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(1) Magnitude is what is expressed in a thing by the number of parts congruent to a
given thing which is called the Measure.

Note. For example, the magnitude of a line is expressed by the number of feet or inches,
that is, of parts any of which are congruent to a foot or an inch in some actually given
material (as if brass or wood). Just so the magnitude of a fathom (the amount that human
arms can be extended), needing to be designated by something certain (as if a bulk measure
[per aversionem]), is reckoned to be expressed by number as six feet, or seventy-two inches,
since a foot is twelve inches. The magnitude of a cubit is one and a half feet, or one foot and
six inches, or eighteen inches. We set, moreover, the magnitude of a foot or an inch to be
given in a real device. Hence it is also clear that the magnitude of one and the same thing
can be expressed by various numbers, as the measure is varied; indeed sometimes various
measures are connected to each other, such as when the cubit is designated simultaneously
by feet and inches.

(2) Homogeneous things are those whose magnitudes can be expressed by numbers while
taking the same measure as the unity for all of them.

Note. Thus if a foot is the unity, then an inch will be 1
12

, a cubit 3
2
, a fathom 6. But

if the inch is set as unity, then a foot will be 12, a cubit 18, and a fathom 72. And in
this way the length of any straight line can be expressed by a whole number if, when the
measure is subtracted some number of times (for example when three feet are subtracted),
then nothing remains (so then it would be a three foot line). But if, when the measure (or
foot) is subtracted as many times as possible, something remains, then we can take a certain
part of the foot (for example a tenth) in order to measure it also, which can be subtracted
again as many times as possible from this residue (for example seven times in succession,
and with the foot taken as the unity, the number of the subtracted quantity will be the
fraction 3 and 7

10
, or 37

10
). And if the thing to be measured is exhausted in this manner

and nothing remains, that number will correspond to the thing and express its magnitude.
But if instead something survives, then indeed we can take a new part of the measure
again, perhaps a hundredth, and subtract it as many times as possible; and if the error
smaller than the hundredth part does not seem sufficiently important to us, then we can be
content with this approximation by the measure and tenths or hundredths of the measure,
otherwise progressing to thousandths and beyond. In practice we are accustomed, however,
to apply a scale, that is, a certain constant division of the measure made in brass or another
durable material, indeed by tenths and tenths of tenths, or hundredths, and thousandths,
and so on, since fractions expressed in decimals in this way can be treated in the form
of integers, which are customarily exhibited to us by a decadic progression, that is by
units, tens, hundreds, thousands, ten thousands etc.; thus Ludolphus of Colonia discovered,
by prolonged calculation, that with the diameter of a circle being 1, the circumference is
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3+ 1
10
+

4
100
+

1
1000
+

5
10000

+
9

100000
+

2
1000000

, or (what is allowed in decimals) joining them up

in one fraction 3141592
1000000

etc. up until . . . . it is settled. But since approximations of this kind,
even if they suffice for common practice, never give exact knowledge of the magnitude we
seek, therefore we proceed by a scientific progression long enough until a series of progression
to infinity appears; and to this end we do not employ decimals indiscriminately, or any other
constant divisions of the scale, but rather adjust the fractions to the nature of the thing,
that we may arrive more easily, of course, at the law of progression. And thus I discovered, if
the diameter is 1

8
, the circumference will be 1

3
+

1
35
+

1
99
+

1
195

and so on to infinity, setting the
numerator of the fraction to be the unit, but the denominators to be what results from two
odds, 1 and 3, 5 and 7, 9 and 11, 13 and 15, 17 and 19, and so on, multiplied together. And
by this method, not only can all the approximations obtainable by continuing be expressed
simultaneously, but the error can even be made smaller than whatever given; namely it can
be shown that if the circumference is called 1

3
, then the error will come out smaller than 1

5
;

if it is called 1
3
+

1
35

, then the error will come out smaller than 1
9
; if it is called 1

3
+

1
35
+

1
99

,

then the error will come out smaller than 1
13

, and so on, always by taking the first from the
pair of consecutive odds. The whole infinite series exactly expresses the nature of the circle.
But we have derived this rationally from the inner nature of the circle; on the other hand,
the magnitude of the circumference of the circle or another curved path can be obtained
mechanically using a thread, fitted to the rigid curved path and afterwards extended in a
straight line and applied to a scale, or rolling the rigid curved path in the plane, provided
that the rolling is guided by a thread or chain for security, lest dragging be mixed with it.
The fact is also obtained by motion, when two mobile things traverse a line and a curve
with uniform velocity, for the absolute paths in the same times will be as the velocities of
the mobile things. And if the thing to be measured is a surface, another surface can be
taken as the measure, for example a square foot which (or the determinate parts of which)
can be subtracted as many times as possible from a planar surface; and if the surface is not
planar, one should see whether it is easily transformed into a plane. For the measure of a
solid, another solid would be taken, such as a cubic foot, and one would proceed in the same
way. The magnitudes of solids could also be compared by immersing them in liquid, and
measuring the amount it is raised in the vessel; but also by weighing, if both are developed
from the same material; and the same thing can be carried over to curves and surfaces in
some appropriate way [suo quodam modo]. And thus Galileo investigated the dimension
of a Cycloid by weights, although by this method he did not obtain the true dimension
discovered later by others by scientific reasoning. A surface and a solid are also sometimes
conveniently measured by motion, as the traces, as it were, of a curve or a surface. In
general, however, all estimation from our definition of magnitude reduces to the repetition
of a certain measure expressed by numbers, or to the number assignable to a thing supposing
that unity is assigned to another given thing. And furthermore, by this reckoning, not only
extensions and diffusions of parts outside a part [difusiones partium extra parte], as in space
and time, but also intensions or degrees of qualities and actions, indeed also laws, values,
likelihoods, perfections, and other inextensible things are called back to numbers, a measure
being found to which, or to the several parts of which, those that are found in the thing to
be measured are congruent, but by repetition of which, or of the several parts of which, the
magnitude to be estimated is formed. Of what great moment this consideration is, and how
the strength of true Universal Mathesis, or the art of estimation in general, consists in it, is
shown in our Specimen Dynamicis.

(3) Things are Commensurable with each other when a single common measure can be
found exhausting them, by the repetition of which their magnitudes are constituted; but
if not, they are called incommensurable, and the number to be assigned to that which is
incommensurable with the measure taken as unit, is called surd or irrational; but if it is
commensurable with the unit, then it is termed rational.

Note. If, of course, by subtracting the measure, or some number of parts constituting
the measure by their repetition, as many times as possible, exhaustion is attained, then
a common measure, constituting by repetition, can always be obtained. For the whole
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magnitude to be measured is expressed either by integers or by a composite of integers and
fractions. Now any fractions can be reduced to a common divisor, and thus to a common
measure. Let the number found to express the desired magnitude of the line be 2+ 2

3
+

1
6
; by

reducing to a common denominator it becomes 17
6

; therefore if the foot is 1 or 6
6
, certainly

a common measure of the estimated thing and of the foot will be 1
6
, which quantity is

contained in the estimated thing seventeen times, and in the foot six times. But if the
sixth part of a foot, or a two inch line, is taken as the unit or measure, then the foot will
be as 6, while the line to be estimated will be as 17, and thus the foot and the line will
be commensurable. But if the fractions continue to infinity, and they cannot be collected
by summing into one assignable integral or fractional number, then the magnitude to be
estimated will be incommensurable to that to which we assigned the unit, or to a number of
its parts (that is, to those producing it by repetition). For instance if there were a line which
consisted of one foot and two tenths of a foot, and three hundredths and four thousandths,
and five 10,000ths, and likewise to infinity, so that by setting the foot as 1, the line would
be 1

1
+

2
10
+

3
100
+

4
1000
+

5
10000

+
6

100000
+

7
1000000

etc. or 1234567
1000000

etc. or in the manner of
decimals 1.234567 etc. Then indeed the line to be measured would never be exhausted, but
nevertheless, its true magnitude is considered to be expressed exactly. Indeed whenever the
number is rational, as they call it, or commensurable to the unit, then also, when expressed
in decimals, it continues periodically, such that the same characters always recur to infinity,
as we will show in its own place (which does not happen here, as the construction itself
shows). Furthermore, this method of investigating the common measure has been produced
by Mathematicians, as we shall explain in its own place, that the lesser is subtracted from
the greater as many times as can be, and then the Residue is subtracted again from the
same previously subtracted Lesser, and the second Residue is subtracted from the second
(i.e. the first residue), and similarly the third from the second Residue; and so necessarily
either we will arrive at exhaustion, and the last subtracted thing exhausting [the rest] is
in fact the greatest common measure, contained as many times in the first magnitude (or
the greater of those compared) as the unit is-in the product of all quotients multiplied by
each other, or else if residues are left over to infinity, the original two quantities will be
incommensurable, inasmuch as all the residues are; but this series of quotients that express
how many times each lesser could be subtracted from the preceding one, if based on a fixed
rule, gives the scientific comparison of the two magnitudes. At the same time, we could
imagine by a kind of fiction that all quantities are homogeneous, as though commensurable
with each other, namely by contriving some infinitesimal, or infinitely small, elements. The
calculus of Logarithms rests on such a fiction, with some fixed Logarithmic Element being
established. A similar fiction takes place in Geometry, by imagining the situation as if all
curves consisted of infinitely many little line segments infinitely small, and thus as if curved
lines were polygons with infinitely many sides; or as if surfaces consisted of infinitely many
little planar faces, that is, as if every concave or convex solid were a polyhedron with hedra
of infinite smallness. In the same way it can be imagined that all solids consist of equal
elementary particles [corpusculis] infinite in number and infinitely small in magnitude. And
this fiction cannot introduce error, since (if you proceed duly from the hypothesis), the error
never becomes greater than some elementary particles, which has no comparison with the
whole; concerning this, see our Lemmas about incomparables. Hence if, for the fictitious
or infinitely small elementary particles, we take real assignable things however small, it can
be shown that the error which could appear to be admitted to the computation is smaller
than any given error; that is, none could be assigned. But although one could conceive, to
imitate commensurability, that these infinitesimals or infinitely small elements are equal to
each other, nonetheless sometimes it is better to imagine proceeding by some other method
that is useful to assist the computation. These things are more apparent from that deeper
part of the Doctrine of magnitudes or Mathesis Universalis, in which of course the science
of the infinite is contained.
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