(x2—1)"

n=1 ;

Find the radius and interval of convergence.

120 / 191



Try It 2

i (4x+1)"
n
n=1

Find the radius and interval of convergence.

Try It 3

o0 oo
If > bp8" is convergent and > b,10" is divergent, then what

n=0
about

S by2"
n=0

S bo(—2)"
n=0

oo

2 bn(=8)"

n=0

n=0

S by(—10)"
n=0

S b,ll”
n=0

121 / 191
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Try It 1 Solution 1

an+1| 10n+1|X_1|n+1 n2
| - 2 X n n
an (n+1) 107|x—1|
. 10n+1 n2 |X_]_|n+1

107 X ()2 X k=1

= 10(#)2& — 1]
lim |ag_:1| = 10|x — 1

n—o00
Series is convergent for 10|x — 1| <1 OR |x — 1| < 15
Series is divergent for 10|x — 1| > 1 OR |x — 1| > 1=

=1
R= 15
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Try It 1 Solution 2

Check 10[x — 1| =1 OR |x — 1| = = (Ratio test inconclusive.)

This corresponds to x — 1 = —% AND x—1 = %
(That is, x = 75 AND x = 15)

For x = 5 For x = I

0 (1) 50

Z (n2) Z %

n=1 n=1

Convergent Divergent

19 11 1
I=l% 0] R=1
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Try It 2 Solution 1

o 1 1 1n+1
: A"(x+3)" jappa _ A" Ix+gl n
Rewrite as ) —— 4=, |=2| = e 27 xt 1]
n=1 4
! n |X4—%]"+1
an X n+1 |X+Ll1|n
_ n 1
= 4()Ix + 7l

H dn _ 1
lim |22 = 4l + ]
Series is convergent for 4|x + 2| <1 OR |x + | < %
Series is divergent for 4|x + %| >10R |x+ %| > %

_ 1
R=73
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Try It 2 Solution 2

Check 4|x + 7| =1 OR |x + 1| = 7 (Ratio test inconclusive.)
This corresponds to x + }1 = —% AND x + % — %

(Thatis, x = —3 AND x = 0)

For x = —3 For x =10
(0.8} (0.0}

—1)" 1
S ( n) S 1
n=1 n=1
Convergent Divergent

/:[—%,0), R:%
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Try It 3 Solutions

o0 oo

If > b,8" is convergent and > b,10" is divergent, then what
n=0 n=0

about

S by2" C S by(—10)" ?
n=0 n=0

S by(—2)" C S b1l D
n=0 n=0

(0.}

2 bn(=8)" !

n=0
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11.9 Representations of Functions
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Geometric Power Series

Lt x+x2+x3 4 x4 = L if [x] < 1
0

=l x4 X = 2 X" if x| <1
n=

What does it mean that a function is equal to a series?
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Substitution

We find more functions with power series representations by
substitution into a known function and associated power series:

0 o
= L () = =1+
n=0 n=0

Then use substitution to find interval of convergence:
X% < 1

x| <1
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More Substitution

o
1 1
I+2x — 1-(—2x) > (=2x)"
n=0
o
—1+12X = > (=1)"2"x" for | — 2x| < 1 or |x| < %
n=0
131 / 191
Multiplication

We find more functions with power series representations by
multiplying a known function and associated power series by a

constant or by a power of x. This does not affect the interval of
convergence.

0 o
= =5()=5> x"= > 5x" for |x| < 1
n=0 n=0

—

00 00
£ =) = x5 0= 50 or o] <1
n=0 n=0

132 / 191



Multiplication and Substitution

o0
1 _ 1 _1 _1

3—x — 3(1-3) — §(1—§) — 3 n:o(g)n

oo
ﬁ = Zo 3,,1+1x" for [3] <1 or [x| <3

n—=

133 / 191
Try It 1

Find power series representations for the following functions, and
determine the interval of convergence:

1 _r
1—-8x3 243x
3 2x3
2—5x 1—x2
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Theorem

If the power series, >  c,(x — a)", has radius of convergence,

n=0
R > 0, then the function, f(x) = > c,(x — a)",is differentiable,
n=0

and therefore continuous, on the interval (a — R,a+ R) and
) f'(x) = nca(x — a)™ !

n=1

xX— a)n+1

) [ f(x dX_C—I—ECn i

The radii of convergence of the power series in equations i) and ii)
are also R, but the interval of convergence might be different from
that of the original power series.
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Interpretation

Power series representations of functions can be integrated or
differentiated term by term to yield power series for other functions
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Differentiation Example

=1+ x+x2+x34+ X"+ R=1,1=(-1,1)
d(ﬁ)_l 2 2 n—1 —
=1+ 2x+ 3+ X"+ R=1
—(1—1x)2 =Y nx""1 =S (n+1)x", R=1

n=1 n=0
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Integration Example

2 =ltx+x2+ 3+ x"+. R=1,1=(-1,1)

L

Xn+1

oo
n=0

Now find C...
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Integration Example Cont.

Xn+1

n=0

Substitute x = 0:

~l-0=C+ Y %7
n=0

0=C+0

C=0

So, In|l—x|=3 - R=1

n=0

139 / 101

Integration Example Cont.

What about endpoints?

At x = —1: At x = 1:
i_@w“ §_1
=5 n+1 =5 n+1
Series is convergent. Series is divergent.

Interval of convergence for series is [—1,1) but series is only
guaranteed to be equal to the function within R, (—1,1).

It can be shown that the series converges to the function for x in
[—1,1).
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Note

o0

In(1—x)= > —%" on[-1,1)

n=0

n
Also, In(1 —x) ~ > —
i=0

i+l
i+1

Example

Find a series representation for In(2/3).

aS n+1
In(1 —x) = > -5+, R=1

n=0 nt
o0 (l)n+1
-3 =35 -G

for x close to O.

141 / 191

142 / 191



Example

o
What is the sum of the convergent series: > (—1)”+1%
n=1

Solution:

i SED In(1 —(—1)) (Plug in x = —1.)

> CEU™ —n2
n
143 / 191

Quiz 1

_ R (Lo
Find the sum of the series nz::O —4
A) —In(1/4)

B) In(1/4)

C) In(3/4)
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Quiz 2

Find the sum of the series nzzjo(—l)”+1—5n+1(ln+1)

A) In(4/5)
B) In(6/5)
C) In(5/6)
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Example

Find a power series representation for tan™! x

First, find a power series representation for —

1+x2
T :i(_xz)n
1+x 1—(—x?) =
1 — —1)" 2n
e = 2 (=1)"x
n=0

Then, integrate to find power series representation for tan™! x
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Example Cont.

tan 1 x = C+IT1X2dX
O (S (C1)m)d = € (1 x4 X XY
n=0

—1 a nX2n+1 X3 X5 X7
tan x:C—l—ZO(—l) 2n+1:C+X_?+F_7+"'
n—

Solve for C using x = 0:
tan_10:C+0_§+%_0_77_|_...

C=0
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Example Cont.

oo

tan~lx = 20(—1)@?;, R=1

Note: It can be proven that this series converges to the function
within the interval [-1,1]. Thus

_ 0 2n+1
tan~11 = zo(—l)";n+1
n—=

=
I
D
—~
|—l
|
W=
_|_
&1
|
~N|=
+
N
I
N
|
Wl
+
ol
|
~Ni
+
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Try It 2

~N|

ol

wis

_|_

T=4—

How many terms need to be added to approximate 7 to within
0.0017
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Quiz

0 \/—2n+1
Find the sum of the series > (—D”W
n=0

A) No sum (divergent)

B)

ol

C)

wly
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Try It 1 Solutions

O
e = 2 873" 1 =(=3,3)
n=0
3 5
ﬁ - Z 2(n+1 x| = (_%7%)
1)73"
o = L S x| = (-%,3)

2x3 — Z 2X2n—|—3’l — (_1’ 1)
n=0
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Try It 2 Solution

o0
_ (=1)"4
™= 2n+1

n=0

Find the term that has a magnitude of less than or equal to 0.001.
That will be the error term.

For what values of n is 2n‘f|_1 < 10100?
2n+ 1 > 4000

2n > 3999

n > 1999.5

n > 2000

So, the n = 2000 term will be the error term. Include terms 0
through 1999. That is 2000 terms.

S
~ 2n+1
n=0
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11.10 Taylor and Maclaurin Series

153 / 101

Other Functions

How can we find power series representations for functions that are
not related to ﬁ?

Answer: Use Taylor or MacLaurin Series.
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Theorem

If a function, f(x), has a power series about a, then the series will
have the form,

T@%:Z%%Q—aVWMmcm:ﬂ%ﬂ

This is a Taylor Series.

If a = 0, then the series is also known as a Maclaurin Series.
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Why?

If f(x) = T(x), then all derivatives should be equal at a.

f(x)=T(x) = co+ci(x —a) + ca(x — a)2 + c3(x — a)3 + - --
f(a) = T(a) = f(a) = a
T'(x) = c1 + 2¢(x — a) + 3ca(x — )2 + 4ca(x — a)3 + - --
fllay=T'(a) = f'(a) =
T'(x) =2c+3-2c3(x —a) +4-3cs(x —a)?> +---
f(a)=T"(a) = f'(a) =20 — ca = =32

2
TO(x)=3-2c3+4-3-2c4(x—a)+ - --

f(3)(a)

f(3)(a) = T(3)(a) — f(3)(a) =323 > 3= 55
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Coefficients

co = f(a)

c1 = f'(a)
)
3 = f(zga)

In general, ¢, =

These are the coefficients that insure that the derivatives of T(x)

(1 (a)

n!

and of f(x) at a are equal. Finding a Taylor/Maclaurin Series for a

function is a matter of finding these coefficients.

Example

Find the Maclaurin series for f(x) = e~

Solution:

T(x)= > cpx”
n=0

Now find coefficients...

n | f(M(x) | £F("(0)

0 e* 1

1 eX 1 1
2| & 1 5
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Theorem

Let | = (a— R,a+ R), where R > 0. Suppose there exists K > 0
such that all derivatives of f are bounded by K on [:

f)(x)] < K forall i >0and x €/

Then f(x) is represented by its Taylor series in /:

fx) = S 2@ (x — ) for all x € |
n=0
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Radius of Convergence

f(x) =¢e"

f(”)(x) = ¥

Forall R >0, |[f()(x)] < e?*R for x € (a— R,a+ R)
Use K = e?*F

T(x) converges to f(x) for all x € (a— R,a+ R)

Since R is arbitrary, T(x) converges to f(x) for all x.
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Summary
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Interpretation

o0
e = T(x) = Z%:1+X+X72+§—T+--- for all x
n=0 .
n .
ex%Tn(X):Zf,_!’:l+x+x72+§—?+---+’;—?forxclosetoO
i=0
f(x) = e~
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Interpretation Cont.
= 17 1,1
n=0

ex~1l4+1=2

e~14+14+1=25

e~1+1+1 +6 2.6

The more terms that are included, the better the approximation.

163 / 101
Quiz

Use substitution and multiplication to find the Maclaurin series for
f(x) = x2e=>

)Z(S)nn+2
)Z(S)nZn

C) > =2

n=0
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Quiz

f(x) = x?e™>x
Find £(25)(0)
A) 0

B) 25

C) =55

165 / 101

Maclaurin Series for cos(x)

i i )
i | FOx) | F0) | =52
0| cosx 1 1
1| —sinx 0 0
2 | —cosx -1 _71
3 sin x 0 0
1
4 COoS X 1 a
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Coefficients for cos(x)

cosx:l—i—O—%X2+0+%x4+0+...
cosx =1—2x%+ Zx* + .-

Note that the Taylor series includes only even terms, so it is an
even function, just as cos x is an even function. It can be shown
that R = oo.
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Graphical Interpretation

The partial sums are Taylor Polynomials.

|
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Example

oo

cos(0.01) = z_:o(_l)n(O(.gs))fn 1 (0.(;1)2 1 (0.2!1)4 B (0.2!1)6 .

cos(0.01) =~ Ty(0.01) =1
cos(0.01) &~ T»(0.01) =1 — (&9 — 99995

cos(0.01) ~ T4(0.01) = 1 — (@O | (00D* _ 9999500004
2 24

Using T4(0.01), |error| < (O'g—!l)6 = 1.4 x 1071
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Quiz

Find the Maclaurin Series for f(x) = x? cos x>

A) T() = 3 (-1 iy

~—
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Quiz

If £(x) = x?cosx3, find £(43)(0)
A) 731
B) — 2

C) 0
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Example

Find the Maclaurin Series for sin(x):

Solution: Instead of starting from scratch, we will use
differentiation.

Now, differentiate...
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Example Cont.

n=0
- n 1 n—
:Z(—l) (2n)|(2n)X2 !
n=1 ’
> 2n—1
=Y (-1
pt (2n — 1)!
00 Lyt x2(n+1)—1
=2 Gy S
—sin _i(_ )n+1 X2n+1
T L (2n+1)!
e~ 2n+1

Summarize

}:x R=1 (-1,1)

o0

n(1 — x) E:—n+1 R=1 [-1,1)

) o0 X2n—i—1
tan”T  x = —1)" R=1 1,1
>3 [-1.1)
X = Xn
n=0

cosx = » (—1)" = 00

pr (2n)!

o0 . X2n+1
sz:;)(— ) Gn 1 1)1 R =
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Try It 1

Find the sum of the following series:

0 2n+1

> (-1)" wi ey
X 52

o

n—=

o0 2n—|—2

Z 32n+1(2n

Try It 1 Solution

Find the sum of the following series:

S n 20+l .
> (1) W _Sm(z) = 4

n=

2n 2
z 2n—| —_— e(2 ) —_— e4
n=0
i‘é 2n-|—2 B 7]__2 i‘é (_1)n(ﬂ_)2n B 7T_2cos£
32n+1(2n T3 4 el T3 3
n=0 n=

=2
6
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Applications of Taylor Polynomials
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Linear Approximation

We know that we can approximate a function, y = f(x), near
x = a, by finding an equation for the line tangent to the curve at
X = a.

L(x) = f(a) + f'(a)(x — a)

This linearization has the same value and the same first derivative
at x = a as the function, y = f(x).
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Linearization

If L(x) = f(a)+ f'(a)(x — a),
then L(a) = f(a) and L'(a) = f'(a).
Same value, same slope.

Also, f(x) = L(x) near x = a.
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Example
If f(x) = Inx, then f(1) =0, f'(x) = %, and f/(1) =1

Same value, same slope at x = 1.

L(x) ~ f(x) near x = 1. " -
£(0.9) = —0.100000 /

£(0.9) = —0.105361

(X}
Lad
s
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Improve?

Can we make a better approximation by making a quadratic
function, Q(x), such that

Q(a) = £(a)
and Q"(a) = f"(a)?7?

Yes.
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Quadratic Approximation

If f(x) = Inx, then Q(x) =0+ 1(x — 1) — 3(x — 1)?
or Q(x) =x—1—3(x—1)>

Compare derivatives:

f(x)=Inx Q(x) =x—1—3(x—1)?
f(1)=0 Q(l)=0

fl(x)=1 Q(x)=1—(x—-1)
fl(1)=1 Q'(1)=1

f(x) = —% Q' (x) = -1

(1) = -1 Q'(1)=-1
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Continued

N Q(x) =~ f(x) near x =1

S > 3\4' Compare:
- L(0.9) = —0.100000

Q(0.9) = —0.105000
£(0.9) = —0.105361

] |error| ~ 0.000361
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Improvement?

Can we improve this approximation by making a polynomial of
degree n, such that the derivatives of the polynomial and the
function agree at x = a through the n'" derivative?

Yes. This is the Taylor polynomial of degree n.
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Taylor Polynomial

The Taylor Polynomial approximation of degree n for the function
f(x), near x = a, is
To(x)=c+calx—a)+alx—a)P+a(x—a)+-- +cy(x—a)"

where ¢, = fn(!a), and these are the coefficients that make the

derivatives agree.

The Taylor polynomial is a partial sum of the Taylor series.
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Requirements

f(x) is defined on an open interval, /.
All derivatives, f(K)(x), exist on /.

acl
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Error Bound Theorem

Assume that f("*1)(x) exists and is continuous. Let M be a
number such that [f("*1(u)| < M for all u between a and x, then

B x — a|"tl
Rale)] = ) = Talo)] < M2

where T,(x) is the nth Taylor polynomial centered at x = a.
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Estimation Example 1

If 72(0.9) is used to approximate In(0.9), what does the error
bound formula guarantee?

Solution:
To(x) = x — 1 — 3(x — 1) (centered at a = 1)

Find M:
f(3)(X) — %

1FG)(u)] = % < ﬁ for u between 1 and 0.9
0

so M = —288
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Solution - Continued

_113
£(0.9) — T5(0.9)] < XR02H
lerror| < 93—1*3 = 0.000457
We found that |error| ~ 0.000361.

0.000361 < 0.000457
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Estimation Example 2

Now, if a Maclaurin polynomial is to be used to approximate
sin(0.02) to within 107, how many terms must be included?

Solution:
. S n x2ntl
sin(x) = 20(—1) DT

This is an alternating series so use the alternating series estimation
theorem.

sin(x):x—’é—TJr’g—?—---

sin(0.02) = 0.02 — 292° 0022 _ .

—002—-13x10°%+26x10711 ...

Two terms needed.

sin(0.02) ~ 0.0199986,  |error| < 2.6 x 10711

190 / 191



Estimation Example 3

Approximate f00'3
polynomial.

Solution

[eron 0[5
L

e~ dx with |error| < 0.00001 using a Taylor

= 1—x2+
3
= -5+
_ - 0.3%
=103 - &
~03— 93 4
3

03
/ e X dx =~ 0.291243
0
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