Chapter 10: Parametric Equations and Polar Coordinates

Stacie Pisano University of Virginia

November 24, 2023

1 / 114

10.1 Curves Defined by Parametric Equations

Parametric Equations

$$x = f(t)$$
$$y = g(t)$$

Set of parametric equations for a plane curve.

x and y are defined in terms of a common parameter, t.

Plane curve spans all points with coordinates (f(t), g(t)) for all values of t in the domain.

3 / 114

Example $x = \cos t$ $y = \sin t$ $0 \le t \le 2\pi$ Curve has a direction. Equivalent Cartesian equation: $x^{2} + y^{2} = 1$

4 / 114

Sketch

5 / 114

Alternative Parameterization

$$x = (t+1)^2$$

y = t + 1

Note that $x = y^2$ as before.

Same points are included as before, but the points are traced differently.

Try It 1

Sketch the curve defined by the parametric equations:

$$x = \cos^2 t$$
$$y = \cos t$$

 $0 \le t \le 4\pi$

Example

Draw the parametric curve:

$$y = 3 + \sin t$$

 $0 \le t \le 2\pi$

Alternative

Example

Alternative

11 / 114

Try It 2

Draw the parametric curve:

$$x = e^t$$
$$y = e^{-t}$$

Ellipse

Parameterize the following ellipse:

Ellipse Example Solution

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

Use Pythagorean Theorem:

$$\frac{x^2}{25} = \cos^2 t$$
$$\frac{y^2}{9} = \sin^2 t$$

Then:

 $x = 5\cos t$ $y = 3\sin t$

 $0 < t < 2\pi$

Cycloid – a curve traced by a point on a circle as the circle rolls on a straight horizontal line.

Cycloid - Continued

 $\boldsymbol{\theta}$ is the parameter. "r" is a constant.

x = |OT| - |PQ| $|OT| = r\theta$ $|PQ| = r \sin \theta$ $x = r\theta - r \sin \theta$ y = |CT| - |CQ||CT| = r $|CQ| = r \cos \theta$ $y = r - r \cos \theta$

Graph of Cycloid

Quiz

Which set of parametric equations corresponds to the figure? A) $x = \sin t$ y = -tB) $x = t^2 - 9$ $y = -t^3 + 8t$ C) x = 1 - t $y = t^2 - 9$ y = 3 - t

Quiz

Which set of parametric equations corresponds to the figure?

Quiz

Which set of parametric equations corresponds to the figure?

A) $x = \sin t$ y = -tB) $x = t^2 - 9$ $y = -t^3 + 8t$ C) x = 1 - t $y = t^2 - 9$ D) x = 2t + 4y = 3 - t

Quiz

Which set of parametric equations corresponds to the figure?

21 / 114

Try It 1 Solution

All points of the parametric curve lie on the curve, $x = y^2$, but $0 \le x \le 1$ and $-1 \le y \le 1$. The curve is traversed 4 times, twice in each direction, between t = 0 and $t = \pi$

22 / 114

Try It 2 Solution

The parametric curve lies on $y = \frac{1}{x}$, but x > 0, and y > 0.

10.2 Calculus with Parametric Curves

How Parametric Equations Can Help

25 / 114

First Derivative

If
$$x = f(t)$$
, and $y = g(t)$,
 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$, if $\frac{dx}{dt} \neq 0$

Horizontal tangents occur when $\frac{dy}{dt} = 0$, $\frac{dx}{dt} \neq 0$ Vertical tangents occur when $\frac{dx}{dt} = 0$, $\frac{dy}{dt} \neq 0$

Example

 $x = \cos t$ $y = \sin t$ у $t = \frac{\pi}{2}$ $\frac{dy}{dx} = \frac{\cos t}{-\sin t} = -\cot t$ 0.5-Horizontal tangent: $\cos t = 0$ at $t = \frac{\pi}{2}, \frac{3\pi}{2}$ -0.5 0.5 0 $t = \pi$ $-\sin t \neq 0$ at $t = \frac{\pi}{2}, \frac{3\pi}{2}$ -0.5 Vertical tangent: $-\sin t = 0$ at $t = 0, \pi$ $t = \frac{3\pi}{2}$ $\cos t
eq 0$ at $t = 0, \pi$

27 / 114

= 0

x

Try It 1

For $x = \cos t$, $y = \sin t$, find an equation of the tangent line at $t = \frac{\pi}{6}$.

Second Derivative

$$\frac{d^2 y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{d(y')}{dx}$$
$$\frac{d^2 y}{dx^2} = \frac{\frac{d\left(\frac{dy}{dx}\right)}{dt}}{\frac{dx}{dt}} = \frac{\frac{d(y')}{dt}}{\frac{dx}{dt}}$$

29 / 114

Example

 $x = \cos t$ $y = \sin t$ $x = \cos t$ $\frac{dy}{dx} = y' = -\cot t$ $\frac{d^2y}{dx^2} = \frac{d(\frac{dy}{dx})}{dx} = \frac{\frac{d(\frac{dy}{dx})}{dt}}{\frac{dt}{dt}} = \frac{\frac{d(y')}{dt}}{\frac{dt}{dt}} = \frac{\csc^2 t}{-\sin t} = \frac{-1}{\sin^3 t}$

Example - Continued

$$\frac{d^2y}{dx^2} = \frac{-1}{\sin^3 t}$$

Concave down when $\sin t > 0$, $0 < t < \pi$

Concave up when $\sin t < 0$, $\pi < t < 2\pi$

Quiz

Compute
$$\frac{d^2y}{dx^2}$$
 for the parametric curve, $x = t^3$, $y = t^2 - 1$.
A) $\frac{-2}{9t^4}$
B) $\frac{4}{9t^2}$
C) $\frac{1}{3t}$

Arc Length

$$ds = \sqrt{1 + (\frac{dy}{dx})^2} dx$$

If $x = f(t)$ and $y = g(t)$, $\alpha \le t \le \beta$
then
$$ds = \sqrt{1 + (\frac{\frac{dy}{dt}}{\frac{dx}{dt}})^2} \frac{dx}{dt} dt$$

$$ds = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$$

$$L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$$

Requirements: f' and g' are continuous on $[\alpha, \beta]$ and the curve is traversed only once as t increases from α to β .

33 / 114

Example

$$x = \cos t$$

$$y = \sin t$$

$$0 \le t \le 2\pi$$

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$L = \int_{0}^{2\pi} \sqrt{\sin^2 t + \cos^2 t} dt$$

$$= \int_{0}^{2\pi} dt$$

$$= 2\pi$$

Surface Area

Still only one formula:

$$S = \int 2\pi r ds$$

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$r = y = g(t) \text{ for revolution about x-axis}$$

$$r = x = f(t) \text{ for revolution about y-axis}$$

Example

Find the area of the surface generated by revolving the following curve about the x-axis.

Quiz

Which of the following integrals will correctly compute the area of the surface generated by rotating the curve, $x = t^3$, $y = t^2 - 1$, $0 \le t \le 1$, around the x-axis?

A)
$$S = \int_0^1 2\pi t^4 \sqrt{9t^2 + 4} dt$$

B) $S = \int_0^1 2\pi (t^3 - t) \sqrt{9t^2 + 4} dt$
C) $S = \int_0^1 2\pi (t^2 - 1) \sqrt{9t^2 + 4} dt$

Try It 2

Find the length of the astroid defined by

$$y = 2\sin^3\theta$$

 $0 \le \theta \le 2\pi$

Distance

If x = f(t) and y = g(t) give the position of a particle as a function of t, time, then the distance travelled by the particle from the starting time, t_0 , until time, t, is given by

 $s(t) = \int_{t_0}^t \sqrt{(f'(u))^2 + (g'(u))^2} du$

39 / 114

Speed

If x = f(t) and y = g(t) give the position of a particle as a function of t, time, then the speed of the particle is

$$\frac{ds}{dt} = \sqrt{(f'(t))^2 + (g'(t))^2}$$

Try It 3

If a particle travels on the curve,

$$x = t$$
$$y = \frac{2}{3}t^{\frac{3}{2}}$$

for 8 seconds, starting at t = 0, what is the distance travelled? What is the displacement? What is the speed?

(All distances are in meters.)

Try It 1 Solution

To find the equation for any line, find a point and find the slope.

At
$$t = \frac{\pi}{6}$$
, $x = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$, and $y = \sin(\frac{\pi}{6}) = \frac{1}{2}$

The slope is $\frac{dy}{dx}|_{t=\frac{\pi}{6}}$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t}{-\sin t}$$

$$\frac{dy}{dx}|_{t=\frac{\pi}{6}}=-\sqrt{3}$$

Using point-slope form:

$$y - \frac{1}{2} = -\sqrt{3}(x - \frac{\sqrt{3}}{2})$$
 OR $y = -\sqrt{3}x + 2$

Try It 2 Solution

Using symmetry, find arc length for $0 \le \theta \le \frac{\pi}{2}$ and multiply by 4. $\frac{dx}{d\theta} = 6\cos^2\theta(-\sin\theta) \frac{dy}{d\theta} = 6\sin^2\theta(\cos\theta)$ $I = 4 \int_0^{\frac{\pi}{2}} \sqrt{36\cos^4\theta \sin^2\theta + \sin^4\theta \cos^2\theta} d\theta$ $I = 4 \int_0^{\frac{\pi}{2}} \sqrt{36\cos^2\theta \sin^2\theta(\cos^2\theta + \sin^2\theta)} d\theta$ $= 4 \int_0^{\frac{\pi}{2}} |6\cos\theta\sin\theta| d\theta$ $= 4 \int_0^{\frac{\pi}{2}} 6\cos\theta\sin\theta d\theta$ $= 24(\frac{\sin^2\theta}{2})|_0^{\frac{\pi}{2}}$ $I = \boxed{12}$

43 / 114

Try It 3 Solution 1

This curve is traversed only once between t = 0 and t = 8, so distance travelled is the same as arc length.

$$d = \int_0^8 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

= $\int_0^8 \sqrt{1 + (t^{\frac{1}{2}})^2} dt$
= $\int_0^8 \sqrt{1 + t} dt$
= $\frac{2}{3}(1 + t)^{\frac{3}{2}}|_0^8$
= $\frac{2}{3}(27 - 1)$
= $\frac{52}{3}$ m (distance)

Try It 3 Solution 2

The displacement is the length of the line segment from the starting point to the ending point:

$$I = \sqrt{8^2 + \left(\frac{32\sqrt{2}}{3}\right)^2}$$

Initial point: (0,0)
Terminal point: (8, $\frac{32\sqrt{2}}{3}$)
$$= \sqrt{\frac{576+2048}{9}}$$
$$= \sqrt{\frac{\sqrt{2624}}{9}}$$
(displacement)

45 / 114

Try It 3 Solution 3

The speed is
$$\frac{ds}{dt}$$
, computed at $t = 8$.

$$\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

$$= \sqrt{1 + \left(t^{\frac{1}{2}}\right)^2}$$

$$= \sqrt{1 + t}$$

$$\frac{ds}{dt}|_{t=8} = \sqrt{1 + 8}$$

$$= 3 \text{ m/s (speed at } t = 8)$$

10.3a Polar Coordinates

Definition

Polar coordinates can be used to locate a point in a plane:

Negative r

Relationship to (x, y)

Conversion Equations: $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$ $x = r \cos \theta$

 $y = r \sin \theta$

51 / 114

Quiz

What are the polar coordinates, (r, θ) , of the point indicated by the Cartesian coordinates (0, -3)?

Examples

Polar Equation	Rectangular Equivalent
<i>r</i> = 5	$x^2 + y^2 = 25$
$r\cos\theta=2$	<i>x</i> = 2
$r\sin\theta=3$	<i>y</i> = 3

53 / 114

Try It 1

Find polar equation for $x^2 + (y - 3)^2 = 9$

10.3b Limaçons

55 / 114

Drawing Polar Curves

Graph $r = \cos \theta$

First plot a few points...

Drawing Polar Curves - Cont

Technique

First graph $r = \cos \theta$ as a Cartesian equation.

Then transfer information to polar graph.

Example

59 / 114

Generalize

Limaçon

 $r = a + b \cos \theta$

OR

 $r = a + b \sin \theta$

61 / 114

Example

Example

Graph $r = 2 + \cos \theta$

63 / 114

Example

Example

Graph $r = 1 + 2 \sin \theta$

65 / 114

Limaçon Summary

Limaçon Summary Cont

 $r = a + b \cos \theta$ OR $r = a + b \sin \theta$

If a < b, there is a loop.

If a = b, the graph is a cardiod (with a cusp).

If b < a < 2b, there is a dimple in a simple, closed curve.

If a = 2b, there is a point of 0 curvature (flat spot) in a simple, closed curve.

If a > 2b, the simple, closed curve is convex.

67 / 114

Try It 2

Graph the polar curve, $r = 3 + 2\sin\theta$

Graph the polar curve, $r=2+4\sin\theta$

Quiz

Quiz

Which of the following polar equations matches the figure?

71 / 114

Try It 1 Solution

$$x^{2} + (y - 3)^{2} = 9$$

$$x^{2} + y^{2} - 6y + 9 = 9$$

$$(x^{2} + y^{2}) - 6y = 0$$

$$r^{2} - 6r \sin \theta = 0$$

$$r(r - 6 \sin \theta) = 0$$

$$r = 0 \text{ OR } r = 6 \sin \theta$$

$$r = 0 \text{ is redundant because the pole is included in } r = 6 \sin \theta$$

$$r = 6 \sin \theta$$
Try It 2 Solution

 $r = 3 + 2\sin\theta$

73 / 114

Try It 3 Solution

10.3c Roses

75 / 114

Rose

Roses have the form:

 $r = a \cos n\theta$

 OR

 $r = a \sin n\theta$

Example 1

Graph the polar curve $r = \sin 2\theta$.

77 / 114

Example 2

Example 3

Graph the polar curve $r = \sin 3\theta$.

79 / 114

Example 4

Summary

What is the rule???

81 / 114

Try It 1

Draw the polar curve $r = 3 \cos 2\theta$.

Quiz

Which figure is the graph of the polar curve $r = \sin 4\theta$?

Try It 1 Solution

 $r = 3\cos 2\theta$.

10.4 Areas and Lengths in Polar Coordinates

Polar to Parametric

A polar function, $r = f(\theta)$, can be written as a set of parametric equations in which θ is the parameter.

$$x = f(\theta) \cos \theta$$

$$y = f(\theta) \sin \theta$$

So, $r = 1 + \sin \theta$ can be written as

$$x = (1 + \sin \theta) \cos \theta$$

 $y = (1 + \sin \theta) \sin \theta$

Why would we want to write a polar function as a set of parametric equations?

Because we can then use the calculus formulas for parametric equations to compute slope, arc length, etc.

Example

Find the horizontal and vertical tangents of the polar curve, $r = 1 + \sin \theta$

Solution:

Start by writing the polar function as a set of parametric equations.

 $x = (1 + \sin \theta) \cos \theta$ $y = (1 + \sin \theta) \sin \theta$

Solution

 $y = (1 + \sin \theta) \sin \theta$ $\frac{dy}{d\theta} = \cos \theta \sin \theta + (1 + \sin \theta) \cos \theta$ $\frac{dy}{d\theta} = \cos \theta (1 + 2 \sin \theta)$ $\frac{dy}{d\theta} = 0 \text{ when } \cos \theta = 0$ or when $1 + 2 \sin \theta = 0$ $\frac{dy}{d\theta} = 0 \text{ when } \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$

$$\frac{dx}{d\theta} = \cos \theta \cos \theta + (1 + \sin \theta)(-\sin \theta)$$
$$\frac{dx}{d\theta} = \cos^2 \theta - \sin^2 \theta - \sin \theta$$
$$\frac{dx}{d\theta} = \cos 2\theta - \sin \theta$$
$$\frac{dx}{d\theta} = 0 \text{ when } \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$$

 $x = (1 + \sin \theta) \cos \theta$

Horizontal tangents at $\theta = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$ Vertical tangents at $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ What about $\theta = \frac{3\pi}{2}$?

89 / 114

Solution - Continued

Vertical cusp at $\theta = \frac{3\pi}{2}$

Quiz

The tip of one petal of the rose, $r = \sin 2\theta$, occurs at $\theta = \pi/4$. What is an equation of the line that is tangent to the polar curve at that point?

A)
$$y = -x + \sqrt{2}$$

B) $y = \frac{\sqrt{2}}{2}$
C) $y = x - \frac{\sqrt{2}}{2}$

91 / 114

Arc Length of Polar Curve

Start with parametric equations and parametric formula for arc length:

$$x = r \cos \theta, y = r \sin \theta, \text{ where } r = f(\theta),$$

$$ds = \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta$$

$$\frac{dx}{d\theta} = r' \cos \theta - r \sin \theta, \frac{dy}{d\theta} = r' \sin \theta + r \cos \theta$$

$$ds = \sqrt{(r' \cos \theta - r \sin \theta)^2 + (r' \sin \theta + r \cos \theta)^2} d\theta$$

$$ds = \sqrt{(r')^2 (\cos^2 \theta + \sin^2 \theta) + r^2 (\cos^2 \theta + \sin^2 \theta)} d\theta$$

$$ds = \sqrt{(r')^2 + r^2} d\theta$$

Arc Length of Polar Curve

$$s = \int_{lpha}^{eta} \sqrt{r^2 + (rac{dr}{d heta})^2} d heta$$

where $\alpha \leq \theta \leq \beta$

93 / 114

Example

Set up an integral to find the length of the inner loop of the polar curve, $r = \frac{1}{2} + \cos \theta$.

Solution:

Example - continued

$$s = \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} \sqrt{(\frac{1}{2} + \cos\theta)^2 + (-\sin\theta)^2} d\theta$$
$$= \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} \sqrt{\frac{1}{4} + \cos\theta + \cos^2\theta + \sin^2\theta} d\theta$$
$$= \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} \sqrt{\frac{5}{4} + \cos\theta} d\theta$$

05	/	11/	
95	/	114	

Quiz

Which integral computes the length of one loop of the polar curve, $r = 3 \sin 4\theta$?

A)
$$s = \int_0^{\frac{\pi}{4}} \sqrt{9\sin^2 4\theta + 144\cos^2 4\theta} d\theta$$

B) $s = \int_0^{\frac{\pi}{4}} \sqrt{1 + 144\cos^2 4\theta} d\theta$
C) $s = \int_0^{\frac{\pi}{2}} \sqrt{9\sin^2 4\theta + 144\cos^2 4\theta} d\theta$

Area of a Sector of a Circle

97 / 114

Area of a General Polar Region

$$A = \sum_{i=1}^{n} A_{i}$$
$$A_{i} \approx \frac{1}{2} (f(\theta_{i}^{*}))^{2} \Delta \theta$$
$$A \approx \sum_{i=1}^{n} \frac{1}{2} (f(\theta_{i}^{*}))^{2} \Delta \theta$$
$$A = \int_{\alpha}^{\beta} \frac{1}{2} (f(\theta))^{2} d\theta$$

Note: The boundary of the region is defined by angles.

Example

Find the area inside one loop of the polar curve $r = 3 \sin 4\theta$

99 / 114

Area of a Region Between Two Polar Curves

$$\begin{aligned} A_i &= A_{fi} - A_{gi} \\ A_i &= \frac{1}{2} (f(\theta_i^*))^2 \Delta \theta - \frac{1}{2} (g(\theta_i^*))^2 \Delta \theta \\ A &= \int_{\alpha}^{\beta} \frac{1}{2} [(f(\theta))^2 - (g(\theta))^2] d\theta \end{aligned}$$

Try It 1

Find the area of the region inside the polar curve $r = 1 + \cos \theta$ and outside r = 1.

101 / 114

Try It 2

Find area inside the polar curve $r = 1 + \sin \theta$ and outside the polar curve $r = 2 \sin \theta$.

Find the area inside both of the polar curves, $r = \cos \theta$ and $r = \sin \theta$.

Try It 4

Find the area of the rectangular stage shown that lies within the pickup region of the microphone, which is the polar region given by the equation, $r = 8 + 8 \sin \theta$

Try It 5

The graph of the polar curve, $r = 1 + 2\cos 4\theta$, is shown. Find the shaded (black) area.

105 / 114

Try It 1 Solution

The appropriate area is shaded below.

The intersection points are
$$\theta = -\frac{\pi}{2}$$
 and $\theta = \frac{\pi}{2}$
 $A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}(r_0^2 - r_i^2)d\theta$
 $= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}((1 + \cos\theta)^2 - 1^2)d\theta$
 $= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}(1 + 2\cos\theta + \cos^2\theta - 1)d\theta$
 $= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}(2\cos\theta + \frac{1}{2}(1 + \cos 2\theta))d\theta$
 $= \frac{1}{2}(2\sin\theta + \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta)|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$
 $= 2 + \frac{\pi}{4}$

Try It 2 Solution 1

The appropriate region is shaded below.

Intersection points:

$$1 + \sin \theta = 2 \sin \theta$$

$$\sin\theta=1$$

$$\theta = \frac{\pi}{2}$$

Also, the pole is an intersection.

Subtract area of circle from area inside red curve.

$$egin{aligned} &A=\int_{0}^{2\pi}rac{1}{2}(1+\sin heta)^{2}d heta-\int_{0}^{\pi}(2\sin heta)^{2}d heta\ &=\int_{0}^{2\pi}rac{1}{2}(1+2\sin heta+\sin^{2} heta)d heta-\pi \end{aligned}$$
 (areal of circle)

107 / 114

Try It 2 Solution 2

$$\begin{aligned} A &= \int_0^{2\pi} \frac{1}{2} (1 + 2\sin\theta + \sin^2\theta) d\theta - \pi \\ &= \int_0^{2\pi} \frac{1}{2} (1 + 2\sin\theta + \frac{1}{2} (1 - \cos 2\theta)) d\theta - \pi \\ &= \frac{1}{2} (\frac{3}{2}\theta - 2\cos\theta - \frac{1}{4}\sin 2\theta) |_0^{2\pi} - \pi \\ &= \frac{\pi}{2} \end{aligned}$$

Try It 3 Solution 1

The curves are shown, with the appropriate area shaded.

The red region is the area within $r = \sin \theta$ from $\theta = 0$ to $\theta = \frac{\pi}{4}$. The black region is the area within $r = \cos \theta$ from $\theta = \frac{\pi}{4}$ to $\theta = \frac{\pi}{2}$. Total Area: $A = \int_0^{\frac{\pi}{4}} \frac{1}{2} \sin^2 \theta d\theta + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} \cos^2 \theta d\theta$ But

the red area and the black area are equal because of symmetry, so $A = 2\int_0^{\frac{\pi}{4}} \frac{1}{2}\sin^2\theta d\theta$

109 / 114

Try It 3 Solution 2

$$A = 2 \int_0^{\frac{\pi}{4}} \frac{1}{2} \sin^2 \theta d\theta$$

= $\int_0^{\frac{\pi}{4}} \frac{1}{2} (1 - \cos 2\theta) d\theta$
= $\left[\frac{1}{2} (\theta - \frac{1}{2} \sin 2\theta)\right]_0^{\frac{\pi}{4}}$
= $\frac{1}{2} (\frac{\pi}{4} - \frac{1}{2})$

Try It 4 Solution 1

111 / 114

Try It 4 Solution 2

$$A = 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{2} [(8 + 8\sin\theta)^2 - (6\csc\theta)^2] d\theta$$

= $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [64 + 128\sin\theta + 64\sin^2\theta - 36\csc^2\theta] d\theta$
= $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [64 + 128\sin\theta + 32(1 - \cos 2\theta) - 36\csc^2\theta] d\theta$
= $[96\theta - 128\cos\theta - 16\sin 2\theta + 36\cot\theta]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$
= $48\pi - 0 - 0 - 0 - [16\pi - 64\sqrt{3} - 8\sqrt{3} + 36\sqrt{3}]$
= $32\pi + 36\sqrt{3}$

Try It 5 Solution 1

Find the area of one small petal and multiply by 4.

Try It 5 Solution 2

$$A = 4 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{2} (1 + 2\cos 4\theta)^2 d\theta$$

= $2 (\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 + 4\cos 4\theta + 4\cos^2 4\theta) d\theta$
= $2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (1 + 4\cos 4\theta + 4(\frac{1}{2})(1 + \cos 8\theta)) d\theta$
= $2 [\theta + \sin 4\theta + 2(\theta + \frac{1}{8}\sin 8\theta)]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$
= $2 [3\theta + \sin 4\theta + \frac{1}{4}\sin 8\theta]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$
= $2 [\pi - \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{8} - (\frac{\pi}{2} + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{8})]$
= $\pi - \frac{3\sqrt{3}}{2}$