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Abstract

I present a new formal framework for Leibniz’s system of monadic expression us-
ing the language of category theory from mathematics. The basic presuppositions of
this language are defended for monadic expression (namely composability and the in-
dividuation of expressings), and several of Leibniz’s distinctive theses are presented in
this language. These include the Identity of Indiscernibles, Universal Expression, Pre-
established Harmony, as well as the thesis that every monad is characterised by its ‘point
of view’ and that all points of view are expressions of God. A novel perspective on
Leibniz’s distinction between ‘natural’ and ‘artificial’ expression is given. This categor-
ical presentation is contrasted with the currently popular ‘Structural Representation’
explanation of expression.

In the same way there may be found, in
one center or point, though it is
perfectly simple, an infinity of angles
formed by the lines which meet in it.

— Leibniz

1 Introduction, purpose, plan

Leibniz’s mature ontology comprised an infinity of individual substances called ‘monads’.
Monads are true simples with no parts.1 Monads have qualities, and their qualities distin-
guish them from each other (the Principle of Identity of Indiscernibles, ‘PII’ below).2 Each
monad expresses each other monad, representing in its internal qualities the whole universe
(Principle of Universal Expression, ‘PUE’ below).3 This representation of multiplicity in
unity he called perception.4 A monad can express another monad in different ways and re-
spects and to different degrees of distinctness; the combination of ways in which a monad

1“absolutely destitute of parts” L:NS, 456; cf. L:Mon, §1, 643. This isn’t an exegetical work, but I’ll supply
some references throughout. See bibliography for citation labels.

2L:Mon, 643, §§8-9.
3L:DM, 313, §16; L:PNG, 637, §3; L:Mon, 648, §56.
4L, 91, note 16; L:CLA, 344; L:PNG, 636.
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expresses all the others is called its point of view.5 A monad is ‘like a world apart’, suffering
no direct or causal influence from the others;6 instead its state changes by the action of an in-
ternal principle of appetition.7 Since the appetitive principle is internal, the fact that a monad
expresses the universe at one time doesn’t a priori guarantee that it will for all time. The
Principle of Pre-established Harmony (‘PPH’) is that God arranged the original states and
principles of appetition of all monads so that PUE will hold for all time,8 and furthermore a
monad’s qualities are completely characterised by its perceptions, and a monad’s appetition
is completely characterised by its changes in perception.9

The concept of expression is of fundamental importance in this system. Without it there
could be no difference between two monads considered separately and the same considered
together; analysis of his system would end at analysis of a lone monad. And Leibniz himself
told de Volder, probably hyperbolically, that his whole philosophy followed from PUE.10

In this essay I provide a formal framework, or logical language, for this system of mu-
tually expressing monads. The formal framework is a category in the sense employed by
mathematicians. (I only use ‘category’ with this sense below.) The centrality of expression
in Leibniz’s system is one motivation, but a stronger motivation for this project is simply
the beauty of a parallel between Leibnizean reasoning and category-theoretic reasoning. I
want to establish this parallel with some rigour.

We should require any project along these lines to satisfy a couple constraints. A logic
of monadic expression must agree with his ontology on two basic points. It must respect
the simplicity of monads, and it must individuate expressions in a way plausibly consistent
with his view. Also, any such framework must reflect not only how he explicitly describes
‘expression’ (in definitions or examples), but also how he uses the concept, especially in his
other theses. (This means it won’t suffice to generalise from a few illustrative examples unless
the result clarifies the meaning of, e.g., PUE.)

The main tradition in secondary literature on Leibnizean expression has come to embrace
a view of expression called structural representation (‘SR’), which says that an entity expresses
another when they share structure. I hope it will become clear that this view cannot meet
our constraints. Immediate (if superficial) problems are that monads aren’t structured, and
that expression shouldn’t be individuated as a relation. (See below.) A deeper problem is
that SR doesn’t help us understand the use Leibniz makes of the concept in other arguments.
It is too focused on ‘what it is to express’, in specific cases, and fails to illuminate the total
system of expression considered together.

The categorical language proposed here fares better with these constraints. We find a
beautiful correspondence between categorical arrows and monadic expression. This corres-
pondence is presented in §2, and its principle interpretive commitment defended. Then in
§3 the language is demonstrated by framing in its terms those theses identified above: the
PII, PUE, and PPH. I also give there a novel interpretation of the distinction Leibniz makes
between natural and arbitrary expression, and am able to suggest a way to understand the
role of God vis-à-vis expression. In §4 the contrast with SR is given more detail.

Necessary categorical maths will be explained in the text, but I cannot expect that readers
unfamiliar with categorical reasoning will readily appreciate everything.

5“these expressions vary in perfection as . . . perspectives of the same city seen from different points” L, 269.
Cf. AG, 71, 76, 143, 207, 211.

6L:DM, 312; L:NS, 457.
7L:PNG, 636.
8L:Mon, 648, §59; cf. also AG, 148, 195.
9L:PNG, 636; L:CLDV, 537.

10L:CLDV, 531.
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Figure 1: Illustration of a category.

2 Monadic expression as a category

A category C is a class of objects and a class of arrows between the objects, such that the
arrows are composable and every object has an identity arrow.11 That arrows are composable
means that when an arrow ends where another begins, they can be joined into a (unique)
third arrow. This head-to-tail composition must be well-defined for three or more arrows in
sequence, so we require associativity: (pk)h = p(kh) = pkh. (Note: composition on arrow
labels is right-left.) An identity arrow begins and ends at the same object, and does not alter
arrows with which it is (pre-)composed. (This rule determines a unique identity.)

The central concepts are illustrated in Figure 1. (Some arrows are omitted for clarity.)
Here, given f and k, composability implies a unique kf between A and D. The identity
1C is such that 1ch = h and k1c = k. An arrow such as k has an inverse j if jk = 1C and
kj = 1D. A pair of objects sharing invertible arrows are called isomorphic.

Focusing on the left three objects, observe some important facts about the individuation
of arrows. It is possible to have distinct arrows between the same objects, as f and g between
A and C could be different. It isn’t possible to have the same arrow between distinct pairs of
objects; so g is certainly not identical with h. It is possible to have a variety of non-identity
self-arrows, so perhaps n 6= 1C .

This is the formal framework. A Leibnizean interpretation is simple to propose. ‘Ob-
jects’ are monads, and ‘arrows’ are expressions of one monad in another. In the diagram
above, we’ll say any of: ‘h is an expressing ofB in C’, ‘B is expressed in C by h’, orB h−→ C.
Let us switch now to the terms ‘monad’ and ‘expressing’ (for particulars) and ‘expression’
(general term). We write ‘CME’ for the Category of Monadic Expression.

In one striking passage Leibniz wrote:

For the simplicity of a substance does not prevent the plurality of modific-
ations which must necessarily be found together in the same simple substance;
and these modifications must consist of the variety of relations of correspond-
ence which the substance has with things outside. In the same way there may be
found, in one center or point, though it is perfectly simple, an infinity of angles
formed by the lines which meet in it.12

We can view this passage as foreknowledge or foreordination (as you like) of our project: we
model monadic expression quite literally as (directed) lines meeting in points. (And though
we don’t attribute special significance to their angles, the arrows’ mutual relationships are

11Mac Lane [Mac98] and Awodey [Awo10] are general references, the latter quite readable.
12L:PNG, 636.
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essential to the categorical structure.) But to justify CME satisfactorily, each significant
piece of the framework needs to be checked against Leibniz’s system. Monads are certainly
represented in CME as simple objects. The other significant pieces rely on an interpretive
assumption. Let us consider them separately, with brief (no more than suggestive) arguments
for each.

Individuation. Expressings in CME are individuated at least by expressing and expressed
monad pairs. (So expression isn’t a relation.13) This can be interpreted. Each expressing is
always of a monad, qua unified individual substance. When B

h−→ C, it is B as a unique
individual which is (re-)presented in C’s qualities (by h).

Contrast this with a model whereby C expresses B iff a part of C’s set of qualities bears
some relation to a parallel set associated with B. (As the SR view of expression would have
it.) Then expression would be a relation. A relation holds between various pairs of relata.
On this view there are many fewer expressings.

Let us register the question as an interpretive issue, but since the acceptability of our
categorical model hinges on this question, we suggest the following argument for the first
view. Leibniz thinks that perception is the representation of multiplicity (the external world)
in unity (the perceiver); the expression of many in one. This implies a composition of
true unities in the representation.14 And of course these unities are the other monads. So
an individual expressing must be of a monad, and plausibly of a particular monad.15 We
couldn’t have the same expressing of two monads.

Composition. If individuation of expressings this fine-grained is the main presupposition
of a categorical framework, then composability is the main supposition. Composability
means that ifA is expressed inB, andB in C, thenA is expressed in C through an expressing
determined uniquely by the first two expressings.16 We may interpret this supposition: a
monad is expressed as a simple whole, so any monad which expresses something must carry
that expression into any other expression of itself.

Would Leibniz agree? To my knowledge Leibniz says nothing explicit about this suppos-
ition. But consider what is implied by its denial. If A → B and B → C but not A → C,
it seems necessary that A is expressed in a part of B which is disjoint from the part of B
expressed in C. If expression is a relation between subsets of monadic qualities, this is surely
possible. But if the object of an expressing is a particular monad, this would violate mon-
adic simplicity. So it seems composability hangs on the same question as does individuation:

13Relations are repeatable [Mac16].
14I mean to parallel his argument for monads in the world, as necessary from multiplicity in the world, but

apply it here within ‘perception’. See also [L:Mon, 649].
15Maunu in [Mau04; Mau08, 254] tries to work out roughly the opposite view, starting from a concern that

Adam’s expressing ‘husbandhood to Eve’ makes Adam too dependent on Eve (a particular). I think he misreads
Leibniz, for in [L:CLA, 335] Leibniz is not talking about a particular Adam, but a partial concept of Adam. A
particular Adam, thinks Leibniz, would express the particular Eve, equivalently Eve’s complete description, not
an incomplete description of Eve. I believe I follow Strawson [Str64, 128] and Rutherford [Rut95, 185] on this.
Maunu’s whole project with ‘monadic-Ramsey-ascriptions’ (conjoin all true statements involving monad A and
replace other monad names with existentially quantified variables) seems viciously circular. He avoids names
for other monads but in no way writes relations in terms of incomplete concepts for them, since otherwise his
deduction of PUE fails.
Also, if it seems hard to believe that a monad expresses the infinite detail of another, as required to express its
particularity, recall that the whole universe is supposed to be deducible from every single monad’s qualities.

16Note that since expression isn’t a relation, composability isn’t transitivity.
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Is a (particular, complete) monad expressed by another (however indistinctly), or, rather, a
proper subclass of a monad’s qualities?

Self-expression. Self-expression is represented in CME by arrows from an object to itself.
There is an important connection between self-expression and individuation. It is possible to
characterise an object’s self-symmetry in CME as its variety of non-trivial self-expressings.17

This does not work on the coarse individuation model of SR. On that model expression
is a relation, and self-expression is mere reflexivity of the relation. There is no variety of
self-expressings.

Now every object A in a category has a unique identity self-arrow 1A: every monad
expresses itself perfectly in a special (trivial) way. (This is certainly true.) What is the identity
self-expressing? It is a self-expressing satisfying at least a certain property: composition
with other expressings doesn’t alter those expressings. Note that this property determines
a unique self-expressing with respect to the system of expression, i.e., the arrows: the rule
‘requires’ nothing of the identity expressing for a category of just one object and arrow.

Two monads A,B are isomorphic when there is a pair of expressings i, j:

A B
i

j

such that ji = 1A and ij = 1B.This condition meansA andB behave identically with respect
to expression since every expressing of or by A or B can be written as an expressing passing
through B or A (respectively). E.g. if A f−→ K, we have f = fji : A→ B → A→ K.

Degrees of distinctness. We can define perfectly distinct expression of one monad by
another (with respect to the whole category) in terms of perfect self-expression: D expresses
C perfectly18 via k iff k ‘separates’ incoming expressings:

∀A, f, g, s.t. A f−→ C
k−→ D and A g−→ C

k−→ D, f 6= g =⇒ kf 6= kg.

That means nothing is ‘lost’ by the expressing k (with respect to the other expressings).
We might say an expressing C k−→ D is strictly more distinct than an expressing C `−→ D

when the classes of expressings that k ‘separates’ for any monad, in the above sense, strictly
include the classes separated by ` for those monads. This defines a partial order.

In the section on composability we might have worried that since expressings come in
great variety, it should be possible to find two expressings (meeting head-to-tail) such that the
first expresses its monad in a radically different way from the second, so their composition
would express very little if anything at all. But (and see PUE in §3.2 for more) we can
simply insist that every monad express every other at least trivially, and call the composition
in question trivial. That is, we require existence of an expressing of each monad by each
other which is less distinct than all other expressings. We can interpret this as the expression
of the mere substantial unity, and nothing more, of the expressed monad.19

17Think of the group of symmetries of a hexagon, say, as a D6-shaped self-expression.
18Such a ‘monomorphism’ is the generalisation of ‘injection’ from set-theory.
19Many categories in mathematics have trivial expressings; e.g. in Group the trivial homomorphism taking

everything to the identity, or in Topological spaces the continuous functions taking everything to a point.
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Figure 2: A functor F : C → D. (Courtesy www.ncatlab.org.)

Functors. We will need another categorical concept to treat ‘arbitrary’ expression in §3.5.
A category may be considered an object in the category Cat of all categories, and an arrow
between categories in Cat is a functor. A functor F : C → D is a map from objects and arrows
of C to those of D preserving categorical structure: (1) arrow end-points, (2) composition,
i.e. F (gf) = F (g)F (f) (for all f, g), and (3) identity, i.e. F (1A) = 1F (A) (for all A). (See
Figure 2.) This represents expression of one category by another.

3 Application to Leibniz’s distinctive theses

If the correspondence suggested above is good, then a bare category is a minimal framework
for monadic expression. The true test of this framework will be whether we can make sense
of Leibniz’s distinctive theses from within it.

3.1 Pre-established Harmony
The doctrine of Pre-established Harmony does a lot of work in the other doctrines, we shall
see, so it must come first.

The doctrine has two elements: (1) the monads are in perfect harmony; (2) the harmony is
pre-established, being grounded in an initial harmony together with a harmony of appetitive
principles. For lack of space we cannot treat (2).

What does it mean for the monads to be in harmony? It cannot mean merely that they
express each other, since that doctrine has its own title (§3.2). Rather, it means (I will
suppose) that they are completely characterised by their expressings, taken together. Why is
this harmony?

Leibniz considers in contrast to harmony the possibility that each monad, instead of
relating to the others by expressing them, lives in absolute independence. It has qualities that
aren’t expressed in other monads. An aggregate of such monads would be disharmonious,
we might say, in that we couldn’t make sense of them together by understanding their mutual
expression. The extent of harmony is the extent to which monads are characterised by their
expression, and (perfect, pre-established) Harmony says that the nature of each monad is
exhausted by its place in the system of expression. This is one way of interpreting Leibniz’s
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comparison of a monad to a mirror that reflects the universe: a monad, like a mirror, has no
‘extra’ ingredients that aren’t a reflection of the others.

The interpretation of Harmony in CME is that each monad is characterised by how it
is expressed. More suggestively, the situation [situs] of a monad in the category, its point of
view in the system, is equivalent to the monad’s complete state.

This principle does not add to the categorical structure of monadic expression, but to its
interpretation. It says that there is nothing in the nature of a monad that isn’t ‘visible to the
world’; nothing that doesn’t appear in the system of expression itself.

This implies a certain duality of content in CME. One can either specify the qualities of
all monads and let the expressings follow from those qualities, or (assuming Harmony) one
can specify all expressings, determining the monadic states by the system of expression.

Incidentally, this justifies the rules for the identity expressing and ‘perfectly distinct’
expression, since those were relative to (all) the other expressings.

3.2 Universal Expression
If Harmony is the doctrine that a monad is how it’s expressed, Universal Expression is the
dual doctrine that the universe is what each monad expresses. Harmony is expression of the
one in the many; PUE is expression of the many in the one.

This Principle certainly doesn’t hold of every category. Consider this one:

A D

B C

Harmony could hold (implying D is devoid of qualities other than unity). But PUE can’t:
the universe (specifically A,B,C ) isn’t expressed by D.

We could implement PUE in CME by requiring at least one arrow in each direction
between every pair of objects. This could be a ‘trivial’ arrow, i.e. a ‘least perfect’ expression
in the terminology of §2.

Let us instead formalise a more complex notion to capture a monad’s ‘point of view’.
Define a cocone20 to N in a category C as a collection of arrows, one from each object in C, to
N (the apex of this cone of arrows), such that all triangular diagrams arising this way com-
mute. For example, if A f−→ B is any expressing in the category, and A πA−→ N,B

πB−→ N
are the ‘projections’ of a cocone, the triangle commutes:

N

A B

πA

f

πB

This means πA = πBf , which suggests the interpretation: ‘the expressing A f−→ B is con-
tained in the expressing πA of A in N ’. Since f was arbitrary in the category, every express-
ing is thus ‘part of’ an expressing in the top object of the cocone. Thus we can interpret a
cocone as an expression of the whole category, i.e. every other monad and expressing, in the

20A cone in standard terminology has outgoing arrows.
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one.21 So the PUE corresponds to a requirement that cocones exist in CME. The collection
of cocones to a monad may be considered its ‘point of view’ since it’s an expression of the
whole universe in the monad.

One potential objection is that Leibniz clearly thinks God should be able to recover
everything about every other monad by looking closely enough at each, i.e. that God can see
the whole universe in every monad,22 but a generic cocone isn’t enough to reconstruct the
rest of the CME. (A cocone of trivial expressings is too trivial.) I cannot adequately respond
but I don’t feel that this objection warrants a dismissal of cocones.23

3.3 Identity of Indiscernibles
The famous Principle of Identity of Indiscernibles is strictly stronger than another principle
which we might call Identity of Indifferents, the latter banning pairs of objects with identical
qualities, and the former banning pairs merely perceived to have identical qualities (by any
perceiver or a best perceiver).24

The principles come apart on a pair of monads with distinct internal qualities but which
are expressed identically in all other monads. Different but indiscernible monads would be
represented in CME by interpreting each object as a collection of monads, specifically the
collection sharing the ‘expressive nature’ represented by the arrows to or from that object,
but differing still in internal nature. The principles collapse to the same principle if we
assume Harmony, since then a monad is completely characterised by the way it’s expressed
in others.

Assuming Harmony then, the PII is easily instituted in CME by banning isomorphic
monad pairs. Then no two monads ‘appear the same’ with respect to the system of expres-
sion (and therefore perception).

3.4 God
Leibniz thought God is a monad in the system of monads, but with a unique role in that
system.25 I will propose here one way of construing God’s unique role from within CME.

We described a monad’s perspective on the universe, or point of view, as a cocone ex-
pressing all other monads (and their expressings) in one monad. But of course these cocones
needn’t comprise particularly distinct expressings; even the trivial cocone expressing nothing
but unities would give a (very confused) point of view.

God’s point of view should be a cocone, but it must be unique among cocones in its
perfection. Every other point of view should be contained in, or subsumed by, God’s.

Leibniz illustrates the difference by comparing a generic perspective to a scenograph (per-
spectival image of a building) and God’s perspective to an ichnograph (3D ‘floor plan’ used
by architects).26 God’s perspective is unique. From his perspective all others may be derived.

21This is even clearer with some technical details: a cocone is a natural transformation from the trivial
diagram on C to the diagonal on N . A natural transformation is an ‘expression’ in the functor category.

22L:Mon, 649, §61.
23Maunu [Mau08, 258] also gives up this point in his attempt to explain PUE, and claims only that each

monad expresses the structure of the universe. But I don’t believe he can justify even that claim in his frame-
work, since he misses the possibility of a disconnected ‘D’ as in the picture above.

24I partly follow De Risi [De 07, 384-95] in distinguishing these.
25That isn’t entirely uncontroversial. But this isn’t the place to enter the debate.
26R, 253; G, II.438.
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The categorical concept of colimit27 captures this astonishingly well. A colimit L is a ‘uni-
versal cocone’ in a rigorous mathematical sense. It’s a cocone, with projections {A πA−→ L}A∈C
from every other monad just as for another cocone, but it’s unique among cocones by having
the following universal property: Another cocone {A γA−→ N}A∈C is determined by compos-
ing the cocone to L with an expression of L in N . That is, there is a unique expressing
L

n−→ N such that ∀A ∈ C, γA = nπA. A natural interpretation of this is that any point of
view is an expression of God’s point of view,28 and every expression of God determines a
point of view.

3.5 Natural vs. arbitrary expression
Leibniz distinguished arbitrary expression from that based in nature. Illustrating the former
are the characters of a written language, and the latter is a cause and its total effect.29 We can
formalise Leibniz’s distinction by distinguishing two kinds of expression using categories.

(Leibniz illustrates the distinct kinds of expression with things that manifestly aren’t
monads, and I will do the same.)

The idea is that natural expression (‘expressionn’) is expression simpliciter, and is always
modelled just as above in CME (perhaps without the additions of this section specific to
monadic expression). Arbitrary expression (‘expressiona’) is not expression per se but is
analogous to it: An object A expressesa another A′ when A’s role in its system of expressionn
parallels the role of A′ in its own system, with the parallel cashed out as an expressingn of
A′’s system in A’s system.

In categorical terms this goes as follows. Assume A is an object of C, A′ of C ′, and there
is a functor between categories F : C ′ → C such that F (A′) = A. This functor represents an
expressingn of the one category in the other, according to which A′ plays the role in C ′ that
A plays in C.

Notice thatA andA′ may be completely different kinds of thing since they are in different
categories. But there is still a rule by which one can move in thought30 from the expression
to the expressed: that rule is supplied by the functor F.

One illustration of this is a novel explanation of the way an algebraic equation like

x2 + y2 = 12 (1)

expresses a circle.31 This has baffled interpreters.32 With our categorical formalism we simply
need to establish a functor between the category of algebraic equations and the category of
geometric figures.33 Such a functor would represent an expression of geometry in algebra,
according to which Eqn. (1) in algebra corresponds to the circle in geometry.

27Again, this is dual to the limit for which all arrows are reversed.
28L, 269.
29L, 207-8.
30Leibniz mentions such a rule in [L, 207]. Brandom [Bra81, 450ff.] and Swoyer [Swo91; Swo95] emphasise

the connection of expression to reasoning and inference that such a rule constitutes. CME could describe this
by letting arrows represent inference possibilities.

31L, 207.
32Swoyer conjectured [Swo95, 91] that Leibniz meant the solution set of the equation (ordered pairs) ex-

presses the circle (points in space). Puryear noticed [Pur06, 22] that the equation must also express the solu-
tion set, so Swoyer just postponed the problem. But Puryear could not explain how this happens in his SR
framework since the structure of Eqn. (1) isn’t shared by a circle.

33The modern field of algebraic geometry involves a project like this.
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A more general illustration on these lines is the way a character of language expresses its
referent. We’d just need a functor from a category for (phenomenal) objects in the world to
a categorical model34 of language. This would represent expression of the world in language
by mapping objects to words.35

In both cases the symbol (word or equation) is arbitrary considered singly, but plays a
definite role in a bigger structure.

4 Discussion

The Structural Representation interpretation of ‘expression’ has been developed by Kulstad,
McRae, Swoyer, Puryear, and De Risi.36 Kulstad’s idea was that expression can be modelled
as a function between sets; McRae and then Swoyer added a requirement that the function
preserve some (previously specified) structure, making it an isomorphism. Puryear applied
SR to a variety of kinds of expression. De Risi developed a more complex treatment of
the ‘algebra of expression’ with homomorphisms instead of isomorphisms, and employed
the mathematical kernel of Noether’s homomorphism theorem to explain that part of a
monad’s qualities which aren’t expressed distinctly.37 All of these methods share the general
strategy of explaining ‘expression’ as a relation holding between monads when there exists a
mathematical morphism between (structured) sets of qualities associated to the monads.

There can be no doubt that Leibniz understood something close to the modern math-
ematical concept of structural isomorphism.38 It would be silly to think that the SR view is
completely misguided.

At various places we have mentioned problems for SR, but I believe it can be strengthened
significantly. In the first place, if we do use structured sets of monadic qualities, we can
overcome the problem posed to SR by monadic simplicity. (Though this involves us with
a new kind of representation in need of explanation: how does a structured set represent
monadic qualities?) We also discussed the problem of individuation, and I suggested that
on SR expressings are individuated too coarsely. But instead of defining expression as the
relation obtaining when ‘there exists a (certain) function between monadic qualities’, the
SR-theorist can say that an individual expressing is such a function. This will rectify the
individuation of expressings without disturbing the rest of the SR machinery.

Unfortunately the strengthened SR isn’t as strong as we should like. It emphasises the su-
pervenience of expressings on the qualities of monads (avoiding the Scylla of the irreducible
external relations Leibniz denounced), but cannot explain the way a monad’s entire state is
characterised by its expressings, in particular by its place, its ‘point of view’, in the system of
expression (succumbing to the Charybdis of disharmony). CME does better on this front.
And that’s an instance of a theme: it is very hard to give an account in the SR framework
of the central theses that Leibniz casts in terms of expression. We have seen how easy this
is in CME. The point is that CME treats expression as a system of interest in its own right.
Without such a system one cannot begin to imagine framing these other doctrines.

34Lam58; BOW88; Dou92; Kra03.
35In [L, 184] (=[G, 192]) Leibniz emphasises the ‘complex mutual relation [situm complexum] or order’

that the characters of language have when conjoined or inflected. Puryear [Pur06, 16-23, §2.2] takes this to be
in composite characters, and applies the standard SR theory to explain their expression. I think Leibniz means,
rather, combination in phrase structure because he grants ‘single words’ might lack such situm.

36Kul75; McR76; Kul77; Swo91; Swo95; Pur06; De 07, 321, esp. 429-36.
37This can be captured even more naturally in CME using a factorisation system [Rie08].
38Sti73.
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This point inspires a concluding reflection. These two approaches, SR and CME, involve
different objects of explanation. The goal of SR is to explain an instance of expression in more
basic terms. It assumes a concept of structure (perhaps with some mathematical formalisa-
tion), and explains expression in terms of structure. Then it struggles to elucidate the system
of expression as a whole. On the other hand CME leaves individual expressings unanalysed.
Nothing said above helps to understand what it means that monad B expresses monad A by
h; nothing is more basic than expressings. Perhaps this is a good thing. Leibniz occasionally
gives suggestive illustrations about the meaning of expression, but he is much happier to
work with the concept, using it to build up his framework. Perhaps we should be too, and
at least for the sake of interpreting his system, develop a logic of expression that takes the
concept as an irreducible element.
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