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Determiners are things that accord simultaneously with only one thing. As two extremes
A, B accord with just one straight line.

Figure 1: [no caption]

Coincidents are things that are completely the same and differ only by denomination,
as the path from A to B and the path from B to A.

Figure 2: [no caption]

Congruents are things that, if they are distinct, they cannot be distinguished except
with respect to something external, as [for instance] the squares C and D, since of course
they are in different places or situations at the same time, or because one C is in a gold
material, the other D in silver. Likewise a gold pound and a silver pound are congruent,
[and] the days today and yesterday. Any point whatever is congruent to any other, as also
any instant to any instant.

Equals are things that are either congruent (for example, triangles EFH, EFG, IKL,
LMI, GNE, and likewise rectangles EFGN et IKLM), or can be rendered congruent
by a transformation (as triangle HEG to rectangle IKLM , since if part of HEG, namely
EFH, is transposed to GNE, which can be done because they are congruent, then HEG is
transformed to FGEN , congruent to IKLM ; and so HEG and IKLM are called equals).
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Figure 3: [no caption]

Therefore Equals can be defined as those which can be resolved into separate parts, each
congruent individually to [a part] of the other.

Figure 4: [no caption]

Similars are those in which nothing may be discovered by which they can be distin-
guished, if they are considered in themselves individually, as two spheres or circles (or two
cubes or two perfect squares) A and B. If the eye only, without any other member, is
imagined to be now inside sphere A, now inside sphere B, it will not be able to distinguish
them; but it can if both are seen simultaneously, or if another limb of the body or another
measure were brought inside with it, which is applied now to one, now to the other. Thus
to distinguish similars, we need the co-presence either of them with each other, or of a third
with each in succession. [But in dissimilars, something noted in one by the proportion of
its parts, which is not noted in the other, suffices for distinguishing them individually; of
which more later.]

Figure 5: [no caption]

Homogeneous things are those which either are similar, or can be converted to similars
by a transformation. Two lines are homogeneous, since they are similar; but a line and a
circular arc are homogeneous, since the circle can be stretched into a line.

If there are multiple things such as A and B, and one thing C, and they are coming
together in something, and in these a homogeneous thing is-in A and B in common, but all
homogenea in them are common to C; then the several things are called integral parts and
the one thing is called the whole.

We could also define Homogeneous things as those which come together in something,
in which also others come together that can be assumed indefinitely in either one of them.

The Lesser is what is equal to a part of the other (the Greater). Quantity is that which
accords to a thing insofar as it has all its parts; or i.e. on account of which it may be said to
be equal to, greater than, or lesser than another thing (any homogeneous thing), or i.e. may
be compared to it.
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Figure 6: [no caption]

Figure 7: [no caption]

The quantity of an object, for example of the area ABCD in Fig. 7, is expressed by a
number, for example four, with another thing such as the square foot AEFG taken to be
a primary Measure or real Unity. Indeed ABCD is four square feet. But if another unity
AHIK is assumed, which is the square of a half foot AH, the quantity of the area ABCD
will be 16. Thus, according to the unity assumed, various numbers will result for the same
quantity. And hence quantity is not a definite number, but the material of a number or an
indefinite number, to be defined when a fixed measure is assumed. Quantities, therefore,
are expressed by definite numbers, like 1, 2, or indefinite, by letters or other characters a,
b, ⊙, %.

A number is something homogeneous with Unity and thus can be compared with unity
and added to and subtracted from it. It is either an aggregate of unities, which is called
an integer, such as 2 (or 1 + 1), and likewise 3, 4 (whether 2 + 1 or 1 + 1 + 1), or else an
aggregate of some parts of unity, which is called a Fraction; if a unity, for example a foot
AB, is divided in four parts, then something such as the line BH, which has three quarters
of a foot, or three of 1

4
, will thus be expressed 3

4
; and sometimes a fraction may be reduced

to an integer, as AB or 2 is four of AH, or 4 halves, or 4
2
; or, finally, a number is determined

in some other way by relation to unity, and in fact these relations could be infinite, but the
most customary are by radicals. Indeed, for the number 4 (for the square ABCD), suppose
its square root is sought (or the side AB); it is the number which, multiplied by itself, makes
4; the number is 2, and so since 2 ⋅ 2 or aa is 4,

√
4 (
√
aa) is 2 (a). And in this case the

radical can be reduced to a common number or rational.
But sometimes this reduction does not succeed. For example, if a number is sought

which multiplied by itself would make 2, it certainly isn’t an integer (for otherwise, since
it is necessarily less than 2, it would be unity, but unity multiplied by itself makes 1), and
neither is it a fraction, since every fraction multiplied by itself produces another fraction, as
3
2

produces 9
4

or 2+ 1
4
; and thus the number is nothing but irrational, as they say, or rather

ineffable, alogos, a surd, which is written another way as
√

2, or
√
q 2., or 2

√
2, that is, the

quadratic root of 2; meaning: having set this number to be y, then its square yy or y2 is
2. And so that it’s clear that this number is in the nature of things: let the diagonal AF
(Fig. 8) be drawn in the square AEFG. If AG is 1, one foot of course, whose square is 1
(the space AEFG of course, or one foot square), then AF , which we call y, will be

√
2; for

its square yy, AFBM , is 2 (of course, double a foot squared); the square AFBM is in fact
double of the square AEFG, for its half, triangle AFB, is equal to the whole AEFG. Since,
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Figure 8: [no caption]

therefore, we define number as something homogeneous to unity, certainly there should be
some number having the ratio to unity that the line AF has to the line AG, or having set
AG to be 1, the number expressed by the quantity of AF should be that which is said to
be
√

2; AB, moreover, will be 2.
Therefore if a Scale AB is divided in two equal parts, and four, eight, sixteen, etc., and

further subdivided as much as one pleases, then certainly any line smaller than the scale can
be applied to the scale and thus expressed explicitly by numbers, indeed whether exactly or
approximately. Exactly when, having begun at the start of the scale A, it falls on some point
of division L, as in AL, its number is thence obtained in parts of the scale. For example,
with AE being 1, then AL is 3

4
, and then the line AL is commensurable with the scale, that

is, there is a common measure for them, or i.e. the line AN ( 1
4
), which forms by repetition

or i.e. measures the scale AB as well as the line AL. But a line applied to a scale can be
approximately expressed explicitly by numbers when it does not fall on a point of division
however much the scale is subdivided and in whatever way the division is established. And a
line such as AF is incommensurable with the scale, to the extent that it cannot be expressed
explicitly by a rational or ‘effable’ number, except approximately. Since it is nonetheless
necessary that AF , applied to the scale or i.e. translated to AP , at least falls between two
division points, so indeed it falls between 11 and 12, supposing the scale AB to be divided
into sixteen equal parts, any of which is the eighth part of unity or the foot AE. Hence if
AG or AE, the side of a square, is a foot, then the diagonal AF or AP falls between 12

8

(or 3
2
) and 11

8
of a foot, and thus if you allot 3

2
to AF or i.e.

√
2 or y, it is too much, and

if 11
8

, too little is allotted (for the square of 3
2

is 9
4
, that is, more than 8

4
or 2 or yy, and

the square of 11
8

is 121
64

, which is less than 128
64

or 2); nonetheless the error is smaller than a

smallest part into which unity in the scale is divided here, that is, less than 1
8
. And 1

8
or AQ

will be approximately a common measure for the unity (or indeed the scale) and AF . The
more a scale is subdivided, the smaller the error will be, and so it will be as small as anyone
desires, or i.e. it can be rendered smaller than any assignable error. Therefore even if AF
and AG are incommensurable, they are nevertheless homogeneous or comparable, and one
can discover a common measure sufficiently precisely that the error or remainder is smaller
than a given quantity. And in fact this is the foundation of approximations, and computing
by Tables, and likewise the binary or sexagecimal or even decimal Logistic, if indeed a scale
is divided into ten parts, and any of them subdivided into another ten, continuing as much
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as desired. In fact, even if one cannot always divide the scales sufficiently by instruments,
nevertheless, by mind or by calculation, one can at least proceed to the highest precision
that could be wanted in practice. How this is done will appear later.

[Start excised portion.]
A ratio is something homogeneous with equality, and so if equality is viewed as the unit,

since then the subsequent will be contained in the antecedent only once, the ratio will be the
number which arises from the division of the antecedent by the subsequent [per consequens],
or i.e. the number by which the antecedent would be expressed if the subsequent were the
primary measure by which others should be expressed, or the Unit. Even if possibly another
primary measure or unit is now adopted. Thus the ratio of three feet to a foot is triple the
ratio which a foot has to itself, or i.e. triple the unit; that is, ternary. Indeed if a foot is 1,
three feet will be 3. Unity, moreover, is the ratio of a thing to itself, or to an equal, when
the one quantity is contained in the other only once. But the Ratio of one foot to three,
that is, to one triple-foot [tripode] (three feet being taken for the unit) is a sub-triple, or i.e.
the third part of the ratio which the triple-foot has to itself, or the third part of the unit.
Indeed if the triple-foot is 1, the foot would certainly come out as 1/3 of the unit, namely
of the triple-foot. The ratio of the foot to the double-foot [dipode] is the sub-double, or
half of the ratio which the double-foot has to itself, that is, of the unit. It is therefore 1/2.
For instance, if the double-foot is 1, the foot would certainly come out as 1/2 of the unit,
namely the double-foot. And the ratio of three feet to the double-foot, or i.e. 3 to 2, is
thrice the ratio of one foot to the double-foot, or triple the sub-double, or three of the half,
or 3/2. And thus if the double-foot is 1, then three feet would certainly come out as three
of the half, or 3/2, of one double-foot.

Proportionals are those of which the ratio is the same.

Figure 9: [no caption]

As [the ratio] of the number 3 to 2 is the same as that of the number 6 to 4. For instance,
the ratio of the line AC to the line BC is always the same, and therefore the ratio of the
numbers by which AC and BC are expressed will also be the same even if a different unit is
taken.

[End excised portion.]
Dimensions are distinct (sometimes heterogeneous) quantities that are understood to

be multiplied together, so that the whole of one is applied [applicetur] to each part of the
other. For example, by drawing a latitude AB of two inches to a longitude BC of three
linear inches (so that the angles A, B, C, e, f are always congruent, or i.e. are the same,
what are called right, which is the simplest way of drawing a straight line to a line) the
rectangle ABC is formed, which has two dimensions, and six inches, but square.

Figure 10: [no caption]
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By drawing a longitude CB,2, latitude BA,3, and altitude AD,4, to each other, a solid
rectangle CBAD is formed (Fig. 10), which has three dimensions, or twenty four cubic
inches (2 Ìin 3 Ìin 4); indeed on any of the six quadrets or square inches of the base ABC
(like the quadret AEF ) there stand four cubes, or cubic units, or cubic inches (of course a
column or prism FEAD consisting of four cubic inches placed on each other). Nor should
one think, as has been believed until now, that dimension is observed in figures alone, and
thus that something of higher degree, or i.e. of more dimensions than three dimensions, is
imaginary. Even though space per se has only three dimensions, a body can nevertheless
have many more, for example two bodies, one of gold, another of silver, have, beyond the
consideration of the bulk or space that they occupy, yet another consideration of specific
gravity, which is observed in any part of the bulk. Thus, setting the specific gravity of a
cubic inch of silver at 55, and of gold at 99 ounces (that is nearly the proportion), the weight
of the solid CBAD, if it is gold, will be 2Ì3Ì4Ì99 (or 24Ì99) or 2376 ounces; but if the
solid is silver, it will be 2Ì3Ì4Ì55 ounces, or (24Ì55) 1320 ounces.

Figure 11: [no caption]

Therefore the weights have four dimensions, by multiplying the three dimensional bulk
or space by the body itself, or the weight. Further, besides the dead weight, there is added
a continued heavy impetus from descent over some time; from this arises an impact that
has five dimensions: from the three dimensional bulk, the weight of the body, and the
elapsed time, multiplied by each other. In this way if one square arm of cloth is worth three
imperial coins, two arms will be worth twice three imperials, or six. And this price has two
dimensions, for if the same cloth is four arms on the side, its price will be 2 ⋅ 3 ⋅ 4 or 24
imperials, and thus of three dimensions by multiplying the longitude, latitude, and price by
each other, that is the price, or intrinsic value, to the quantity, or extrinsic value. In this
way the price of an agger has four dimensions; one sees, indeed, that if it has a longitude of
100 feet, a latitude of 12, altitude of 20, and hardness or intrinsic value such that a cubic
foot is worth ten coins, then its value will be 100Ì12Ì20Ì10 coins or 240000, whence the
drawing of a dimension to a dimension is a real exhibition of mental multiplication.

From these definitions, some Axioms can be derived in sequence.
Those which are determined by the same things (or by coincidents, and in the same

manner, of course) are coincident. So two lines are coincident whose two extremes are
coincident.

Those which coincide, so much the more are congruent; or i.e. the same thing is congruent
to itself.

Those which are determined by congruents (in the same manner, of course) are congruent.
So, since a triangle is given when its three sides are given, then if the three sides of a triangle
are respectively congruent to corresponding ones, the triangles will be congruent.

Things which are congruent, so much the more are equal.
Equals are expressed by the same number, with the same measure being taken, or i.e. they
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are of the same quantity; indeed since they can be rendered congruent to each other, they
can be made to overlay in the same way on the same primary measure, or unity, repeated
in the same manner. The same number results from this.

Equals handled in the same manner according to quantity yield [exhibent] equals.
Similars handled similarly yield [exhibent] similars. Things determined similarly by

similars are similar. I understand to be determined, moreover, things that are designated
by the same conditions which can happen simultaneously only in one thing. And so, what
is thus determined is plainly exhibited.

Things simultaneously similar and equal are congruent. Indeed nothing remains by which
they could be distinguished, whether individually or observed simultaneously, unless they
are referred to something external, such as place and time and other accidents.

Ratio exists only between homogenea; that is clear from the definition.
[Two] things, one of which is greater than, less than, or equal to the other, are homo-

geneous. That is manifest for equals, since they can be rendered congruent and thus also
similar. The less is also homogeneous to the greater, since it is equal, and thus homogeneous,
to its part, and the part is moreover homogeneous to the whole. And for that reason we will
not say that a curve, or its part, is less than a surface, nor that an angle of contact is part
of a straight line, or less than it. If someone nevertheless considers a part more broadly as
everything that has quantity and is-in something having quantity, he can say that a line is
less than a surface.

A part is less than the whole. Indeed it is equal to a part of it, namely to itself.
The whole is equal to all the parts integrated [together], indeed they coincide; or certainly

if [the parts] are conjoined, since they constitute the whole, they will be rendered coincident
[to it], and thus also congruent.

A part of a part is a part of the whole. And so, something less than the lesser is less
than the greater. Indeed, it is equal to a part of the lesser, therefore also to a part of the
greater, that is, to a part of a part of the greater.

[Start excised portion.]
The homologous [components] for one of [two] assumed similar [figures] have the same

ratio to each other.

Figure 12: [no caption]

For example, the squares ABCD and EFGH are similar. In the former square, we have
side AB. The boundary ABCDA; the diagonal AC. An inscribed circle. The circumference
of a circumscribed circle. Area of the square. Area of the circle. In the other square we
have correspondingly: Side EF . Diagonal EG. Boundary EFGHE. The circumscribed
circle. Its area. The area of the square itself. We could also inscribe Circles in either case,
and implement many other things. Hence I say that the side in the one is in the ratio to its
diagonal in which the side of the other also is to its diagonal. For otherwise someone who is
in the one square, and afterwards separately in the other, could distinguish them, noting the
ratio of side and diagonal in the one to be different from that which is in the other. We have
defined similars, however, as those which cannot be distinguished when viewed separately.
For the same reason the periphery of one circle is to its diameter as the periphery of the
other Circle is to its. Likewise the area of one circle is to the square of its diameter as the
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area of the other circle also is to the square of its diameter. Hence we could immediately
infer the peripheries to be to each other as the diameters, and the circles as the squares
of the diameters. And in the same way Spheres [to be] as the Cubes of diameters; and
the homologous sides of similar triangles to be proportional if the permutation of ratios had
been already demonstrated. And thus, with the aid of this axiom, a great many Geometrical
theorems, proven with such great effort by others, are demonstrated with no trouble, and we
have a new principle of discovery. While Euclid was forced to demonstrate that circles are
as the squares of the diameters, and spheres as the cubes, through reductio ad absurdum,
Archimedes, on the other hand, assumed without proof that the centers of gravity of similar
figures are similarly placed. All of these arise of their own accord from our definition of
similarity, which as far as I know has not occurred to anyone until now. The same principle
is valid not only in Geometry, but also in all other [matters] where which quantity and
quality are combined.

Heterogeneous things should not, however, be compared with each other, neither is
there any ratio except between homogeneous things, otherwise absurdity would arise. For
example, if the side AB were to be to the area of its square ABCD as the other side EF
is to the area of its square EFGH, then (according to things which will be shown in their
own place), by permuting, sides AB and EF would be to each other as the squares ABCD
and EFGH.

Figure 13: [no caption]

Which is absurd; for if, for example, EF is the double of AB, then the square of EF is
not the double but the quadruple of the square of AB. And the cube of [a segment] twice
as long is not the double but the octuple of the cube. It is the same in circles and spheres
as in squares and cubes.

Equimultiples have the same ratio as that of simples, which is clear from what we have
said in defining proportionals. For six feet are the same ratio to three which two tripodes
are to one. Since the tripode is the same as three feet. Moreover their ratio is also the same
if they are expressed in various ways accordingly as one or another unit or primary Measure
is assumed.

Equidivisibles have the same ratio as the [corresponding] integers. For the integers are
equimultiples of the equidivisibles.

Hence both equimultiples and equidivisibles have the same ratio. Let there be two, A
and B; double A will have the same ratio to double B as A to B. Likewise the third part of
A will have the same ratio to the third part of B as A to B, and two thirds part of A will
have the same ratio to two thirds of B as A to B.

A ratio is composed with a ratio if the antecedent is multiplied by the antecedent and
the consequent by the consequent; it is called the composite ratio of simple factors; thus
the ratio of the area of one rectangle to another is in the composite ratio of the lengths and
widths. Hence the composition of ratios is the multiplication of ratio by ratio.

The ratio of A to C is called composite of the ratio of A to B and B to C. Hence the ratio
of the product of multiplying A by B to the product of multiplying B by C is composed of
the ratios of A to B and B to C. For the ratio of the product of A by B to the product of
B by C is as A to C (since they are equimultiples, A by B and B by C, therefore they have
the same ratio as the simples A and C by the preceding) and the ratio composed of A to B
and B to C also is A to C.

Hence ratios composed from the same things are the same. Let ratios A to B and B
to C be given, and the ratio L to M and M to N . And let the ratio of L to M be the

8



same as the ratio of A to B, [and] indeed the ratio of M to N the same as the ratio of B
to C. Therefore the ratio of A to C will be the same as the ratio of L to N . Since those
which are the same or are determined in the same way by the same coincidents coincide.
Hence it follows that even if the order of the ratios of the coincidents in one composition
were otherwise than in another, the composites would nevertheless coincide.

[End excised portion.]
Two homogenea have an approximate common measure of any desired precision. We

showed this above while explaining the scale. If one of two homogeneous things is neither
greater nor less than the other, it is equal. In the scale set above (Fig. 8), let AG and AE be
compared, and AG applied to the scale, with the point A remaining fixed, the point G will
fall between B and A, supposing that AG is less than AB. We now suppose it demonstrable
that with the line AG translated to AB, and the point A remaining fixed, the point G falls
neither between E and B, nor between A and E, that is, that AG is neither greater nor less
than AE; then certainly the point G will fall on the point E itself, and thus AG will be equal
to AE. What can be demonstrated of two lines, the same can be done of any homogenea,
for they can all be rendered similar, and when they are rendered similar, if they don’t differ
in magnitude, there is no way in which they can be distinguished, but rather they will be
congruent, and so since they can be rendered congruent, they are equal.
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